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Abstract. The ongoing digitalization of the education sector yields great poten-

tial through the use of Artificial Intelligence but is decelerated by a necessity for 

privacy and security. This paper investigates the potential of Federated Recom-

mender Systems in school education as a solution to this problem within a two-

cycle design science research approach. Meta-requirements for Federated Rec-

ommender Systems are extracted from the literature and evaluated through an 

educational prototype. To balance the technical evaluation, practical design 

guidelines are articulated and evaluated by a focus group of experts resulting in 

tangible guidelines for practitioners and educational stakeholders. 

Keywords: Federated Learning, Education, Recommender Systems, Design 

Guidelines, Design Science Research, Information Systems 

1 Introduction 

Digital technologies offer great potential for the improvement of education which is yet 

untapped due to regulatory specifications regarding data protection. An example is the 

'Right to be Forgotten', which requires the deletion of user data upon request, impacting 

the availability of data for educational data mining (Hutt et al., 2023). Actions to secure 

data protection are critical to ensure the success and ethicality of electronic systems, 

especially with educational systems, which are processing highly sensitive information 

such as the personal data of adolescents. This core privacy requirement seems to con-

tradict approaches to create modern artificial intelligence-based solutions where large 



 

quantities of data must get processed to build reliable models. For instance, kinds of 

data are records of completed activities, tracked learning data, time spent on tasks, and 

learning outcomes (Chen et al., 2020). A possible solution to this issue is Federated 

Learning (FL) as a Privacy Preserving Machine Learning (PPML) technique to keep 

data local and build a global model (Truex et al., 2019). Data protection is built in by 

definition and the model quality reaches a comparable quality to a scenario where all 

information is shared. There has been limited research in the field of educational Rec-

ommender Systems (RS) applying FL. This work aims to close this gap by answering 

the following research questions: 

RQ1: Which meta-requirements does a Federated Learning Recommender System 

need to fulfill to be applicable to an educational context? 

RQ2: Do Federated Learning systems achieve sufficient performance to be feasibly 

applied in an educational context? 

RQ3: Which aspects need to be considered when implementing Federated Learning 

Recommender Systems for education in practice? 

To build from a solid foundation, preexisting research into Federated RS is aggregated 

from a literature review into objective meta-requirements. The educational context is 

intentionally left out at this point due to the limited existing research into educational 

federated RS and is instead added through RQ2 and RQ3 to make up a large part of this 

paper’s addition to the knowledge base. 

To answer the research questions, meta-requirements for FL RS are collected based on 

a literature review. Then, the FL approach gets prototypically applied in an educational 

context and technically evaluated. Afterwards, practical aspects for the system’s imple-

mentation are collected, aggregated into design guidelines and finally confirmed 

through a focus group interview. 

2 Theoretical Foundations 

2.1 Federated Learning 

A common approach to achieve AI applications with strong privacy protection in the 

context of Decentralized Machine Learning is FL (McMahan et al., 2017). It enables 

distributed computing nodes to collaboratively train Machine Learning (ML) models 

without exposing their own data. This work focuses on Horizontal Federated Learning 

(HFL). In HFL, unlike Vertical Federated Learning (VFL), the participating clients 

share a common or largely overlapping feature space but differ in their individual data 

samples (Q. Yang et al., 2019). In VFL, the samples are either shared or largely over-

lapping and the feature space over the different clients is different. In HFL, each par-

ticipating device has its own local data set that is not shared with other participants. 

Through this technique, multiple participants are enabled to build a common robust 

model while keeping their individual data private, thus satisfying critical issues such as 

data privacy, security, access rights, and access to heterogeneous data (Mammen, 2021; 

L. Yang et al., 2020).  



 

2.2 Needs of the German technological infrastructure in education 

Since the OECD report of 2015, the German educational system has acknowledged the 

deficiencies in its digital infrastructure within schools (OECD, 2015). These shortcom-

ings became glaringly evident during the COVID-19 pandemic and have since been 

addressed through financial initiatives like the "Digitalpakt Schule" and a series of 

statements and guidelines that aim to shape the school of tomorrow into a more digital-

ized form (European Commission, 2020; KMK, 2016, 2021). Moreover, the last decade 

has witnessed extensive research that informs the latest strategy paper issued by the 

(KMK, 2021). In this context, (Rohde & Wrase, 2022) summarize the essential factors 

for the successful digitalization of schools, with the first factor being: The digital infra-

structure must be implemented. Data security is crucial while implementing digital in-

frastructure, yet there is no centralized institution for verification, leaving schools to 

decide. Consequently, principals are forced to take responsibility for any legal concerns 

and teachers along with educators need to be certain that the software they employ in 

the classroom is compliant with data security and privacy requirements. This is a situ-

ation where the teachers and principals must be informed to decide whether an app is 

data safe or not. In summary there are several key factors in the context of the chal-

lenges discussed above: 

1. Security Concerns: There are major data security uncertainties in education (GEW, 

2020), aligning with (Think Tank iRights.Lab, 2021) call for verified apps.  

2. Data Privacy as a Priority: As highlighted by the (mmb Institut, 2021), data privacy 

is a paramount concern when introducing AI in education.  

3. Data secure "Data-Lakes": Performant models must be trained with large quanti-

ties of data, which is difficult in the educational environment. One of the recommenda-

tions of the (mmb Institut, 2021), is to access “Data-Lakes” with secure and anony-

mized data to enhance the models of AI.  

4. Data Literacy: There is a lack of deeper understanding of data management by users 

and instructors in the educational system (Bock et al., 2023). 

 

Incorporating FL into the educational ecosystem can be a transformative step towards 

addressing the security and privacy concerns prevalent in modern education. By ensur-

ing that sensitive data remains under the control of schools and educators, while also 

fostering data literacy and responsible technology use, FL paves the way for a more 

secure and privacy-respecting digital education landscape. One specific use-case this 

study focuses on is the implementation of FL in RS. Diverse projects address different 

needs in the field of education, such as academic advising recommender (Obeid et al., 

2018) or a combination of RS and learning management systems (Medio et al., 2020). 

Effective recommendation systems such as the five reviewed studies in (Ouyang et al., 

2022) generate high-quality recommendations that lead to a significant difference in 

the academic performance. The use of FL in education would address the mentioned 

key factors. The remaining questions are about the specific technological needs of FL 

when implementing it in the technological infrastructure of educational systems which 

are addressed in this paper. 



 

3 Research Design 

The challenge for developing an appropriate solution for the digitalization in German 

schools is approached by applying the methodology of design science research as a 

common paradigm of research in the Information Systems (IS) (Hevner et al., 2004) to 

prototypically implement FL in an educational RS.  

3.1 Design Science Research 

The DSR-efforts result in two design cycles as depicted in Figure 1 to reach a technical 

prototype and design guidelines within a clearly structured and iterative approach. 

 

 

Figure 1: Design Science Research Process based on (Kuechler & Vaishnavi, 2008) 

A literature review builds the foundation of the first design cycle, establishing meta-

requirements for the designed artifact. It is worth noting that educational requirements 

are purposefully left out to ensure an optimal application architecture for FL-based RS 

before evaluating it in an educational context. The meta-requirements are then instan-

tiated through an implementation of a prototype. The use case of the prototype is to 

recommend to the teacher which students to intervene on because they are at risk of 

failing their respective classes, allowing for faster and more precise interventions. This 

prototype then undergoes a technical evaluation to achieve an assessment of the tech-

nical efficacy of the system for the education domain. For the second cycle, an expert 

panel held over multiple sessions where AI, education, and software experts discussed 

various aspects of digitalization in education provides the initial push to collect factors 

regarding the practical implementation of the designed system. These factors are syn-

thesized into design guidelines when implementing the system in practice. Following 

this, a focus group of experts in the fields of education, data science and security discuss 

and evaluate the design guidelines to provide evaluated, actionable knowledge aimed 

to be used as guidelines for practice. 

3.2 Literature Review 

The knowledge of an extensive literature review, guided by (Brocke et al., 2009; Web-

ster & Watson, 2002) serves as source of information in the first DSR-cycle. The search 

term is made up of "federated learning" AND "recommender systems" AND "require-

ment" over IEEE, SpringerLink, ScienceDirect, AISeL, ACM, Wiley and JSTOR. From 
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the initial 352 unique results, 304 were removed after screening by title. Of the 48 re-

maining articles, the abstract was screened for relevance, leaving 37 articles. Finally, a 

full-text screening was performed for the remaining articles, resulting in 13 articles 

which are joined with 7 articles from forward/backward searches to make up 20 articles 

used as one of the informational foundations of the paper. References with certain re-

quirements for RS employing FL were included and poor quality led to an exclusion. 

4 Results 

4.1 Meta-Requirements for FL-based RS in the context of Flower framework 

From the literature review resulted 43 requirements, which were condensed to the nine 

meta-requirements depicted in Figure 2 marked with filled boxes.  

 

Figure 2: Meta-Requirements from the Literature Review 

The Flower framework is specifically chosen, because it offers an out of the box im-

plementations of server-client FL architecture, different methods for the aggregation of 

the given parameters and methods for simulation. The user then defines the model 

which runs in the backend and methods for accessing the parameters, training, and eval-

uation. The Flower framework inherently fulfils most of the meta-requirements from 

the literature; these are listed below according to their frequency: 

MR1: As Flower operates independently of the underlying machine learning frame-

work, the allocation of computational resources primarily depends on the selected 

model. Minimizing network resources is feasible by serializing transferred parame-

ters, and smaller models typically require relatively few iterations to converge. Com-

munication efficiency is detailed in Neumann et al. (2023). 

MR2: Given that FL is generally agnostic to the underlying machine learning model, 

any model whose parameters can be aggregated can be trained. Personalization as Re-

quirement for RS is mentioned in Wang et al. (2022) as another aspect of FL RS. 

(A
la

m
g
ir

, 
K

h
a
n
 a

n
d
 K

a
ri

m
, 
2
0
2
2
)

(B
eu

te
l 

e
t 

a
l.

, 
2
0
2
2
)

(C
u
i 

e
t 

a
l.

, 
2
0
2
2
)

(H
a
ra

si
c
 e

t 
a
l.

, 
2
0
2
3
)

(I
m

ra
n
 e

t 
a
l.

, 
2
0
2
3
)

(J
a
la

li
ra

d
 e

t 
a
l.

, 
2
0
1
9
)

(J
ia

n
g
 e

t 
a
l.

, 
2
0
2
0
)

(K
a
ir

o
u
z 

e
t 

a
l.

, 
2
0
2
1
)

(K
a
ll

o
o
ri

 a
n
d
 K

li
n
g
le

r,
 2

0
2
1
)

(L
iu

 e
t 

a
l.

, 
2
0
2
2
)

(L
u
o
 e

t 
a
l.

, 
2
0
2
3
)

(M
u
h
am

m
a
d
 e

t 
a
l.

, 
2
0
2
0
)

(N
e
u
m

a
n
n
 e

t 
a
l.

, 
2
0
2
3
)

(P
e
ri

fa
n
is

 a
n
d
 E

fr
a
im

id
is

, 
2
0
2
2
)

(Q
in

 e
t 

a
l.

, 
2
0
2
3
)

(R
ib

e
ro

 e
t 

a
l.

, 
2
0
2
2
)

(W
a
n
g
 e

t 
a
l.

, 
2
0
2
2
)

(W
e
n
 e

t 
a
l.

, 
2
0
2
3
)

(Y
a
n
g
 e

t 
a
l.

, 
2
0
2
0
)

(Z
h
a
n
g
 e

t 
a
l.

, 
2
0
2
2
)

MR1 - Computational and Network Resources 1 1 1 1 1 1 1 1 1 1 1 1 1 13

MR2 - Model Management and Personalization 1 1 1 1 1 1 1 1 1 1 10

MR3 - Privacy and Security 1 1 1 1 1 1 1 1 1 9

MR4 - Network Architecture and Support 1 1 1 1 1 1 1 7

MR5 - Performance and Efficiency 1 1 1 1 1 5

MR6 - Data Management and Quality 1 1 1 1 4

MR7 - System Robustness and Scalability 1 1 1 3

MR8 - Adaptability and Evolution 1 1 1 3

MR9 - Device&Infrastructure 1 1 2

M
e
ta

-R
e
q

u
ir

e
m

e
n

ts

F
r
e
q

u
e
n

c
y

References



 

MR3: Flower integrates differential privacy, a technique that introduces statistical 

noise to confidential data, rendering it indistinguishable and unidentifiable. Data pri-

vacy and security needs are met through Flower's implementation of methods such as 

SSL connections. Perifanis & Efraimidis (2022) evaluate privacy preserving mecha-

nisms in the context of FL RS. 

MR4: Flower seamlessly integrates with various machine learning libraries. Exam-

ples of these in Python include Keras, scikit-learn, and PyTorch, facilitating compati-

bility and ease of use. Communication between clients and servers, a core assumption 

for FL (Kairouz et al., 2021), is a fundamental aspect of the Flower framework. 

MR5: L. Yang et al. (2020) describe performance requirements, for instance real-time 

requirements are relevant. 

MR6: RS usually rely on large quantities of data (Kalloori & Klingler, 2021). FL 

works with models rather than the data itself. It does not hinder data quality but needs 

additional steps when the need to deal with data understanding and processing arises. 

This is further elaborated on in the discussion. 

MR7: Robustness is a goal for FL systems (Harasic et al., 2023). It relies on the un-

derlying machine learning model, while its scalability is contingent upon the re-

sources available to the clients, as training is distributed across different devices. 

MR8: After training, a model can be distributed to clients, and upon collecting new 

data batches, FL can be applied to the updated data, utilizing the prior model as the 

starting point for the new FL iteration. Even readjusting for different requirements 

and constraints happens (Wen et al., 2023). 

MR9: There are scenarios where a large client population has to be supported by the 

infrastructure (Neumann et al., 2023). 

4.2 Architecture of the FL-based educational RS 

As mentioned in 2.1, this paper focuses on HFL. In the context of education, different 

clients could for example be different courses or different schools prohibited from shar-

ing data about the performance of their students. These clients possess data that can be 

utilized to train a model for predicting a student's future performance and the likelihood 

of passing a particular course. This data may include features such as past examination 

performance, class attendance or even demographic data about the students. All clients 

engaged in the FL framework are aware of the type of model to be trained in advance. 

In the case of this paper, the model predicts which students are at risk of failing the 

class, recommending these students to the teacher for potential interventions. For the 

actual FL approach, a client-server architecture is used. The process is as follows: 

1. The model type to be used is predefined, and each client is informed about the 

specific model details (i.e., features used and underlying model architecture), along 

with the initial set model weights, which can be taken from a random client. 

2. Subsequently, until the model converges or reaches satisfactory performance: 

a. Clients compute their model weights locally in a training iteration. 

b. Clients send their gradients or model weights to the server, with the option to 

mask them for secure communication. 



 

c. The server aggregates the received results using methods like weighted aver-

aging to create a global model. 

d. The server sends back the aggregated results to the clients. 

Given the relatively short duration of school courses and the diverse nature of required 

teacher actions based on the learning environment, it becomes crucial to directly in-

volve the teacher in the ML loop rather than solely relying on model predictions. At its 

current state, the prototype is a support system for teachers making decisions. 

4.3 Implementation 

Using Flower this work implements the described architecture as a FL-based educa-

tional RS prototype trained on the OULAD (Open University Learning Analytics Da-

taset) (Kuzilek et al., 2017). It is chosen as the primary data source because of its sub-

stantial size and close relation to virtual courses and information on how the students 

interact with the provided material as well as student profiles, and their corresponding 

assessments. It is worth noting that the data preprocessing is not a primary focus of this 

work and will only be touched on briefly. The goal of the prototype is to recommend 

students who are likely to fail their class, hence two cases are considered: pass and fail. 

Since the students can withdraw from the course at any time, a deadline for the final 

withdrawal is set, after which, every withdrawal is considered as a failure. On the other 

hand, the label Distinction provided by the dataset is interpreted as a pass. The dataset 

containing information on the student's interaction with each course (i.e., the sum of 

clicks on each type of material until a specific date) is merged with the students’ demo-

graphic data including the final result. After dropping columns with too many missing 

values, 30 features and 23860 data points are left (Duke, 2021). 

Table 1 lists all features used for training, broken down into features regarding the 

course, the interaction with the virtual learning environment (VLE) and demographic 

data about the students.  

Neural networks are employed as the underlying machine learning model and im-

plemented through the Keras (Chollet, 2015) library in Python. In the context of FL, 

neural networks present an attractive choice due to their ability to easily aggregate the 

model updates by averaging the model weights across all clients. For similar reasons, 

the decision to average over the model weights directly as opposed to the model gradi-

ents is made, as they are easily accessible through the Keras library. 

Table 1: All features used in training 

Course 
code_module, code_presentation, mean_score_day180, 

num_of_prev_attempts 

VLE 

Interactions 

dataplus, dualpane, externalquiz, folder, forumng, glossary, 

homepage, htmlactivity, oucollaborate, oucontent, ouelluminate, 

ouwiki, page, questionnaire, quiz, repeatactivity, resource, 

sharedsubpage, subpage, url 

Demographic 

Data 

gender, region, highest_education, age_band, studied_credits, dis-

ability 



 

4.4 Technical Evaluation 

The global test set used for evaluation is constructed by randomly sampling from the 

entire dataset. Within this context, 3 different model training scenarios are examined. 

In the global simulation, a single model is trained on all the available training data and 

is then evaluated on the global test set. In the local simulation, the data is split between 

n clients and a model is then trained for each local dataset. Each local model is then 

evaluated on the global test set. In the federated simulation the same data split occurs, 

however a single model is then trained using the FL architecture described above. The 

resulting model is then again evaluated on the global test set. By comparing the global 

and local simulation to each other, it becomes apparent how the reduction of data points 

affects the performance of the underlying Machine Learning model, as in the local sim-

ulation each model only trains on a fraction of the data. Similarly, comparing the fed-

erated simulation to the other simulations yields a comparison of how the proposed FL 

architecture performs under the same reduction in data as the local simulation. 

Table 2 and Table 3 show the results of the scenario using the global test set and split-

ting it into 10 or 100 smaller datasets respectively. The average metrics using cross 

validation (k=10) are depicted with an average being taken for each model in each run 

of the cross validation.  

Table 2: Results of the simulation (n=10) 

Metric 

(averaged) 

Global  

Simulation 

Local Simulation Federated 

Simulation 

Binary Cross Entropy 0.498 (±1.1×10-3) 0.5422 (±5×10-4) 0.5094 (±3×10-4) 

Accuracy 0.77 (±1×10-4) 0.7365 (±2×10-4) 0.7668 (±1×10-4) 

F1 Score 0.8262 (±1×10-4) 0.8053 (±2×10-4) 0.8261 (±1×10-4) 

Precision  0.7926 (±3×10-4) 0.7592 (±7×10-4) 0.7828 (±1×10-4) 

Recall 0.8709 (±7×10-4) 0.8702 (±3.2×10-3) 0.8824 (±3×10-3) 

Area Under Curve 0.8278 (±1×10-3) 0.7854 (±1×10-4) 0.823 (±1×10-4) 

Using 10 clients (Table 2), the global model yields the best performances in terms of 

Binary Cross Entropy, Accuracy, F1-Score Precision and Area Under Curve, while the 

federated model yields the best performance in terms of Recall. For each metric, there 

is no large difference between the global and the federated model with both models 

performing significantly better than the local model, except for the Recall metric.  

When splitting the data between 100 different clients, the difference between the local 

model and the other two models further increases. Table 3 shows that for each metric 

except Recall, the global model performs best followed by the federated model. The 

federated model outperforms the other models slightly in the Recall metric.  

 



 

Table 3: Results of the simulation (n=100) 

Metric 

(averaged) 

Global  

Simulation 

Local Simulation Federated 

Simulation 

Binary Cross Entropy 0.498 (±1.1×10-3) 0.6349 (±2.1×10-3) 0.5363 (±2×10-4) 

Accuracy 0.77 (±1×10-4) 0.6730 (±5×10-4) 0.7497 (±1×10-4) 

F1 Score 0.8262 (±1×10-4) 0.7722 (±7×10-4) 0.8210 (±1×10-4) 

Precision  0.7926 (±3×10-4) 0.6941 (±6×10-4) 0.7502 (±1×10-4) 

Recall 0.8709 (±7×10-4) 0.8873 (±6×10-4) 0.915 (±2×10-4) 

Area Under Curve 0.8278 (±1×10-3) 0.6841 (±1.2×10-3) 0.8023 (±1×10-4) 

5 Design Guidelines 

To start the second design cycle, panel discussions between experts in education (2 

teachers), ML (2 researchers) and IS (3 researchers) raise awareness for problems re-

garding the practical implementation of the technically designed and evaluated system 

and resulted in four design guidelines for the domain of education.  These are presented 

in the following paragraphs. 

DG1 - Achieve additional security with hybrid approaches to PPML. While FL as 

an approach to PPML provides sufficient privacy guarantees for a host of different at-

tacks, it is best to combine it with other approaches like secure multiparty computation, 

differential privacy, or homomorphic encryption to close off other angles of attack like 

model or data reconstruction in a hybrid approach (Fang & Qian, 2021; Truex et al., 

2019). 

DG2 - Implement the system with consideration for the preconditions of schools. 

While digitalization initiatives in education do push schools to new heights of technical 

hardware and know-how, the FL system should not overburden their hardware with 

laborious or unoptimized machine learning algorithms. In the same way, the FL process 

should be implemented to be as automated as possible to not strain the already scarce 

personnel resources more than necessary. 

DG3 – Scalability and Connectivity first. Enforcing decentralization and keeping 

ownership of data is no longer a challenge for ML. Thus, it is time to optimistically 

rethink concepts and create data lakes while preserving data sovereignty and even push-

ing data autonomy forward at the same time. This will enable better performing recom-

mendation algorithms and will keep control of their data at the hand of all participants.  

DG4 – Ensure that Federated Learning fits your problem. FL does not fit every use 

case: On one hand, if the data used is not personal and does not have a high need for 

protection, the added complexity of FL should be avoided. On the other hand, there are 

scenarios with such a high data sensitivity and ethical questionability that FL alone does 

not provide sufficient protection the combination with other approaches would be nec-

essary. 



 

The focus group meant to evaluate and extend the above design guidelines was held 

as an online workshop with experts from the domains of education (1 researcher), psy-

chology (1 researcher), data science (3 researcher) and software development (3 re-

searcher). Experts voted on the usefulness of the guidelines and gave feedback in terms 

of their strengths and weaknesses. In the voting, DG2 emerges as the clear favorite with 

all votes fully agreeing with its usefulness and statements underlining it as a must have 

in the implementation of the system because of heavy time and knowledge constraints 

found in education. 

DG1 is met with strong, albeit not unanimous, support due to its enhancement of data 

security and trust within the critical domain of education. However, it also brings about 

increased system complexity and slightly diminishes explainability. 

DG3 is important, as its fulfillment ensures a higher quality standard which helps gain-

ing a higher level of acceptance. The main drawback voiced by the experts is a bigger 

effort for a huge rollout, not only from a technical, but also from an organizational 

standpoint. Larger rollouts result in higher risks. 

DG4 ensures appropriate effort for the individual problem. Experts agree that this rec-

ommendation is useful in reducing unnecessary effort and use of data. Unfortunately, 

it also promotes heterogeneity, thus reducing comparability between schools. It also 

collides with recommendation three, as the inspection of all individual cases does not 

scale well. Both are important in their own regard. This friction shows the field of ten-

sion when it comes to the actual implementation of the educational RS. 

In addition to evaluating the presented guidelines, the experts recommended that ethi-

cality of a use case must be evaluated before during and after the implementation for a 

holistic ethical view. Also, even though a wide rollout is desirable, a preceding model 

implementation can drastically reduce the imposed risk. 

6 Discussion 

This article focuses on data security and data protection in the context of RS in educa-

tion. The evaluation results show how the distribution of training data and the use of 

different training architectures can impact model performance. As anticipated, training 

with a complete global dataset yields the best utility but incurs a heavy cost in data 

privacy due to the requirement of centralizing all data for training. The local models, 

on the other hand, still perform reasonably well when training data is fragmented into 

10 datasets, but their performance drops significantly when fragmented into 100 da-

tasets. This decrease in performance is due to the reduced amount and diversity of data 

available to each local model, effectively reducing the information available to learn 

overarching patterns. Local models offer the best data protection, but a question re-

mains: Where should the line be drawn for a local model? Training these models at the 

individual student level would result in excessive fragmentation, effectively making the 

resulting models useless while training at a higher level, such as the class or school 

level, would again result in centralized data storage. A compromise between the two 

approaches is offered by FL. The federated model shows improved performance com-

pared to the local models with the same level of privacy. In some aspects, such as F1 



 

score and recall, it even achieves similar or slightly better results than the global model 

(RQ2). This demonstrates the effectiveness of the FL architecture. A joint model is 

trained from the contributions of multiple clients without direct data exchange. Hence 

it is possible to learn from the diversity of distributed data while addressing privacy 

concerns. FL therefore offers a solution to data protection concerns, particularly in ed-

ucational settings (GEW, 2020; mmb Institut, 2021), while also leveraging the potential 

of AI technologies (RQ1). However, when compared to other models, FL presents a 

new challenge. The creation and composition of the model makes data understanding 

and preparation more difficult, and feature engineering impossible (Eleks et al., 2023). 

Therefore, it is important to develop methods for continuous evaluation of the model 

during operation such as the inclusion of explainable artificial intelligence methods in 

the federated process from the beginning to provide information about which variables 

have a particularly strong influence on the forecast. In this context, it is important to 

consider a human-in-the-loop approach: When receiving recommendations along with 

explanations, teachers or students can incorporate feedback into the training process. 

This can lead to a semi-automatic improvement of the system in the long term. The use 

case described in this article predicts learning performance which raises ethical con-

cerns regarding the use of AI. This concern can also be addressed by human involve-

ment to prevent the potential negative impact of false-positive or false-negative predic-

tions on a student's future. Therefore, it is imperative for teachers to be involved in the 

process. Other usage scenarios such as assigning teaching materials or entire courses to 

specific students face similar issues where misjudgments can also have detrimental 

long-term consequences.  

 

The evaluation with experts further highlights the importance of considering both meta-

requirements and practical constraints in implementing FL in education. The focus 

group’s preference for DG2 highlights the importance of creating FL systems that align 

with the diverse technological landscapes of schools. This insight directly addresses 

RQ3, emphasizing the need for user-friendly and low-maintenance FL solutions tai-

lored to the technical capabilities and resources of educational institutions. Further-

more, the group's support for hybrid privacy approaches (DG1) reinforces the meta-

requirements for FL systems in education (RQ1), advocating for enhanced data security 

through advanced privacy-preserving methods. This strategy not only increases data 

protection but also strengthens system trust, addressing both technical and ethical con-

siderations crucial for FL's application.  

 

The discussion on scalability and fit-for-purpose (DG3 and DG4) brings to light the 

challenges and considerations for FL's practical deployment (RQ2). Scalability ensures 

that FL systems can accommodate growing educational demands without compromis-

ing performance or privacy. Conversely, the need to tailor FL deployment to specific 

educational scenarios underscores the importance of discerning when FL's complexity 

is warranted, based on the sensitivity of the data and the educational impact. These 

considerations highlight that the effective implementation of FL in education requires 

a balanced approach, considering technical feasibility, data security, and the educa-

tional context's unique needs. In the context of IS, this article demonstrates how FL can 



 

leverage the benefits of AI without compromising data protection which is especially 

important in the context of user acceptance, fostering trust into the system. This, in turn, 

enables the human-in-the-loop approach and ensures that the system can reach its full 

potential. For practitioners, the presented approach provides guidance on implementing 

such a system in practice that is also anticipated to be applicable to educational areas 

beyond school education, e.g. corporate contexts such as assigning targeted training 

measures to specific employees. 

7 Conclusion 

Based on its research questions, this article has delved into the utilization of a FL-based 

RS within the educational domain, particularly in schools. It sought to uncover meta-

requirements essential for such a system's operation, assesses its performance against 

these criteria in an educational setting, and identifies essential design guidelines critical 

for its deployment in the domain. The four design guidelines lay the foundation for the 

successful integration of FL-based RS in educational environments. 

The main contributions of this research are threefold: First, we identify meta-require-

ments essential for FL RS, ensuring privacy and performance. Second, we develop and 

evaluate a practical prototype that demonstrates the feasibility and effectiveness of FL 

in this domain, using real-world educational data. Third, we derive and validate practi-

cal design guidelines through expert focus groups, offering actionable insights for prac-

titioners. 

 

Like any research endeavor, this study has limitations. The technical evaluation relied 

on a single dataset, limiting deeper investigation. This may affect the generalizability 

of the findings, emphasizing the need for research with more diverse and realistic da-

tasets. Additionally, the design guidelines, while evaluated with experts, have not yet 

been practically implemented. Future research should focus on implementing and eval-

uating these systems in live educational environments to assess their practicality, effec-

tiveness, and their long-term impact on educational outcomes. Moreover, while the de-

sign guidelines provide a strategic framework for implementing FL in education, they 

also highlight the nuanced balance required between technological sophistication and 

practical usability. Ensuring that FL systems are both robust in privacy preservation 

and accessible to educational practitioners remains a key challenge. Addressing this 

challenge calls for ongoing collaboration between technologists, educators, and policy-

makers, aiming to refine current approaches to the evolving needs of the educational 

sector. This paper contributes to the broader discourse on the intersection of artificial 

intelligence, data privacy, and education by foregrounding the importance of privacy-

preserving technologies like FL and showing their transformational potential for the 

education domain. This transformation, however, must be navigated with careful con-

sideration of technical, ethical, and practical dimensions, ensuring that technological 

advancements empower educators and students alike, without compromising on the 

core values of security and privacy. 
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