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Abstract. The ongoing digitalization of the education sector yields great poten-
tial through the use of Artificial Intelligence but is decelerated by a necessity for
privacy and security. This paper investigates the potential of Federated Recom-
mender Systems in school education as a solution to this problem within a two-
cycle design science research approach. Meta-requirements for Federated Rec-
ommender Systems are extracted from the literature and evaluated through an
educational prototype. To balance the technical evaluation, practical design
guidelines are articulated and evaluated by a focus group of experts resulting in
tangible guidelines for practitioners and educational stakeholders.

Keywords: Federated Learning, Education, Recommender Systems, Design
Guidelines, Design Science Research, Information Systems

1 Introduction

Digital technologies offer great potential for the improvement of education which is yet
untapped due to regulatory specifications regarding data protection. An example is the
'Right to be Forgotten', which requires the deletion of user data upon request, impacting
the availability of data for educational data mining (Hutt et al., 2023). Actions to secure
data protection are critical to ensure the success and ethicality of electronic systems,
especially with educational systems, which are processing highly sensitive information
such as the personal data of adolescents. This core privacy requirement seems to con-
tradict approaches to create modern artificial intelligence-based solutions where large
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quantities of data must get processed to build reliable models. For instance, kinds of
data are records of completed activities, tracked learning data, time spent on tasks, and
learning outcomes (Chen et al., 2020). A possible solution to this issue is Federated
Learning (FL) as a Privacy Preserving Machine Learning (PPML) technique to keep
data local and build a global model (Truex et al., 2019). Data protection is built in by
definition and the model quality reaches a comparable quality to a scenario where all
information is shared. There has been limited research in the field of educational Rec-
ommender Systems (RS) applying FL. This work aims to close this gap by answering
the following research questions:

RQ1: Which meta-requirements does a Federated Learning Recommender System
need to fulfill to be applicable to an educational context?

RQ2: Do Federated Learning systems achieve sufficient performance to be feasibly
applied in an educational context?

RQ3: Which aspects need to be considered when implementing Federated Learning
Recommender Systems for education in practice?

To build from a solid foundation, preexisting research into Federated RS is aggregated
from a literature review into objective meta-requirements. The educational context is
intentionally left out at this point due to the limited existing research into educational
federated RS and is instead added through RQ2 and RQ3 to make up a large part of this
paper’s addition to the knowledge base.

To answer the research questions, meta-requirements for FL RS are collected based on
a literature review. Then, the FL approach gets prototypically applied in an educational
context and technically evaluated. Afterwards, practical aspects for the system’s imple-
mentation are collected, aggregated into design guidelines and finally confirmed
through a focus group interview.

2 Theoretical Foundations

2.1  Federated Learning

A common approach to achieve Al applications with strong privacy protection in the
context of Decentralized Machine Learning is FL (McMahan et al., 2017). It enables
distributed computing nodes to collaboratively train Machine Learning (ML) models
without exposing their own data. This work focuses on Horizontal Federated Learning
(HFL). In HFL, unlike Vertical Federated Learning (VFL), the participating clients
share a common or largely overlapping feature space but differ in their individual data
samples (Q. Yang et al., 2019). In VFL, the samples are either shared or largely over-
lapping and the feature space over the different clients is different. In HFL, each par-
ticipating device has its own local data set that is not shared with other participants.
Through this technique, multiple participants are enabled to build a common robust
model while keeping their individual data private, thus satisfying critical issues such as
data privacy, security, access rights, and access to heterogeneous data (Mammen, 2021;
L. Yang et al., 2020).



2.2 Needs of the German technological infrastructure in education

Since the OECD report of 2015, the German educational system has acknowledged the
deficiencies in its digital infrastructure within schools (OECD, 2015). These shortcom-
ings became glaringly evident during the COVID-19 pandemic and have since been
addressed through financial initiatives like the "Digitalpakt Schule" and a series of
statements and guidelines that aim to shape the school of tomorrow into a more digital-
ized form (European Commission, 2020; KMK, 2016, 2021). Moreover, the last decade
has witnessed extensive research that informs the latest strategy paper issued by the
(KMK, 2021). In this context, (Rohde & Wrase, 2022) summarize the essential factors
for the successful digitalization of schools, with the first factor being: The digital infra-
structure must be implemented. Data security is crucial while implementing digital in-
frastructure, yet there is no centralized institution for verification, leaving schools to
decide. Consequently, principals are forced to take responsibility for any legal concerns
and teachers along with educators need to be certain that the software they employ in
the classroom is compliant with data security and privacy requirements. This is a situ-
ation where the teachers and principals must be informed to decide whether an app is
data safe or not. In summary there are several key factors in the context of the chal-
lenges discussed above:

1. Security Concerns: There are major data security uncertainties in education (GEW,
2020), aligning with (Think Tank iRights.Lab, 2021) call for verified apps.

2. Data Privacy as a Priority: As highlighted by the (mmb Institut, 2021), data privacy
is a paramount concern when introducing Al in education.

3. Data secure ""Data-Lakes": Performant models must be trained with large quanti-
ties of data, which is difficult in the educational environment. One of the recommenda-
tions of the (mmb Institut, 2021), is to access “Data-Lakes” with secure and anony-
mized data to enhance the models of Al.

4, Data Literacy: There is a lack of deeper understanding of data management by users
and instructors in the educational system (Bock et al., 2023).

Incorporating FL into the educational ecosystem can be a transformative step towards
addressing the security and privacy concerns prevalent in modern education. By ensur-
ing that sensitive data remains under the control of schools and educators, while also
fostering data literacy and responsible technology use, FL paves the way for a more
secure and privacy-respecting digital education landscape. One specific use-case this
study focuses on is the implementation of FL in RS. Diverse projects address different
needs in the field of education, such as academic advising recommender (Obeid et al.,
2018) or a combination of RS and learning management systems (Medio et al., 2020).
Effective recommendation systems such as the five reviewed studies in (Ouyang et al.,
2022) generate high-quality recommendations that lead to a significant difference in
the academic performance. The use of FL in education would address the mentioned
key factors. The remaining questions are about the specific technological needs of FL
when implementing it in the technological infrastructure of educational systems which
are addressed in this paper.



3 Research Design

The challenge for developing an appropriate solution for the digitalization in German
schools is approached by applying the methodology of design science research as a
common paradigm of research in the Information Systems (I1S) (Hevner et al., 2004) to
prototypically implement FL in an educational RS.

3.1  Design Science Research

The DSR-efforts result in two design cycles as depicted in Figure 1 to reach a technical
prototype and design guidelines within a clearly structured and iterative approach.

General DSR Cycle Cycle 1 (Technical Prototype) Cycle 2 (Design Guidelines)

Awareness of Problem | Literature Review | | Expert Discussion of Practical Issues

Suggestion | Synthesis of System Requirements | | Collection of Practical Factors

|

|

Development | Implementation of Prototype | | Construction of Design Guidelines |
i |
|

Evaluation | Technical Evaluation | | Focus Group: Design Guidelines
Conclusion | Analysis of Technical Efficacy | | Recommendations for Applicability

Figure 1: Design Science Research Process based on (Kuechler & Vaishnavi, 2008)

A literature review builds the foundation of the first design cycle, establishing meta-
requirements for the designed artifact. It is worth noting that educational requirements
are purposefully left out to ensure an optimal application architecture for FL-based RS
before evaluating it in an educational context. The meta-requirements are then instan-
tiated through an implementation of a prototype. The use case of the prototype is to
recommend to the teacher which students to intervene on because they are at risk of
failing their respective classes, allowing for faster and more precise interventions. This
prototype then undergoes a technical evaluation to achieve an assessment of the tech-
nical efficacy of the system for the education domain. For the second cycle, an expert
panel held over multiple sessions where Al, education, and software experts discussed
various aspects of digitalization in education provides the initial push to collect factors
regarding the practical implementation of the designed system. These factors are syn-
thesized into design guidelines when implementing the system in practice. Following
this, a focus group of experts in the fields of education, data science and security discuss
and evaluate the design guidelines to provide evaluated, actionable knowledge aimed
to be used as guidelines for practice.

3.2 Literature Review

The knowledge of an extensive literature review, guided by (Brocke et al., 2009; Web-
ster & Watson, 2002) serves as source of information in the first DSR-cycle. The search
term is made up of "federated learning” AND "recommender systems" AND "require-
ment" over IEEE, SpringerLink, ScienceDirect, AlSeL, ACM, Wiley and JSTOR. From



the initial 352 unique results, 304 were removed after screening by title. Of the 48 re-
maining articles, the abstract was screened for relevance, leaving 37 articles. Finally, a
full-text screening was performed for the remaining articles, resulting in 13 articles
which are joined with 7 articles from forward/backward searches to make up 20 articles
used as one of the informational foundations of the paper. References with certain re-
quirements for RS employing FL were included and poor quality led to an exclusion.

4 Results

4.1 Meta-Requirements for FL-based RS in the context of Flower framework

From the literature review resulted 43 requirements, which were condensed to the nine
meta-requirements depicted in Figure 2 marked with filled boxes.

References
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(Beutel et al., 2022)
(Cui et al., 2022)

(Kalloori and Klingler, 2021)

(Liuetal., 2022)

(Luo et al., 2023)
(Muhammad et al., 2020)

(Harasic et al., 2023)
(Imran et al., 2023)

| |(Galalirad et al., 2019)
(Jiang et al., 2020)
(Kairouz et al., 2021)
(Neumann et al., 2023)

.. .. erifanis and Efraimidis, 2022)

(Qinetal., 2023)
(Ribero et al., 2022)
(Wang et al., 2022)
(Wen et al., 2023)
(Yang et al., 2020)
(Zhang et al., 2022)
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Figure 2: Meta-Requirements from the Literature Review

The Flower framework is specifically chosen, because it offers an out of the box im-
plementations of server-client FL architecture, different methods for the aggregation of
the given parameters and methods for simulation. The user then defines the model
which runs in the backend and methods for accessing the parameters, training, and eval-
uation. The Flower framework inherently fulfils most of the meta-requirements from
the literature; these are listed below according to their frequency:

MRZ1: As Flower operates independently of the underlying machine learning frame-
work, the allocation of computational resources primarily depends on the selected
model. Minimizing network resources is feasible by serializing transferred parame-
ters, and smaller models typically require relatively few iterations to converge. Com-
munication efficiency is detailed in Neumann et al. (2023).

MR2: Given that FL is generally agnostic to the underlying machine learning model,
any model whose parameters can be aggregated can be trained. Personalization as Re-
quirement for RS is mentioned in Wang et al. (2022) as another aspect of FL RS.



MR3: Flower integrates differential privacy, a technique that introduces statistical
noise to confidential data, rendering it indistinguishable and unidentifiable. Data pri-
vacy and security needs are met through Flower's implementation of methods such as
SSL connections. Perifanis & Efraimidis (2022) evaluate privacy preserving mecha-
nisms in the context of FL RS.

MR4: Flower seamlessly integrates with various machine learning libraries. Exam-
ples of these in Python include Keras, scikit-learn, and PyTorch, facilitating compati-
bility and ease of use. Communication between clients and servers, a core assumption
for FL (Kairouz et al., 2021), is a fundamental aspect of the Flower framework.

MR5: L. Yang et al. (2020) describe performance requirements, for instance real-time
requirements are relevant.

MRG6: RS usually rely on large quantities of data (Kalloori & Klingler, 2021). FL
works with models rather than the data itself. It does not hinder data quality but needs
additional steps when the need to deal with data understanding and processing arises.
This is further elaborated on in the discussion.

MRY7: Robustness is a goal for FL systems (Harasic et al., 2023). It relies on the un-
derlying machine learning model, while its scalability is contingent upon the re-
sources available to the clients, as training is distributed across different devices.
MRS8: After training, a model can be distributed to clients, and upon collecting new
data batches, FL can be applied to the updated data, utilizing the prior model as the
starting point for the new FL iteration. Even readjusting for different requirements
and constraints happens (Wen et al., 2023).

MR9: There are scenarios where a large client population has to be supported by the
infrastructure (Neumann et al., 2023).

4.2  Architecture of the FL-based educational RS

As mentioned in 2.1, this paper focuses on HFL. In the context of education, different
clients could for example be different courses or different schools prohibited from shar-
ing data about the performance of their students. These clients possess data that can be
utilized to train a model for predicting a student's future performance and the likelihood
of passing a particular course. This data may include features such as past examination
performance, class attendance or even demographic data about the students. All clients
engaged in the FL framework are aware of the type of model to be trained in advance.
In the case of this paper, the model predicts which students are at risk of failing the
class, recommending these students to the teacher for potential interventions. For the
actual FL approach, a client-server architecture is used. The process is as follows:

1. The model type to be used is predefined, and each client is informed about the
specific model details (i.e., features used and underlying model architecture), along
with the initial set model weights, which can be taken from a random client.

2. Subsequently, until the model converges or reaches satisfactory performance:

a. Clients compute their model weights locally in a training iteration.
b. Clients send their gradients or model weights to the server, with the option to
mask them for secure communication.



c. The server aggregates the received results using methods like weighted aver-
aging to create a global model.
d. The server sends back the aggregated results to the clients.

Given the relatively short duration of school courses and the diverse nature of required
teacher actions based on the learning environment, it becomes crucial to directly in-
volve the teacher in the ML loop rather than solely relying on model predictions. At its
current state, the prototype is a support system for teachers making decisions.

4.3  Implementation

Using Flower this work implements the described architecture as a FL-based educa-
tional RS prototype trained on the OULAD (Open University Learning Analytics Da-
taset) (Kuzilek et al., 2017). It is chosen as the primary data source because of its sub-
stantial size and close relation to virtual courses and information on how the students
interact with the provided material as well as student profiles, and their corresponding
assessments. It is worth noting that the data preprocessing is not a primary focus of this
work and will only be touched on briefly. The goal of the prototype is to recommend
students who are likely to fail their class, hence two cases are considered: pass and fail.
Since the students can withdraw from the course at any time, a deadline for the final
withdrawal is set, after which, every withdrawal is considered as a failure. On the other
hand, the label Distinction provided by the dataset is interpreted as a pass. The dataset
containing information on the student's interaction with each course (i.e., the sum of
clicks on each type of material until a specific date) is merged with the students’ demo-
graphic data including the final result. After dropping columns with too many missing
values, 30 features and 23860 data points are left (Duke, 2021).

Table 1 lists all features used for training, broken down into features regarding the
course, the interaction with the virtual learning environment (VLE) and demographic
data about the students.

Neural networks are employed as the underlying machine learning model and im-
plemented through the Keras (Chollet, 2015) library in Python. In the context of FL,
neural networks present an attractive choice due to their ability to easily aggregate the
model updates by averaging the model weights across all clients. For similar reasons,
the decision to average over the model weights directly as opposed to the model gradi-
ents is made, as they are easily accessible through the Keras library.

Table 1: All features used in training

code_module, code_presentation, mean_score_day180,
num_of prev_attempts

dataplus, dualpane, externalquiz, folder, forumng, glossary,
VLE homepage, htmlactivity, oucollaborate, oucontent, ouelluminate,
Interactions ouwiki, page, questionnaire, quiz, repeatactivity, resource,
sharedsubpage, subpage, url

Demographic | gender, region, highest_education, age_band, studied_credits, dis-
Data ability

Course




4.4  Technical Evaluation

The global test set used for evaluation is constructed by randomly sampling from the
entire dataset. Within this context, 3 different model training scenarios are examined.
In the global simulation, a single model is trained on all the available training data and
is then evaluated on the global test set. In the local simulation, the data is split between
n clients and a model is then trained for each local dataset. Each local model is then
evaluated on the global test set. In the federated simulation the same data split occurs,
however a single model is then trained using the FL architecture described above. The
resulting model is then again evaluated on the global test set. By comparing the global
and local simulation to each other, it becomes apparent how the reduction of data points
affects the performance of the underlying Machine Learning model, as in the local sim-
ulation each model only trains on a fraction of the data. Similarly, comparing the fed-
erated simulation to the other simulations yields a comparison of how the proposed FL
architecture performs under the same reduction in data as the local simulation.

Table 2 and Table 3 show the results of the scenario using the global test set and split-
ting it into 10 or 100 smaller datasets respectively. The average metrics using cross
validation (k=10) are depicted with an average being taken for each model in each run
of the cross validation.

Table 2: Results of the simulation (n=10)

Metric Global Local Simulation Federated

(averaged) Simulation Simulation
Binary Cross Entropy | 0.498 (+1.1x103) | 0.5422 (x5x10%) | 0.5094 (+3x10%)
Accuracy 0.77 (x1x10%) 0.7365 (x2x10%) | 0.7668 (x1x10%)
F1 Score 0.8262 (+1x10%) | 0.8053 (x2x10%) 0.8261 (x1x10%)
Precision 0.7926 (+3x10%) | 0.7592 (x7x10%) 0.7828 (x1x10%)
Recall 0.8709 (x7x10%) | 0.8702 (+3.2x10%) | 0.8824 (+3x107?)

Area Under Curve

0.8278 (+1x10°%)

0.7854 (+1x10%)

0.823 (+1x10%)

Using 10 clients (Table 2), the global model yields the best performances in terms of
Binary Cross Entropy, Accuracy, F1-Score Precision and Area Under Curve, while the
federated model yields the best performance in terms of Recall. For each metric, there
is no large difference between the global and the federated model with both models
performing significantly better than the local model, except for the Recall metric.

When splitting the data between 100 different clients, the difference between the local
model and the other two models further increases. Table 3 shows that for each metric
except Recall, the global model performs best followed by the federated model. The
federated model outperforms the other models slightly in the Recall metric.



Table 3: Results of the simulation (n=100)

Metric
(averaged)

Global
Simulation

Local Simulation

Federated
Simulation

Binary Cross Entropy

0.498 (+1.1x103)

0.6349 (+2.1x103)

0.5363 (+2x10%)

Accuracy 0.77 (+1x10%) 0.6730 (£5x10%) | 0.7497 (x1x10%)
F1 Score 0.8262 (+1x10%) | 0.7722 (x7x10%) | 0.8210 (+1x10%)
Precision 0.7926 (+3x10%) | 0.6941 (+6x10%) | 0.7502 (+1x10%)
Recall 0.8709 (x7x10%) | 0.8873 (£6x10%) | 0.915 (+2x10%)

Area Under Curve 0.8278 (£1x107%) | 0.6841 (+1.2x10%) | 0.8023 (+1x10%)

5 Design Guidelines

To start the second design cycle, panel discussions between experts in education (2
teachers), ML (2 researchers) and IS (3 researchers) raise awareness for problems re-
garding the practical implementation of the technically designed and evaluated system
and resulted in four design guidelines for the domain of education. These are presented
in the following paragraphs.

DG1 - Achieve additional security with hybrid approaches to PPML. While FL as
an approach to PPML provides sufficient privacy guarantees for a host of different at-
tacks, it is best to combine it with other approaches like secure multiparty computation,
differential privacy, or homomorphic encryption to close off other angles of attack like
model or data reconstruction in a hybrid approach (Fang & Qian, 2021; Truex et al.,
2019).

DG2 - Implement the system with consideration for the preconditions of schools.
While digitalization initiatives in education do push schools to new heights of technical
hardware and know-how, the FL system should not overburden their hardware with
laborious or unoptimized machine learning algorithms. In the same way, the FL process
should be implemented to be as automated as possible to not strain the already scarce
personnel resources more than necessary.

DG3 - Scalability and Connectivity first. Enforcing decentralization and keeping
ownership of data is no longer a challenge for ML. Thus, it is time to optimistically
rethink concepts and create data lakes while preserving data sovereignty and even push-
ing data autonomy forward at the same time. This will enable better performing recom-
mendation algorithms and will keep control of their data at the hand of all participants.
DG4 - Ensure that Federated Learning fits your problem. FL does not fit every use
case: On one hand, if the data used is not personal and does not have a high need for
protection, the added complexity of FL should be avoided. On the other hand, there are
scenarios with such a high data sensitivity and ethical questionability that FL alone does
not provide sufficient protection the combination with other approaches would be nec-
essary.



The focus group meant to evaluate and extend the above design guidelines was held
as an online workshop with experts from the domains of education (1 researcher), psy-
chology (1 researcher), data science (3 researcher) and software development (3 re-
searcher). Experts voted on the usefulness of the guidelines and gave feedback in terms
of their strengths and weaknesses. In the voting, DG2 emerges as the clear favorite with
all votes fully agreeing with its usefulness and statements underlining it as a must have
in the implementation of the system because of heavy time and knowledge constraints
found in education.

DG1 is met with strong, albeit not unanimous, support due to its enhancement of data
security and trust within the critical domain of education. However, it also brings about
increased system complexity and slightly diminishes explainability.

DG3 is important, as its fulfillment ensures a higher quality standard which helps gain-
ing a higher level of acceptance. The main drawback voiced by the experts is a bigger
effort for a huge rollout, not only from a technical, but also from an organizational
standpoint. Larger rollouts result in higher risks.

DG4 ensures appropriate effort for the individual problem. Experts agree that this rec-
ommendation is useful in reducing unnecessary effort and use of data. Unfortunately,
it also promotes heterogeneity, thus reducing comparability between schools. It also
collides with recommendation three, as the inspection of all individual cases does not
scale well. Both are important in their own regard. This friction shows the field of ten-
sion when it comes to the actual implementation of the educational RS.

In addition to evaluating the presented guidelines, the experts recommended that ethi-
cality of a use case must be evaluated before during and after the implementation for a
holistic ethical view. Also, even though a wide rollout is desirable, a preceding model
implementation can drastically reduce the imposed risk.

6 Discussion

This article focuses on data security and data protection in the context of RS in educa-
tion. The evaluation results show how the distribution of training data and the use of
different training architectures can impact model performance. As anticipated, training
with a complete global dataset yields the best utility but incurs a heavy cost in data
privacy due to the requirement of centralizing all data for training. The local models,
on the other hand, still perform reasonably well when training data is fragmented into
10 datasets, but their performance drops significantly when fragmented into 100 da-
tasets. This decrease in performance is due to the reduced amount and diversity of data
available to each local model, effectively reducing the information available to learn
overarching patterns. Local models offer the best data protection, but a question re-
mains: Where should the line be drawn for a local model? Training these models at the
individual student level would result in excessive fragmentation, effectively making the
resulting models useless while training at a higher level, such as the class or school
level, would again result in centralized data storage. A compromise between the two
approaches is offered by FL. The federated model shows improved performance com-
pared to the local models with the same level of privacy. In some aspects, such as F1



score and recall, it even achieves similar or slightly better results than the global model
(RQ2). This demonstrates the effectiveness of the FL architecture. A joint model is
trained from the contributions of multiple clients without direct data exchange. Hence
it is possible to learn from the diversity of distributed data while addressing privacy
concerns. FL therefore offers a solution to data protection concerns, particularly in ed-
ucational settings (GEW, 2020; mmb Institut, 2021), while also leveraging the potential
of Al technologies (RQ1). However, when compared to other models, FL presents a
new challenge. The creation and composition of the model makes data understanding
and preparation more difficult, and feature engineering impossible (Eleks et al., 2023).
Therefore, it is important to develop methods for continuous evaluation of the model
during operation such as the inclusion of explainable artificial intelligence methods in
the federated process from the beginning to provide information about which variables
have a particularly strong influence on the forecast. In this context, it is important to
consider a human-in-the-loop approach: When receiving recommendations along with
explanations, teachers or students can incorporate feedback into the training process.
This can lead to a semi-automatic improvement of the system in the long term. The use
case described in this article predicts learning performance which raises ethical con-
cerns regarding the use of Al. This concern can also be addressed by human involve-
ment to prevent the potential negative impact of false-positive or false-negative predic-
tions on a student's future. Therefore, it is imperative for teachers to be involved in the
process. Other usage scenarios such as assigning teaching materials or entire courses to
specific students face similar issues where misjudgments can also have detrimental
long-term consequences.

The evaluation with experts further highlights the importance of considering both meta-
requirements and practical constraints in implementing FL in education. The focus
group’s preference for DG2 highlights the importance of creating FL systems that align
with the diverse technological landscapes of schools. This insight directly addresses
RQ3, emphasizing the need for user-friendly and low-maintenance FL solutions tai-
lored to the technical capabilities and resources of educational institutions. Further-
more, the group's support for hybrid privacy approaches (DG1) reinforces the meta-
requirements for FL systems in education (RQ1), advocating for enhanced data security
through advanced privacy-preserving methods. This strategy not only increases data
protection but also strengthens system trust, addressing both technical and ethical con-
siderations crucial for FL's application.

The discussion on scalability and fit-for-purpose (DG3 and DG4) brings to light the
challenges and considerations for FL's practical deployment (RQZ2). Scalability ensures
that FL systems can accommodate growing educational demands without compromis-
ing performance or privacy. Conversely, the need to tailor FL deployment to specific
educational scenarios underscores the importance of discerning when FL's complexity
is warranted, based on the sensitivity of the data and the educational impact. These
considerations highlight that the effective implementation of FL in education requires
a balanced approach, considering technical feasibility, data security, and the educa-
tional context's unique needs. In the context of IS, this article demonstrates how FL can



leverage the benefits of Al without compromising data protection which is especially
important in the context of user acceptance, fostering trust into the system. This, in turn,
enables the human-in-the-loop approach and ensures that the system can reach its full
potential. For practitioners, the presented approach provides guidance on implementing
such a system in practice that is also anticipated to be applicable to educational areas
beyond school education, e.g. corporate contexts such as assigning targeted training
measures to specific employees.

7 Conclusion

Based on its research questions, this article has delved into the utilization of a FL-based
RS within the educational domain, particularly in schools. It sought to uncover meta-
requirements essential for such a system's operation, assesses its performance against
these criteria in an educational setting, and identifies essential design guidelines critical
for its deployment in the domain. The four design guidelines lay the foundation for the
successful integration of FL-based RS in educational environments.

The main contributions of this research are threefold: First, we identify meta-require-
ments essential for FL RS, ensuring privacy and performance. Second, we develop and
evaluate a practical prototype that demonstrates the feasibility and effectiveness of FL
in this domain, using real-world educational data. Third, we derive and validate practi-
cal design guidelines through expert focus groups, offering actionable insights for prac-
titioners.

Like any research endeavor, this study has limitations. The technical evaluation relied
on a single dataset, limiting deeper investigation. This may affect the generalizability
of the findings, emphasizing the need for research with more diverse and realistic da-
tasets. Additionally, the design guidelines, while evaluated with experts, have not yet
been practically implemented. Future research should focus on implementing and eval-
uating these systems in live educational environments to assess their practicality, effec-
tiveness, and their long-term impact on educational outcomes. Moreover, while the de-
sign guidelines provide a strategic framework for implementing FL in education, they
also highlight the nuanced balance required between technological sophistication and
practical usability. Ensuring that FL systems are both robust in privacy preservation
and accessible to educational practitioners remains a key challenge. Addressing this
challenge calls for ongoing collaboration between technologists, educators, and policy-
makers, aiming to refine current approaches to the evolving needs of the educational
sector. This paper contributes to the broader discourse on the intersection of artificial
intelligence, data privacy, and education by foregrounding the importance of privacy-
preserving technologies like FL and showing their transformational potential for the
education domain. This transformation, however, must be navigated with careful con-
sideration of technical, ethical, and practical dimensions, ensuring that technological
advancements empower educators and students alike, without compromising on the
core values of security and privacy.
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