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ABSTRACT

Planetary exploration missions require robots ca-
pable of navigating extreme and unknown environ-
ments. While wheeled rovers have dominated past
missions, their mobility is limited to traversable
surfaces. Legged robots, especially quadrupeds,
can overcome these limitations by handling uneven,
obstacle-rich, and deformable terrains. However, de-
ploying such robots in unknown conditions is chal-
lenging due to the need for environment-specific con-
trol, which is infeasible when terrain and robot pa-
rameters are uncertain. This work presents a mod-
ular control framework that combines model-based
dynamic control with online model adaptation and
adaptive footstep planning to address uncertainties
in both robot and terrain properties. The framework
includes state estimation for quadrupeds with and
without contact sensing, supports runtime reconfig-
uration, and is integrated into ROS 2 with open-
source availability. Its performance was validated on
two quadruped platforms, multiple hardware archi-
tectures, and in a volcano field test, where the robot
walked over 700 m.

Key words: legged locomotion; adaptive gait se-
quencer; state estimation; model adaptation; plan-
etary exploration.

1. INTRODUCTION

The exploration of celestial bodies like Moon or Mars
is one of the most ambitious scientific and tech-
nological goals of out time. For decades, wheeled
rovers have been the state-of-the art for robotic
planetary exploration, demonstrating remarkable
longevity and success. However, their mobility is
fundamentally limited to relatively flat, obstacle-free
terrains, leaving vast regions, such as steep craters,

Figure 1. The control framework was successfully
tested on both a Unitree Go2 robot and the custom
build quadrupedal robot B12 during a field test to
Vulcano Island in Italy.

rocky slopes, and loose regolith areas, inaccessi-
ble. Legged robots, particularly quadrupeds, offer
a paradigm shift in planetary mobility. Inspired by
the agility and adaptability of animals, these systems
can traverse complex, unstructured environments by
dynamically selecting footholds and adjusting their
gait and posture.

Despite their potential, the deployment of legged
robots in extraterrestrial environments presents ma-
jor challenges. The control paradigms that enable
impressive dynamic motions in laboratory settings
often rely on precise knowledge of the robot’s dy-
namic model (e.g., mass, inertia) and its interaction
with a known environment. In planetary exploration,
these parameters are highly uncertain: the robot’s
mass and center of mass (COM) change as samples
are collected and instruments are deployed, and the
terrain properties, such as soil composition, slope,
and friction, are entirely unknown a priori. A control
strategy designed for a nominal model will, at best,
be suboptimal and, at worst, lead to catastrophic
failure in these conditions. Consequently, there is a
critical need for robust and adaptive control frame-
works that can compensate for these uncertainties.



For the field of legged robotics, the state of the
art can be categorized into model-based control,
learning-based approaches, and recent demonstra-
tions in space analog environments. Yet, what is
largely missing is a unifying software and control
architecture that can incorporate these advances in
a modular, adaptive fashion. Much of the recent
progress in dynamic legged locomotion is built upon
hierarchical, model-based controllers. A common
architecture is pioneered by work on the Cheetah
robots [3, 9] from MIT. To overcome the limitations
of purely analytical models, data-driven methods
have gained prominence. Deep Reinforcement Learn-
ing (DRL) has been used to train robust locomotion
policies in simulation that transfer to real hardware,
as demonstrated by systems like ANYmal [1]. These
methods can exhibit remarkable robustness to dis-
turbances and terrain variations. Alternatively, bio-
inspired approaches directly extract motion patterns
from animals [14] to create natural and efficient gaits.
However, pure learning-based methods can be sam-
ple inefficient, lack explicit safety guarantees, and
are difficult to verify for safety-critical space applica-
tions. Our framework leverages the benefits of bio-
inspired gait adaptation while retaining the trans-
parency and reliability of model-based control and
the online model adaptation compensates for the dis-
advantages of a faulty model.

The application of legged robots to space explo-
ration is still in its early stages but is an area of
intense research and development. The German
Aerospace Center (DLR) has developed sophisticated
quadruped and bipedal robots for space servicing
and exploration. NASA’s Jet Propulsion Laboratory
(JPL) has tested quadruped robots for inspection
and exploration tasks. The ESA-supported project
“SpaceBok” was explicitly designed for dynamic lo-
comotion in low gravity environments. Most re-
cently, ETH Zurich’s ANYmal has been tested in
lunar analog environments [1], demonstrating ex-
ceptional mobility. However, these efforts largely
demonstrate locomotion capabilities in isolation. In
contrast, our work emphasizes online adaptation to
both terrain and model uncertainty within a unified,
modular framework. This integrative perspective is
crucial for enabling resilient and autonomous opera-
tion over long-duration planetary missions.

This work presents such a modular and hierarchical
control framework, explicitly designed for runtime
adaptability in planetary robotics. The key nov-
elty of our approach is not a single algorithm, but
the unification of multiple components, bio-inspired
adaptive gait sequencing, real-time MPC, WBC, and
online model adaptation, within a software architec-
ture that enables runtime reconfiguration and robust
mobility in uncertain environments. These methods
excel due to their physical interpretability and per-
formance guarantees, but are inherently limited by
the accuracy of the underlying model. Uncertainty
in parameters such as mass or center of mass, caused

by payload, can significantly degrade performance.
While previous work has explored payload identifi-
cation [13], these approaches are typically treated as
standalone modules and not deeply integrated into a
runtime control framework capable of handling sig-
nificant and persistent uncertainty. We also evaluate
the computing requirements of the framework.

2. ADAPTIVE WALKING CONTROLLER

To enable flexible deployment of the adaptive
quadruped controller in different environments and
hardware configurations, we implemented the con-
trol framework into ROS 2. Figure 2 shows the sub
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Figure 2. Block diagram showing the architecture of
the control framework
components. It is mainly split into two ROS 2 nodes.
The controller node and the state estimation, which
both are explained in the following.

The dynamic walking controller node follows the hi-
erarchical model based control approach presented
by [4, 10], which originally consisting of four compo-
nents: (1) The Gait Sequencer (GS), based on the
control target, determines a gait sequence, contain-
ing the foot contact plan along with the robot’s base
target trajectory over the prediction horizon N . (2)
The optimal contact forces that are needed to track
the planned robot body trajectory are calculated us-
ing Model Predictive Control (MPC) on single rigid-
body dynamics (SRBD). (3) The Swing Leg Con-
troller (SLC) computes the trajectory from one foot-
step location to the next one, using Bézier curves. (4)
The Whole-Body Control (WBC) solves for the joint



accelerations and torques that satisfy the desired foot
trajectories, body posture and velocity, and contact
forces, while ensuring consistency with the full-body
dynamics. In our controller, a (5) model adaptation
component is added, which estimates the model pa-
rameters online and then updates them in the other
components. The controller node hosts the controller
sub components which are distributed over several
threads, allowing the parallel executions of the con-
trol loops over the different hierarchies as indicated
in Figure 2. Each sub components interface is de-
fined as an pure virtual class from which different
implementations can be derived. Different imple-
mentation of a sub component can than therefore
be switched during runtime. For the GS we use two
different implementation a base-lime simple Gait Se-
quencer (SGS) and an advanced adaptive Gait Se-
quencer (AGS) which is explained in subsection 2.1.
The (2) MPC is formulated as described in [4, 10]
and so is the (3) SLC. The (4) WBC uses a slightly
different approach than presented in [10] which is ex-
plained in subsection 2.2. The (5) model adaptation
is explained in subsection 2.3.

For the state estimation we adopt a contact-aided in-
variant EKF (InEKF) [7] for the floating-base state
and a momentum-based contact detector for detect-
ing contacts [2] as explained in more details in sub-
section 2.4. Together, these methods offer a good
combination for estimating the state of locomotion
on rough, uncertain terrain.

2.1. Adaptive Gait Sequencer

In order to stabilize the gait and make it cost effi-
cient, an AGS was implemented. The AGS works in
two stages. First, the gait parameters (duty factor
d, phase offset θi and period T ) are selected based
on the current velocity v of the robot. In the second
stage, the current phase φi for each leg i gets updated
and corrected. In the first stage, a bio-inspired stride
length [8] was used to calculate the period:

T =
lstride

v
(1)

lstride =2.3(Fr)0.3 · h, (2)

where h is the height of the COM and Fr = v2/g h
is the Froude number with g = 9.81m/s2. To deter-
mine the duty factor, we followed the findings of [11],
who reported that swing times in Belgian shepherd
dogs (Canis familiaris L.) remain approximately con-
stant across velocities and gaits. Accordingly, the
duty factor was computed by enforcing a constant
swing time of tswing = 0.2 s:

d =
T − tswing

T
. (3)

The phase offsets are selected for trotting gait as
θFL = 0, θFR = 0.5, θHL = 0.5 and θHR = 0 for
the four legs (F: front, H: hind, L: left, R: right).

In the second stage, the phase gets first updated.
However, as the continuous gait parameter adapta-
tion would lead to inconsistent contact states, the
phase update has to ensure their consistency:

φi,t =


φ̃i,t ·

di,t
di,t−1

if φ̃i,t < di,t−1

(φ̃i,t − di,t−1) · (1− di,t)

1− di,t−1
+ di,t otherwise

(4)
with

φ̃i,t = φi,t−1 +
∆t

T
(5)

where t symbolizes the time and ∆t the duration of
one time step. This phase update leads to a drift
in the phase offsets between the legs, therefore, the
phase offsets get corrected in a second step. For this,
we have to define a reference phase φref. Here, the leg
with the longest remaining swing time was chosen,
as the phase during swing phase cannot be adapted
to ensure the constant swing time. If all legs are in
contact, the leg which is closest to the swing phase
is used. With this reference phase, we can calculate
the current phase offset θ̃i for each leg:

θ̃i = φref + θref − φi (6)

and the phase offset error eθi ∈ [−0.5, 0.5]:

eθi = ((θ̃i − θi + 0.5) mod 1.0)− 0.5. (7)

To interpolate the phases smoothly, a maximum er-
ror correction step ê was defined as

ê =
∆t

2T
, (8)

ensuring a full correction within two gait cycles. Fi-
nally, the phase of all legs in stance phase is updated
using:

φi =

{
min

(
φi +min(eθi , ê), di

)
if eθi ≥ 0

max
(
φi +max(eθi , −ê), 0

)
otherwise,

(9)
avoiding transitions between the contact states.
As this phase offset correction approach ensures
smooth interpolation between different phase offsets,
it can also implicitly transition between different gait
types, which are commanded as the new desired
phase offset θi.
With the duty factor and the phase, the contact state
of each leg can be calculated. Leg i is in contact
when:

φi < d. (10)

As reference, a simple gait sequencer (SGS) with con-
stant gait parameters (d = 0.6, T = 0.5 s and the
same θi as the AGS was used.



2.2. Whole Body Control (WBC)

For stabilizing the feet and COM trajectories we for-
mulate the following the QP:

min
q̈,τ ,f

∥∥∥∑i w
T
i

(
Jiq̈+ J̇iq̇− v̇d

i

)
+

∑
j w

T
j

(
fdj − fj

)∥∥∥(11a)

s.t. Hq̈+ h = ST τ +
∑

j J
c
jfj (11b)

Jc
j q̈ = −J̇c

j q̇, ∀j (11c)

τm ≤ τ ≤ τM (11d)
µfz ≤ |fx|, µfz ≤ |fy |, fz > 0 (11e)

Here, q̇, q̈ ∈ R6+n are the robot joint velocities and
accelerations, τ ∈ Rn the joint torques, n the num-
ber of actuated robot joints, Ji, J̇i ∈ R6×n the Ja-
cobian and its derivative for the i-th task, wi ∈ Rm

the respective task weights, m the number of task
variables, v̇d

i ∈ Rm the desired task space acceler-
ation for the i-th task, H ∈ Rn×n the joint space
mass-inertia matrix, h ∈ Rn the vector of Coriolis-
centrifugal forces, S ∈ R(6+n)×n the actuator se-
lection matrix, Jc ∈ R6×n the contact Jacobian,
τM , τm ∈ Rn the upper and lower joint torque
limits, µ ∈ R the contact friction coefficient and
fd, f ∈ R3 the desired and actual feet contact forces.
The cost function is designed to minimize the error
between desired and actual task space accelerations
for the given feet and COM trajectories, as well as
the error between desired and actual contact forces.
The constraints of the QP ensure compliance with
the equations of motion (11b), non-moving ground
contacts (11c), torque limits (11d), and frictional
constraints (11e). We use a polyhedral friction cone
approximation to model the static ground friction.
Trajectory stabilization is performed in task space,
where the desired task space accelerations v̈d

i for the
i-th task (which can be either COM or feet trajectory
stabilization) are computed using PD-control:

v̇d
i = v̇r

i + kT
d,i(v

r
i − vi) + kT

p,i(x
r
i 	 xi) (12)

Here, v̇r,vr ∈ se(3) and xr ∈ SE(3) are the refer-
ence spatial acceleration, twist and pose for the COM
and for the feet, and kd,kp are the proportional and
derivative gains. Since we also want to control the
floating base orientation, the pose control error must
be computed using the matrix logarithm, which is
denoted by the 	 symbol. The reference spatial ac-
celeration, twist and pose for the COM and feet, as
well as the reference contact forces are computed by
the MPC and SLC resepctively.

2.3. Kalman Filtering (KF) for Model Adaptations

For identifying the mass and center of mass (COM)
of the robot, when a payload is added, we use a KF.
It utilizes the floating base dynamics, state informa-
tion, and ground reaction forces (GRF) to estimate
the mass and COM x- and y-components of the en-
tire system. As the COM z-component is unobserv-
able in default configuration, it is assumed to be 0.

The dynamics in simplified form can be written as
follows:

m(v̇ + g) =

3∑
i=0

Fi (13)

c×mg =

3∑
i=0

(ri × Fi), (14)

where m is the robot’s total mass, v̇ ∈ R3 the linear
acceleration, g = [0, 0, g]

T ∈ R3 the gravity vector
and Fi ∈ R3 the GRF at foot i. c ∈ R3 is the COM
position and ri the position of foot i. All vectors are
represented in the inertial frame. Since the robot
is generally not expected to perform high rotational
acceleration movements, the influence of the second
moments of inertia is neglected. The foot positions
ri and GRFs Fi are obtained from leg kinematics and
inverse dynamics:

ri = fi(qi) (15)
Fi = (JT

i )
−1τ i. (16)

fi : R3 → R3 denotes the kinematics of leg i depen-
dent on its joint positions qi ∈ R3. Ji ∈ R3×3 is the
Jacobian matrix of leg i and τ i ∈ R3 its correspond-
ing vector of joint torques, which are obtained from
motor current measurements.

The dynamic parameters of this model can be con-
catenated in the parameter vector:

π = [m mcx mcy]
T ∈ R3. (17)

Applied to the problem of estimating π the KF equa-
tions are as follows:

π̂−
k = π̂+

k−1 (18)
P−

k = P+
k−1 +Q (19)

Kk = P−
k Φ

T
k (ΦkP

−
k Φ

T
k +R)−1 (20)

π̂+
k = π̂−

k +Kk(zk −Φkπ̂
−
k ) (21)

P+
k = (I−KkΦk)P

−
k , (22)

where P ∈ R3×3 is the estimation covariance ma-
trix, Q ∈ R3×3 the process noise covariance matrix,
K ∈ R3×6 the Kalman Gain, Φ ∈ R6×3 the Jacobian
of the floating base dynamics with respect to the pa-
rameter vector, R ∈ R6×6 the measurement noise
covariance matrix, and z ∈ R6 is the measurement
vector defined by the right-hand sides of Equation 13
and Equation 14. Superscript − and + denote quan-
tities before and after the update step, and subscript
k indicates a time step. A more detailed description
of the derivations and algorithm can be found in [6].

2.4. State Estimation with Floating Base and Con-
tacts in Planetary Scenarios

We use the invariant Extended Kalman Filter (In-
EKF) [7] to estimate the floating base state of the



robot, including the orientation, velocity and posi-
tion in the world frame. While many approaches
rely on a standard EKF for this estimation, we adopt
the InEKF because its Lie group formulation natu-
rally respects the underlying geometry of the prob-
lem. This provides more consistent and stable error
propagation compared to conventional EKF formu-
lations, particularly in scenarios involving non-linear
dynamics and contact switching.

Accurate contact detection is critical for floating base
estimation, particularly in planetary environments
where reliable state feedback underpins mobility and
control. We primarily use force or pressure sensors
to obtain contact events as they provide direct mea-
surements during nominal operation. However, these
signals can drift or become unreliable under environ-
mental effects such as regolith, dust, thermal varia-
tion, terrain compliance, or foot slippage.

To ensure robustness, we adopt a hierarchical strat-
egy: pressure sensors are prioritized when their sig-
nals are reliable, but when they degrade or not ex-
istent, we switch to a momentum observer-based
method [2]. The momentum observer exploits the
rigid-body dynamics of the robot to estimate the
net external forces acting on the system from the
joint torques, the kinematics and the dynamics. By
monitoring the residual between expected and ob-
served dynamics, it can infer contact events without
requiring direct force measurements. This provides
a clean, proprioceptively derived contact signal with
low delay and resilience against environmental dis-
turbances.

In summary, the contact-aided InEKF provides
floating-base estimation by fusing IMU propagation
with kinematic constraints, while the momentum ob-
server delivers a proprioceptive signal for contact de-
tection. By combining both modalities, the estima-
tor can exploit direct contact sensing when signals
are reliable but can return to momentum-based pro-
prioception when sensors degrade due to regolith,
terrain compliance, or thermal effects. This adaptive
switching capability ensures consistent state estima-
tion in diverse planetary environments.

3. RESULTS

The framework has been open sourced1 and tested
with two different quadrupedal systems (Figure 1):
a Unitree Go2 (equipped with foot contact sensors)
and a custom-built platform (without foot contact
sensors). Further, the joint command and sensor
measurement messages can be rerouted to a simula-
tion, which allows for verifying controller implemen-
tations, debugging message handling, and compar-
ing real-world experiments against simulated coun-
terparts under identical interfaces. The control

1https://github.com/dfki-ric-underactuated-lab/dfki-quad

framework was evaluated with respect to compu-
tational performance, adaptive gait planning and
model adaptation. As optimization-based modules
such as MPC and WBC rely on efficient QP solv-
ing, we first summarize a previously published bench-
mark of different solver–hardware-QP combinations
to assess their real-time suitability. We then present
results on adaptive gait sequencing from a field test
on vulcano, followed by a brief overview of our earlier
published work on online model adaptation for mass
and center of mass estimation using this framework.
Since all results have been obtained using this con-
trol framework, either in simulation or on the real
systems, they serve as proof of its practicality and
effectiveness under both laboratory and field condi-
tions.

3.1. Computational evaluation

Running the described control framework onboard
the quadruped requires fast and efficient computa-
tional hardware. The Quadratic Programs (QPs)
which have to be solved within the MPC and WBC
are the computational most expensive operation in
the proposed control framework. On limited hard-
ware as it is the case for the onboard computers of
quadrupedal robots, the choice of the QP solver is
crucial as a slow solver might degrade the control
frequency and hence stability of the system. An-
other requirement is the energy consumption as not
only the computational hardware but also the elec-
tric energy might be limited. There are abundant
implementations of QP-Solvers available, which also
require different formulations, so choosing the best
suitable QP-Solver can be challenging, since stud-
ies on the computational efficiency of QP-Solvers on
different computer architectures are lacking. In or-
der to provide a recommendation on which solver,
formulation and hardware to choose, in our previ-
ous work we introduce the Solve Frequency per Watt
(SFPW) performance metric (23), to enable a fair,
cross-hardware comparison [12]:

solve time−1

CPU power consumption

[
Hz

W

]
(23)

The performance benchmarks were run on x86
(Desktop and LattePanda) and ARM (Jetson Orin)
computers. We compared different solvers, repre-
senting solving techniques like active set or interior
point method. Table 1 shows the summarized SFPW
results for the most efficient solver(s) for different
problem sizes and over the target computers from
[12]. Remarkably, the Interior-point method (IPM)
solver HPIPM [5] shows the highest efficiency for
the large QPs on all systems, except for the Full
TSID WBC problem solved with the Jetson Orin, on
which the Active-set method (ASM) solver Eiqaud-
prog slightly outperforms. For the small QPs that
arise in the reduced TSID WBC problem, Eiquad-
prog is the most efficient solver.



Table 1. Mean SFPW of MPC problem solvers
(HzW−1) for different prediction horizons N

Jetson Desktop LatteP.

M
P

C N = 10 HPIPM 193 61 86

N = 20 HPIPM 82 28 39

W
B

C Full TSID
Eiquadprog 897 204 254
HPIPM 893 251 283

Red. TSID Eiquadprog 1158 305 334

Out of the examined computers, the Jetson Orin
(ARM) is almost twice as efficient as the LattePanda
(x86) and about three times as efficient as the
Desktop PC (x86). All results, comparing solvers
and smaller increments between formulations can be
found in [12].

3.2. Adaptive Gait Sequencer

During a field test on the crater rim of Vulcano Is-
land, Italy, we conducted experiments to compare
the performance of the AGS and a baseline SGS,
which works on fixed gait timings, in rough terrain.
During the experiments, the AGS only fell twice, re-
sulting on average in a fall every 133.5 m. In con-
trast, the SGS had more difficulties in the terrain
and fell on average every 6.1 m. By comparing the
cost of transport during the experiments (Fig. 3) we
also see an increase in efficiency of the AGS over the
SGS for all velocities.

Figure 3. Cost of transport over velocity of the two
gait sequencers during trotting on the field trip. The
plot shows the combined data of all experiments.
The r2 values for each fit are plotted onto the graph.

3.3. Model Adaptation

The model adaptation has been evaluated in an ex-
periment where different payloads are placed on the
quadrupedal robot over time. Figure 4a) shows the
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Figure 4. a) Estimated total mass with ground truth
(top) and estimated COM (bottom) during dynamic
payload switching experiment. The original robot
weight is 16.21 kg and the COM offsets are cx =
8.8mm, and cy = 0.0mm. The time intervals where
a specific amount of payload (displayed above the up-
per graph) is attached to the robot are highlighted in
grey. b) Height and orientation error of nominal con-
troller (left) and adaptive controller with KF (right)
over dynamic weight switching experiment.

estimated mass m the corresponding ground truth
m∗ and estimated COM x and y-components cx and
cy over the experiment duration. No ground truth
data is available for the COM offsets. Once con-
verged, the mass estimate shows noise of approxi-
mately ±500 g. Larger deviations occur when the
robot performs abrupt movements to compensate for
drift. A bias of approximately 1 kg can be observed.
Upon adding some payload, the estimate quickly
rises by the correct amount. When the weight is re-
moved, the estimate converges to a value lower than
the original mass. The estimate of cx fluctuates by
approximately ±5mm while cy does so at a lower
degree around ±2.5mm. The weight changes cannot
be observed as clearly in the COM estimation. Fig-
ure 4 b) shows the tracking errors of the nominal and
adaptive controller over the same experiment. The
adaptation improves the tracking of height and ori-
entation, maintaining a more consistent error across
all payloads. Further results and analysis and a com-
parison to base-line least squares estimation can be
found in [6].

3.4. Discussion and Conclusion

The adaptive hierarchical control framework pre-
sented in this work has shown promising results for
quadrupedal locomotion in uncertain environments.
By combining adaptive gait sequencing and online
model adaptation within a layered architecture, the
framework effectively compensates for uncertainties
in both robot dynamics and terrain conditions. How-
ever, there are many limitations of the current re-
sults. First, while the adaptive gait sequencer sub-
stantially improved stability, its validation was lim-
ited to a planetary analog environment in Vulcano,



Italy. Performance in other terrains, such as low-
gravity or highly deformable soils, remains to be
tested. Second, the online model adaptation via
Kalman filtering, though effective in estimating mass
and COM changes, exhibited noise and a systematic
bias. These deviations, particularly during abrupt
maneuvers, could degrade the accuracy of control
over long durations, and the reliable estimation of
inertial parameters remains an open challenge in
the literature. Finally, the experiments relied on
manually switching between different control mod-
ules to study the effect of critical subcomponents.
While this approach provided valuable insights, fu-
ture work should focus on making these transitions
autonomous by ensuring each subcomponent is suffi-
ciently robust and equipped with fallback strategies.

Despite these limitations, the field trials on Vulcano
Island highlight the advantages of embedding adapt-
ability into multiple layers of control. The reduc-
tion in falls, improved cost of transport, and in-
creased tracking accuracy under payload changes un-
derline the necessity of combining bio-inspired gait
adaptation, MPC, WBC, and online parameter es-
timation. These results emphasize that resilience in
quadrupedal locomotion cannot be achieved by a sin-
gle control module in isolation, but requires coordi-
nated adaptation across the hierarchy.

In conclusion, this work demonstrates that an adap-
tive hierarchical control framework can significantly
enhance the robustness of quadrupedal robots in
planetary exploration contexts. The modular de-
sign allows for runtime reconfiguration, integration
of diverse sensing strategies, and efficient deploy-
ment across different hardware platforms. Future
research should address the limitations identified by
extending validation to diverse planetary analog en-
vironments, refining model adaptation algorithms to
reduce bias and noise, and incorporating additional
sensing modalities such as vision or tactile feedback.
Ultimately, the integration of adaptive hierarchical
control with higher-level autonomy and perception
modules will be key to enabling fully self-sufficient
robotic explorers capable of long-term operation in
extraterrestrial environments.
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