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ARTICLE INFO ABSTRACT
Keywords: Alarms are an essential part of distributed control systems designed to help plant operators keep the processes
Multimodal transformer stable and safe. In reality, however, alarms are often noisy and thus can be easily overlooked. Early alarm

Multimodal fusion
Industrial processes
Alarm management
Alarm prediction

prediction can give the operator more time to assess the situation and introduce corrective actions to avoid
downtime and negative impact on human safety and environment. Existing studies on alarm prediction
typically rely on signals directly coupled with these alarms. However, using more sources of information
could benefit early prediction by letting the model learn characteristic patterns in the interactions of signals
and events. Meanwhile, multimodal deep learning has recently seen impressive developments. Combination (or
fusion) of modalities has been shown to be a key success factor, yet choosing the best fusion method for a given
task introduces a new degree of complexity, in addition to existing architectural choices and hyperparameter
tuning. This is one of the reasons why real-world problems are still typically tackled with unimodal approaches.
To bridge this gap, we introduce a multimodal Transformer model for early alarm prediction based on a
combination of recent events and signal data. The model learns the optimal representation of data from
multiple fusion strategies automatically. The model is validated on real-world industrial data. We show that our
model is capable of predicting alarms with the given horizon and that the proposed multimodal fusion method
yields state-of-the-art predictive performance while eliminating the need to choose among conventional fusion
techniques, thus reducing tuning costs and training time.

1. Introduction fusion method works best in all cases. Thus, in addition to an already

large search space of hyperparameters for the Transformer architecture,

Current trends in deep learning are largely associated with multi- including embedding dimensionality, number of heads, MLP ratio,

modal learning, which implies merging heterogeneous modalities to and network depth, as well as type of positional embeddings (Chen

leverage implicit correlations between multiple sources of informa- et al., 2021b; Chitty-Venkata et al., 2022), another architectural choice
tion as well as additional features contained in individual modali- becomes necessary.

ties to improve the representation learning capacity of the model. The multimodal fusion research for the most part has been us-

Such approaches have shown impressive outcomes across multiple
applications (Jabeen et al., 2023). In particular, for state-of-the-art
Transformer models (Vaswani et al., 2017) it has been shown that
multimodal attention is a significant factor contributing to a model’s
performance, more than other aspects such as depth or dimensional-
ity (Hendricks et al., 2021).

Yet the method of combining modalities makes a difference and,
depending on the dataset and the task, either early or late fusion can
yield better results (Snoek et al., 2005; Perez-Rua et al., 2019; Boulahia
et al., 2021). Studies like Ma et al. (2022) stress that the optimal fusion
is dataset dependent even for the same Transformer model and that no

ing large Transformer models trained on huge, curated datasets, with
the vast majority of implementations focused on combining common
modalities such as image, text and audio (Rahman et al., 2020; Akbari
et al., 2021; Chen et al., 2021a). At the same time, despite the success
of multimodal machine learning methods in general and Transformers
in particular in academic research, to the best of our knowledge, there
have been no attempts yet to explore its potential in the industrial
domain, where models need to be reasonably compact and where data
is noisy and highly unbalanced. This is a glaring omission, because, on
the one hand, accurate predictions made by data-driven models can be
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(a) Alarm response timeline (adapted from IEC (2014))

(b) Layers of protection (adapted from Stauffer
and Clarke (2016))

Fig. 1. Alarms notify operators of an equipment failure or process deviation requiring an intervention to restore normal operation. Alarm thresholds are defined taking into account
such factors as operator response time, process schedule and response time, as well as severity of potential consequences. Without operator’s response, an anomaly can result in

equipment damage and downtime, or even major hazards, or a plant shutdown.

of great value for many industrial tasks, and, on the other, the amount
of data logged by modern plants is by now sufficient to enable the
training of state-of-the-art deep learning models, thereby paving the
way for industrial-scale multimodal learning.

In the industry, increasingly comprehensive data tracking can be
overwhelming for plant operators, who need to monitor numerous
process indicators to ensure normal operation and process safety. Yet,
while confusing to a human, the abundant data presents a unique
opportunity for data-driven solutions. Whereas incipient changes in a
system leading to abnormal behavior cannot be noticed by the operator,
a machine learning model trained on historic data could capture char-
acteristic patterns and interactions among various signals and events.
Such a model can be used to predict deviations before they become
obvious to give the operator more time to resolve the issue and, in
addition, to help identify the cause of the problem.

In practice, since the number of measurements to track and assess
is overwhelming for a human, process monitoring systems incorporate
alarms to indicate an impending critical situation, equipment mal-
function, process deviation, or abnormal condition requiring a timely
response from the operator (IEC, 2014). Alarms are defined based on
thresholds that may not be exceeded by individual sensor measure-
ments, such as temperature, flow, level or pressure. When an alarm
is raised, the operator must take a corrective action, such as opening
or closing a valve, or changing a setpoint value to bring the process
back to normal conditions (Fig. 1(a)). If the operator fails to respond
timely to prevent further deterioration of the situation, this can lead
to failures, damage of equipment, downtime and hazards to employees
(Fig. 1(b)). In reality, however, due to complex interactions in produc-
tion processes, which are too hard to capture with hand-crafted rules,
alarms are often too noisy and thus can be easily overlooked by opera-
tors. Trained on historic data and relevant alarms, a machine learning
model could capture complex interactions in a process and enable early
alarm prediction to give the operator more time to react and introduce
corrective actions to avoid downtime and negative impact on human
safety and the environment.

The two major data sources that could be used include signals (mea-
surements of physical quantities like temperatures, flows, pressures)
and events (changes automatically registered in the system or intro-
duced by an operator). Existing approaches to early alarm prediction
usually concentrate on a particular alarm type and rely on signals
corresponding to the alarm in question, which allows to predict only
a small subset of problems (Li et al., 2013; Langone et al., 2014; Proto
et al., 2019; Koltsidopoulos Papatzimos et al., 2019; Chatterjee and
Dethlefs, 2020; Villalobos et al., 2021). Other studies predict alarms
based on past alarms, which does not add the value of an early
warning (Zhu et al., 2016; Cai et al., 2019; Wang and Liang, 2020).
By contrast, we propose to train a multimodal model on both signals
and events to predict alarms across the entire plant in conditions which
appear normal to the operator, that is, in the absence of other alarms.

Further, to overcome the aforementioned complexity of choosing the
most appropriate multimodal fusion technique, we propose a model
trained end-to-end, which implicitly learns the optimal representation
of the data from multiple fusion strategies.

To this end, we introduce MUItifuSion Transformer (MUST), a
multimodal Transformer-based model which learns the best fusion
automatically. The model is validated on the task of early alarm pre-
diction based on the combination of recent events and signal data.
Given a window of several minutes of event logs and signal data,
the model predicts whether an alarm is going to be triggered after
the next few minutes. In addition, while analyzing data coming in
from an entire plant, the model learns to identify the problematic
area within the plant where the alarm is predicted to happen, and it
also predicts the alarm location. In MUST, we combine three fusion
techniques: the most common state-of-the-art ‘early’ and ‘late’ fusion, as
well as a novel ‘deep late’ fusion. Whereas depending on the dataset and
the task, different fusion techniques can prove more accurate, MUST
can automatically learn the optimal representation of the data from
multiple fusion strategies during an end-to-end training and potentially
outperform individual fusion techniques. This eliminates the necessity
for preliminary fine-tuning, thereby reducing both development costs
and GPU runtime. MUST is validated on a real-world customer use case.

Overall, we make the following contributions:

1. We present the first work on using Transformers in a multimodal
setting for real industrial data, thereby paving the way for industrial
transformation.

. We propose a MultiFusion method which automatically learns the
optimal representation of the data from multiple fusion strategies and
leverages the best fusion of modalities, thus eliminating the need for
extra fine-tuning.

. We show that MultiFusion Transformer is effective in dealing with
heavily unbalanced real-world datasets with over 100 classes.

2. Related work

Machine learning techniques are widely studied in industrial appli-
cations like alarm prediction, however, they mostly rely on unimodal
data.

2.1. Alarm prediction techniques

Data-driven approaches to alarm prediction commonly use signal
data. For instance, Langone et al. (2014) train a nonlinear autoregres-
sive model for temperature prediction. Based on its forecast, a binary
classifier predicts future alarms. Similarly, Villalobos et al. (2021)
forecast sensor measurements with an LSTM model and apply a ResNet
classifier to predict alarms based on the forecast. Proto et al. (2019)
predict alarms using tree-based classifiers using summary statistics
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over process variables as tabular inputs. In a similar vein, Li et al.
(2013) train a customized SVM to predict bearing related alarms from
statistics over sensor measurements. Koltsidopoulos Papatzimos et al.
(2019) predict wind turbine alarms based on wind speed distribution
analysis. Chatterjee and Dethlefs (2020) use a Transformer model to
predict an alarm class from sensor measurements of wind turbines.
In other studies, next alarm is predicted based on previous alarm
records, for example, Zhu et al. (2016) convert alarm sequences into
n-grams and apply maximum likelihood estimation to predict the next
alarm. Cai et al. (2019) convert alarm sequences into word embeddings
and predict the next alarm using an LSTM network. Wang and Liang
(2020) train binary LSTM-based classifiers per each alarm type and
predict the next alarm using alarm clustering and model voting. In
relying on a sequence of already triggered alarms however, such studies
lie out of the scope of early alarm prediction.

To the best of our knowledge, multimodal learning has not yet been
used to solve the task of early alarm prediction.

2.2. Fault detection techniques

In a related task of fault detection, several studies can be found
where modalities are combined. Inceoglu et al. (2021) use a multimodal
classifier for failure detection. The model uses early fusion to combine
RGB and depth frames in convolutional and convLSTM layers, then late-
fuses the output via concatenation with that of convolutional layers for
audio data, then applies fully connected layers and produces a binary
output. In a similar fashion, Li et al. (2021) use a stacked denoising
autoencoder to extract audio features and a CNN to process images.
The concatenated outputs are passed through linear and softmax layers
to predict a fault. Yang et al. (2021) use separate CNNs for images and
text records and a fully connected network for structured maintenance
data. The concatenated outputs are passed through a regression layer
to output degradation level. Limoyo et al. (2023) late-fuse outputs
from image and signal CNNs in a GRU network to predict real-valued
2D position commands. The majority of approaches however also use
unimodal data, namely, process variables: (Datong et al., 2009; Di Lello
et al., 2013; Li et al., 2017; Helbing and Ritter, 2018; Zhao et al., 2018;
Giurgiu and Schumann, 2019; Langone et al., 2020; Lucke et al., 2020;
Lomov et al., 2021; Reinartz et al., 2021; Fadzail et al., 2022; Wang
et al., 2023; Song et al., 2023).

2.3. Multimodal learning outside of industrial context

Most studies in multimodal learning rely on the state-of-the-art
Transformer models (Vaswani et al., 2017). In particular, multimodal
Transformers pretrained on large datasets (with millions of samples)
have become popular and rely on different types of fusion and pretrain-
ing strategies. Lu et al. (2019) build a joint model using cross-attention
on intermediate representations of visual and linguistic modalities ex-
tensively pretrained on multimodal tasks. Similarly, Tan and Bansal
(2019) incorporate a cross-modal attention layer on top of two uni-
modal encoders, pretrained on multimodal tasks: masked language
modeling, masked object prediction, cross-modality matching, and im-
age question answering. Sun et al. (2019) late-fuse a language and
a video encoder and train the model on the speech recognition task
using a cross-modal noise contrastive estimation loss. Tsai et al. (2019)
combine bidirectional cross-modal attention blocks over pre-extracted
language, visual and audio features. They use six pairs of crossmodal
Transformers, plus one Transformer per modality to merge two corre-
sponding crossmodal blocks. The model has no decoder and is trained
on a classification task. Pramanik et al. (2020) pass image, text and
video to separate ‘spatial’ and ‘temporal’ encoders (with the ‘spatial’
dimension averaged) and combines the two with a decoder. The model
is pretrained simultaneously on several unimodal and multimodal tasks.
Radford et al. (2021) jointly pretrain image and text encoders oh a
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huge dataset to align samples using a contrastive loss and enable zero-
shot image classification. Wang et al. (2021) use a single Transformer
network as an image encoder, a text encoder, and a fusion network
in different pretraining tasks with an image-text contrastive loss, an
image-text matching loss, and a masked language modeling loss. Hu
and Singh (2021) pass concatenated outputs of modality-specific en-
coders to a shared decoder with task-specific output heads. It is jointly
trained on all tasks. Cho et al. (2021) use an early fusion encoder
taking concatenated text and visual embeddings, and pretrain on mul-
timodal tasks framed as generative predictions. In a similar vein, Wang
et al. (2022) present an encoder-decoder framework pretrained on
unimodal and multimodal tasks. Ma et al. (2022) compare early and
late fusion with respect to robustness to missing modalities. [jaz et al.
(2022) and Feng et al. (2023) use cross-attention fusion on top of
modality-specific encoders. Zhang et al. (2022) use dedicated modality-
specific encoder models and apply cross-attention fusion. Similarly, Roy
et al. (2023) proposes an early fusion based Transformer adapted for
hyperspectral data.

State-of-the-art multimodal transformers typically rely on either
early, late or cross-fusion or their slight modification and leverage pre-
training on huge datasets to obtain strong multimodal representations.
In industrial settings, where datasets are small and noisy and represent
highly complex processes, the choice of a fusion method is a more
important factor of success. However, since the search for the optimal
fusion for each dataset is costly, we propose a model that learns the best

fusion implicitly.
3. MultiFusion transformer

Although numerous fusion methods have been proposed within
multimodal machine learning, no single methods outperforms others
in all settings. However, finding a fusion that best fits the data and
task at hand can be costly. We introduce MultiFusion Transformer
(MUST), a multimodal attention-based model that automatically learns
the optimal representation of the data from multiple fusion strategies
to leverage the information from complementary modalities and ensure
accurate predictions.

3.1. Early alarm prediction use case

In industrial processes, events and sensor measurements are con-
tinuously logged by the control system. Anomalous conditions are
indicated to the operator by triggering alarms when predefined thresh-
olds are crossed. Assuming that deviations in the process can start
manifesting themselves in events and in the interaction of various
signals before a threshold of a specific signal is reached, the goal is
to detect such deviations in a data-driven fashion combining different
data sources and give the operator an early warning. To achieve this,
at every point in time ¢:

1. A window of N minutes of most recent events and signal data
from 7 — N to ¢ is fed into the model’s encoder — Fig. 2(1).

2. The model, trained on historic data, makes a prediction M
minutes into the future including a binary output (whether and
alarm is going to fire at time ¢ + M) and a multiclass output (at
which tag an alarm is going to be triggered) — Fig. 2(2).

3. If an alarm is predicted, an early warning is shown to the
operator so that he has more time to take corrective actions —
Fig. 2(3).

We treat the alarm forecasting task as a sequence-to-sequence
learning problem and tackle it using an encoder-decoder Transformer
model. The encoder projects the multimodal input sequence of events
and continuous multivariate signal data from the past several minutes
to a joint hidden representation, which is then fed into the decoder,
which in its turn generates a prediction based on this representation.
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Fig. 2. Input and output modalities: The encoder creates a representation of the past 15 min of events and signal data, which is used by the decoder to forecast an alarm 5 min

into the future.
3.2. Multimodal encoder

Existing approaches to alarm prediction rely either on signals or
events separately and usually focus on specific alarm types. Yet to
tackle the complex task of predicting alarms across the entire plant and
also identifying the specific tag where an alarm would fire, a model
must learn a rich representation of the underlying industrial process.
In particular, it should capture not only patterns in the individual
process variables, but also their interactions with other signals and
events. Being contextually related, different modalities provide com-
plementary information, reinforcing salient features and contributing
additional ones. With MUST, we propose to combine two complemen-
tary modalities to leverage the model’s representation learning capacity
and thereby maximize the predictive performance of the model.

The two modalities include signal data and events. Signal data is
represented as continuous multivariate time series, whereas events are
logged as structured entries indicating state changes (each containing
a tag, status, event type, priority, operator message, etc.), which are
concatenated and treated as text.

Both signal and event data have timestamps, however, the two
modalities are not aligned: unlike process variables, which can be
resampled at a desired rate, events are unevenly distributed over time.
For this reason, samples are created using sliding windows. For each
alarm, time windows are selected starting 20 min before the alarm
and ending 5 min before it, and balanced with randomly sampled time
windows of the same duration not followed by alarms.

To enable multimodal processing, time windows of recent events
and sensor readings first undergo a series of transformations in the
input layers of MultiFusion Transformer. In the first layer, a window
of scaled process variables undergoes a linear transformation, while a
sequence of event tokens is passed through an embedding layer such
that both modalities are projected into the same hidden dimension D.
Input features of each sample can be denoted by X, € RTis.E)¥Dis.k)
where T denotes the number of timestamps within a window for signal
data S, and the number of tokens within a concatenated sequence of
events E (sequences of event tokens are trimmed to the length of 300).
Both the embedding layer for events and the linear layer for signal
data have a hidden dimension of 512 to allow the model to learn
a rich representation of the input. A learnable positional encoding is
then added to the transformed inputs of both modalities separately.
Finally, a linear transformation is applied to both modalities to reduce
dimensionality to 32 and force the model to narrow the representation
down to the most salient patterns.

The basic building blocks of the model are standard Transformer
layers, each including a four-headed attention sublayer and a fully

[ Output Alarms ]
®
i
( SoftMax )
¥
[ Linear ] [ Linear ]
Cross-Attention
Transformer Block
[ Linear ]
i 1
Self-Attention
[ Deep Late Fusion ] [ Transformer Block ]
[ Late Fusion
[ Early Fusion ] [ Shifted Output ]
Multimodal Encoder Decoder

Fig. 3. The MUST Architecture. The encoder incorporates multiple fusion layers,
concatenated and passed through a bottleneck layer guided by a sigmoid gate. The
resulting representation is passed to the cross-attention block of the decoder.

connected feed-forward sublayer, both followed by a residual connec-
tion. In line with previous works (Klein et al., 2017; Vaswani et al.,
2018), MUST uses pre-normalization, whereby a normalization layer
precedes a Transformer layer. The arrangement of Transformer blocks
is described in detail below.

3.3. MultiFusion

Traditionally, multimodal transformers rely on one of the state-of-
the-art fusion techniques, such as early or late fusion (see Section 2.3).
However, in practice, no single fusion can surpass others in all situ-
ations: depending on the data and the problem to be solved, different
techniques may score better (Snoek et al., 2005; Perez-Rua et al., 2019;
Boulahia et al., 2021; Ma et al., 2022). Unfortunately, implementing
various fusion methods and grid-searching through them is costly and
impractical. Therefore, to eliminate the time-consuming extra step
of manual model architecture search, we propose to let the model
itself learn the optimal representation of the data from multiple fusion
techniques.
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Fig. 4. Fusion types: the state-of-the-art early and late fusion and the novel skip, deep late and hybrid fusion. Only early, late and deep late fusion are used as building blocks

in MultiFusion Transformer. All the fusion types are used as baselines.

The overall architecture of MUST is outlined in Fig. 3. As the build-
ing blocks, the multimodal encoder incorporates three fusion types,
namely, the state-of-the-art early and late fusion, as well as a novel
deep late fusion:

1. In early fusion, the transformed inputs from both modalities are
concatenated and together passed through a single Transformer
block (Fig. 4(a)).

2. In late fusion, signal data and events are passed through separate
Transformer blocks and concatenated after (Fig. 4(b)).

3. Deep late fusion combines the early and late fusion: after being
passed through separate Transformer blocks, signal data and
events are concatenated and passed together through a third
Transformer block (Fig. 4(d)).

The outputs of these blocks are concatenated along the sequence
dimension, then normalized and transposed. Further, they are passed
through a bottleneck consisting of a linear layer reducing the dimen-
sionality by 0.5 to enable a more compact representation, followed
by a GELU, and a second linear layer restoring the dimensionality.
The output is split in two parts. A sigmoid gate is applied to the first
part and the resulting representation is then added to the other part.
This results in guiding the model to have a stronger focus on more
salient parts of the input representation. Finally, the dimensions are
transposed to the original shape, and the encoder output is fed into the
cross-attention block of the decoder.

3.4. Alarm decoder

In addition to the binary prediction of whether an alarm would
occur within the given horizon, the model also predicts its tag, i.e.
the specific component where the alarm would fire. Tags are encoded
according to the KKS standard (V.G.B. Kraftwerkstechnik GmbH Es-
sen, 2021) as an alphanumeric string designating the hierarchy of a
component’s location in the plant: the plant, function, equipment and

component (e. g., X0 HNA70 FQO13 XH52).

The prediction is made sequentially, beginning with a binary iden-
tifier Alarm/No_alarms, which indicated whether any alarm would
fire after the forecasting horizon, followed by the token No_tag in
case of No_alarms, else by the tag representation split into tokens
corresponding to the plant, function, equipment and component (e. g.,
Alarm X0 HNA70 FQO13 XH52).

The decoder generates its prediction for each subsequent token
based on the hidden representation produced by the multimodal en-
coder (via the cross-attention Transformer block) and the previously
generated tokens (via the self-attention Transformer block — see Fig. 3).
In the final decoder layer, the outputs of the Transformer block are
passed through a linear layer to bring the output dimension in line
with the token vocabulary size, followed by a softmax, approximating
the probability distribution over tokens at each step. Finally, they are
mapped to the output tokens by picking the most probable one.

4. Experimental evaluation

The performance of MUST is compared on the alarm forecasting task
against Transformers with traditional fusion techniques to verify that it
can match the best fusion method. Experiments on alarm forecasting
were performed using two real datasets and extended through an
experiment on the operation forecasting task on a simulated dataset.

4.1. Datasets

We use two proprietary real-world industrial datasets from two
waste incineration plants and one simulated dataset which is used to
predict upcoming operations in a chemical batch process to validate
MUST.

4.1.1. Waste incineration plants datasets

Municipal solid waste incineration is a traditional method of waste
disposal and power generation: the heat released from the incineration
of the municipal solid waste can be used as the input energy to thermal
power plants (Yazdani et al., 2020). Fig. 5 shows an example of such
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Fig. 5. An example of a waste incineration plant scheme (courtesy of Doosan Lentjes GmbH). Waste is stored and mixed in the reception area. From there, it is moved on the
grate to the combustion chamber where it is burnt using flue gas and pre-heated air, and the resulting steam is used to generate electricity, yet it can also be used directly, e.g.,

for district heating. Finally, gases are cleaned before being emitted from the plant.

a plant. Waste-to-energy technologies reduce the environmental impact
of waste management and at the same time decrease the dependency on
fossil fuels (Psomopoulos et al., 2009). Due to the heterogeneous nature
of waste and, hence, different combustion and transport behaviors,
the incineration process is unstable and generates a fair number of
alarms (Wissing et al., 2017; Ye et al., 2021). Early alarm prediction can
give the operator more time to introduce corrective actions to eliminate
possible failures, downtime and negative impact on human safety and
the environment.

For the early alarm prediction, real data from two incineration
plants (plant A and plant B) is used, recorded over 6 months. In
both datasets, the signal data includes 31 continuous process variables
selected by an expert and resampled at a frequency of 30 seconds
(such as flow rates and temperatures of primary air, natural gas and
flue gas, amount of incinerated waste, or feed water temperatures
and pressures). The event log consists of automatically generated en-
tries indicating state changes throughout the plant, covering different
functional areas. These entries are composed of attributes such as
timestamp, tag (a code specifying the component), status, event type,
priority, message, etc. Overall, there are over 8M events logged over
the given period in one dataset and 9M in the other.

The model is trained on time windows preceding alarms such that
there are no other alarms in the same functional area 20 min before,
balanced with an equal number of time windows not followed by
alarms. Specifically, for every sample, a window is taken starting
20 min before an alarm and ending within a forecasting horizon of
5 min before the alarm.

There are 10,600 samples (half positive, half alarm-free) in the
dataset from plant A, which is randomly split into train, dev and test
sets of 8608, 996 and 996 samples, respectively (0.80/0.10/0.10). In
the plant B dataset, there are 33,496 samples, split into train, dev
and test sets of 27,084, 3206, 3206 samples, respectively. Thus, the
datasets are balanced w.r.t. binary prediction and highly unbalanced
w.r. t. multiclass prediction, with half of the samples labeled as having
No_Tag and the rest being distributed as in Figs. 6(a) and 6(b).

To sum up, both datasets pose several challenges:

1. The datasets are small, considering the number of classes and
the number of samples per class, as well as task complexity;

2. The distribution of classes is highly unbalanced, with the vast
majority of classes represented by very few samples;

3. The input events are very sparse and spread across numerous
plant functions, equipment and components;

4. The data comes from real plants, characterized by a high degree
of randomness in the process, and contains a lot of noise;

5. Early alarm prediction means that the underlying changes caus-
ing the alarm might not have manifested themselves in the data
yet;

6. The available process variables are not linked to alarm tags.
The task could be easier if all signals corresponding to different
alarm tags could be used: in that case, given enough data, the
model could learn the thresholds. However, a mapping from
alarm tags to appropriate process variables is unavailable, and
only 31 signals are used to predict up to 163 alarm types.

4.1.2. Simulated dataset

In addition to real datasets, our approach is validated on a more
tractable task of forecasting operations in a chemical batch process
using a simulated dataset [dataset] (Tan, 2022). Batch production
processes consist of cyclic sequences of operations like heating, cooling,
chemical reactions, or stirring. The specific instances of such operations
can vary considerably even for the same product (Just et al., 2022),
e.g. due to variation in the raw material. A reliable prediction when
such operation will end are valuable inputs for production, logistics and
personnel planning.

The dataset covers an equivalent of over 2 months of a batch
production process and contains 4268 events of 18 classes designating
the start of a new operation (such as filling, processing, draining and
cleaning) and signal data with 5 continuous process variables sampled
at 15 seconds (vessel filling levels, motor rotation speed, cooling water
flow rate and steam flow).

The model is trained on time windows preceding each new opera-
tion starting 36 min before it begins and ending within a forecasting
horizon of 6 min. These windows are balanced with an equal number
of time windows not followed by new operations within the forecasting
horizon. The task here is to first make a binary prediction of whether
a new operation is going to begin after the forecasting horizon and,
if yes, which operation it would be. The simulated dataset contains
7440 samples, randomly split into train, dev and test sets of 5616, 912
and 912 samples, respectively.

4.2. Baseline models

We implement separate Transformer models with various fusion
types, namely, the state-of-the-art early and late fusion, as well as the
competitive novel ‘skip’, ‘deep late’ and hybrid fusion (Strem et al.,
2025). In addition to the individual fusion techniques incorporated in
the MultiFusion (see Section 3.3), we compare the model against:

1. Deep late fusion, adds a self-attention Transformer block on top
of the late fusion (Fig. 4(d)).
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2. Skip fusion, implies a simple concatenation of the transformed
inputs from both modalities, the result of which is passed to the
decoder directly, without self-attention, like a residual connec-
tion (Fig. 4(c)).

3. Hybrid fusion, combines the early and late fusion: on the one
hand, signal data and events are concatenated and passed
through a single Transformer block, on the other, the same
inputs are passed through separate Transformer blocks and
concatenated after. Then, the outputs of both the early-fused and
the late-fused blocks are concatenated and passed to the decoder
(Fig. 4(e)).

4.3. Training parameters and scoring

The models are trained using Adam optimizer (Kingma and Ba,
2017) with g, = 0.9, f, = 0.99 and a learning rate of 1.03. The dropout
rate is 0.3. The batch size is 128. The model is trained using the cross-
entropy loss averaged over all output tokens. All experiments have been
run with 5 random seeds on NVIDIA GeForce RTX 2080 Ti graphics card
with 12 GB memory with Ubuntu 22.04.2 LTS.

Due to the highly unbalanced distribution of alarm classes, the main
evaluation metric used is F1 score, computed separately for binary and
multiclass predictions. To calculate F1 score for binary predictions, only
the first token of each sample is considered (Alarm/No_alarms). For
multiclass predictions, the subsequent tokens are concatenated, and F1
is calculated on these concatenated tokens (e.g., XOHNA70FQO013-
XH52). This way, even if a tag prediction is partially correct (e.g.,
XOHNA 70 CP0O0O1 XH52 instead of XOHNA 70 FQO13 XH52), the whole
tag is considered incorrect.

Since the multiclass F1 is strict and ignores partial matches, the
evaluation also includes the BLEU score (Papineni et al., 2002) (used
for Transformer evaluation in traditional NLP tasks) to compare rep-
resentation learning capacity of MultiFusion Transformer against the
baseline models.

4.4. Results and discussion

The proposed MUST model incorporating the novel MultiFusion
method is compared against traditional fusion types such as early and
late fusion, as well as the novel skip, deep late and hybrid fusion. To
keep the models compact and efficient, an important requirement in
online industrial settings, and prevent overfitting given the limited size
of the datasets for all the models, we use a hidden dimensionality of
32.

The results for real datasets are summarized in Table 1 (plant A)
and Table 3 (plant B) where average F1 scores for binary (Alarm/
No_alarms) and multiclass predictions (specific tags) for the two
plants across different models are presented. For a more fine-grained
analysis, we also calculate BLEU score. The results for the simulated
dataset are summarized in Table 5. In addition, Fig. 7 shows the
confusion matrices for the simulated dataset.

Table 1
Performance of MultiFusion compared to SotA fusion techniques based on experiments
on the real dataset, plant A (best in bold).

F1 Bin 1 F1 MC 1t BLEU 1t Params (M) Time
Skip Fusion 69.2 +1.3 370+05 355+20 12+0.0 0.7 + 0.2
Early Fusion 66.7 + 09 37.7+03 359+06 14+0.0 2.0+ 0.5
Late Fusion 675+ 11 376 +10 354+13 17 0.0 2.6 + 09
Deep Late 665+ 1.3 383 +08 366+19 20+0.0 4.2 + 0.7
Hybrid Fusion 67.8 + 1.3 387 +1.1 36.7 +29 20+ 0.0 53 + 22
MultiFusion 70.3 + 0.9 387 +0.3 39.0+1.2 23=+0.0 28 +1.0
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Table 2
Effects of dimensionality on predictive performance averaged across baseline fusion
types based on experiments on the real dataset (plant A).

F1 Bin 1 F1 MC 1t BLEU 1t Params (M) Time
32 675+15 379+10 360+18 1.7+ 0.3 3.0+ 19
64 688 +1.0 363 +11 311+40 25+0.7 1.0 £ 0.7
128 689 +09 353+09 293+34 45+ 14 0.5+ 0.4
256 69.2 +1.1 352+05 272+33 91 =+31 0.5+ 0.3

Table 3
Performance of MultiFusion compared to SotA fusion techniques based on experiments
on the real dataset, plant B (best in bold).

F1 Bin 1 F1 MC 1t BLEU 1t Params (M) Time
Skip Fusion 841 +02 412+02 37810 1.6 +0.0 1.8 + 0.4
Early Fusion 841 +03 419+05 392+10 19 +0.0 4.2 + 09
Late Fusion 840 +0.3 425+02 394 +12 22+0.0 6.2 +1.3
Deep Late 840 +04 425+05 396+14 25+0.0 7.9 21
Hybrid Fusion 84.2 + 0.3 422+ 0.3 392+ 0.5 25+ 0.0 79 + 14
MultiFusion 84.3 + 0.3 427 + 0.8 40.4 +1.5 29 + 0.0 41+ 1.0
Table 4

Effects of dimensionality on predictive performance averaged across baseline fusion
types based on experiments on the real dataset (plant B).

F1 Bin 1t F1 MC 1t BLEU 1t Params (M) Time
32 841 +03 421 +06 390+12 21+03 5.6 + 2.7
64 843 +04 411 +06 380+15 3.0+0.7 24 +1.1
128 843+ 03 406+06 369+16 50+14 1.7 + 0.9
256 842+ 04 409 +06 371 +23 96 +31 20+ 13

Table 5
Performance of MultiFusion compared to SotA fusion techniques based on experiments
on the simulated dataset (best in bold).

F1 Bin 1 F1 MC 1t BLEU 1 Params (M) Time
Skip Fusion 90.7 £ 0.2 743 +0.6 755+17 04+0.0 0.8 + 0.3
Early Fusion 90.7 £ 0.2 741 +03 793 +04 0.7 +0.0 22+ 03
Late Fusion 905+ 02 743+06 794+04 1.0=+0.0 42+ 0.8
Deep Late 90.7 £ 03 744 +05 795x11 13+0.0 49 + 1.0
Hybrid Fusion 90.7 + 0.2 745 + 0.4 79.3 +0.8 1.3+ 0.0 4.0+ 0.8
MultiFusion 90.8 + 0.3 747 £+ 0.7 79.6 + 0.5 09 + 0.0 29+ 0.7

Table 6
Effects of dimensionality on predictive performance averaged across baseline fusion
types based on experiments on the simulated dataset.

F1 Bin 1t F1 MC 1t BLEU 1t Params (M) Time
32 90.7 £ 0.2 743 +05 786+ 1.8 0.9 + 0.3 4115
64 90.7 £ 0.3 743 +05 776 +28 1.8 + 0.7 32+ 17
128 90.7 £ 0.2 745+05 774 +3.0 38 +1.4 25+ 15
256 90.7 £ 0.3 746 +0.7 779 + 2.6 84 + 3.1 3.6 £ 25

Role of the dataset. Overall, the scores highly depend on the dataset,
with the most accurate predictions on the simulated dataset, which con-
tains relatively few samples (7440) and has much less noise and fewer
classes (18), and lowest for the real dataset from plant A, which is both
highly noisy, unbalanced and relatively small (with 10,600 samples vs.
33,496 samples for plant B). The same pattern can be observed not only
in the absolute scores but also their variation across different models,
which is fairly low for the more tractable simulated dataset, but higher
on the real dataset from plant B. This is even more pronounced on the
dataset from plant A, highlighting the importance of the choice of the
fusion technique, especially when dealing with small and unbalanced
datasets.

Role of the fusion method. It is important to observe that, depending
on the dataset and the number of classes, different fusion techniques
may perform better on different metrics. For instance, the least complex
skip fusion models, although inferior in terms of BLEU score on all
datasets, outperform all other baselines w.r.t. binary F1 score on the
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Fig. 6. Alarm type distribution: alarm types are highly unbalanced with ca. 20% of the alarm types accounting for 90% of the samples.

data from plant A. On plant A data, late fusion is better than early
fusion in binary F1 but slightly worse in multiclass F1 and BLEU scores.
Deep late fusion, although scoring higher than the two in most cases,
is outperformed by the late fusion on the plant A data. Likewise, the
hybrid fusion reaches higher scores then the alternatives in most cases,
yet sometimes is slightly inferior despite the higher model complexity,
such as in multiclass F1 and BLEU scores on the plant B data. This find-
ing supports previous work (Snoek et al., 2005; Perez-Rua et al., 2019;
Boulahia et al., 2021; Ma et al., 2022) highlighting the importance of
choosing the right fusion method in each individual case and the value
of learning the best fusion automatically.

In contrast to baselines, MultiFusion Transformer, which intrin-
sically learns the optimal representation of the data from multiple
fusion techniques, consistently matches the best fusion in each set-
ting and even outperforms it. This applies to all datasets across all
baselines both in terms of binary and multiclass predictions, and even
more so on the BLEU score, which is the prevalent metric used for
the evaluation of language models on multiple tasks such as ma-
chine translation or text generation. In the given setup, it provides
a more fine-grained measurement of model accuracy by accounting
for partially correct tag predictions (such as XOHNA 70 CPOO1 XH52
instead of XOHNA 70 FQO13 XH52). The advantage of MUST is more
pronounced when the task is more complex, e.g. on the dataset from
plant A, the binary F1 score and BLEU are, respectively, 4% and 8%
higher for the MultiFusion Transformer than the average across the
baselines, which is a non-trivial improvement given the number of
classes, the task complexity and the data limitations.

A more detailed insight into the performance of MUST across classes
can be gained from the confusion matrices for the simulated dataset in
Fig. 7 (chosen due to the more manageable number of classes compared
to the real datasets). The proposed model makes reliable binary predic-
tions of an upcoming phase change in the process (Fig. 7(a)). MUST is
also remarkably robust in the multiclass scenario: 11 out of 18 phases
are predicted correctly more than 70% of the time, out of which 8 are
successfully predicted in 80% of cases and 4 classes even surpassing the
90% performance. This demonstrates the high accuracy of the proposed
model while indicating a promising potential in other applications.

Overall, it is important to stress that MUST not only performs on par
with the best of the baseline fusion methods, thus eliminating the need
for preliminary architecture search, but also surpasses it in almost all
scenarios across all evaluation metrics. The consistently higher scores
attained by MUST on simulated and real datasets demonstrate that
the proposed MultiFusion method is capable of learning patterns in
multimodal industrial data and generating more robust early alarm
predictions regardless of the data size and the distribution of classes
and task complexity.

Role of the model size. One important point to address is model size:
since MultiFusion incorporates other fusion types, the number of pa-
rameters is higher (except for the model trained on the simulated
dataset, since the predicted sequence length is lower in this case).

Therefore, one could raise a question that the model’s success is due
to its larger size. To eliminate this concern, we ran experiments for all
the baseline fusion types with different hidden dimensionality values:
32, 64, 128 and 256, resulting in model sizes ranging from ~1 to
2 million parameters to ~8.5 to 9.5 million (depending on the number
of classes and output sequence length per dataset). The averaged results
are shown in Tables 2 (plant A), 4 (plant B) and 6 (the simulated
dataset). As can be seen, the increase of dimensionality either brings
negligible improvement (e. g., in binary F1 on the plant A dataset) or
even impairs model performance (especially the multiclass F1 score and
BLEU), with the multiclass F1 and BLEU scores dropping for all models
with dimensionality higher than 32 on real data and increasing very
slightly on the simulated data. At the same time, the overall model
size increases significantly, while all the average metrics across all
datasets remain below the performance of MUST, which is only slightly
bigger than the baseline models. Thus, the advantage of MultiFusion
Transformer cannot be attributed to the model size.

It can also be observed that MultiFusion Transformer converges
faster than the average of the baselines, which results in a faster
training time and saves a lot of time overall considering that tuning,
training and comparing other models can be eliminated.

As described above, the task at hand is complex due to multiple
factors such as sparse and noisy input data, a high number of classes
and the highly unbalanced distribution of labels (as illustrated in
Figs. 6(a) and 6(b)). Nonetheless, the experiments demonstrate compet-
itive performance of our model and the advantage of the MultiFusion
method, which is especially pronounced on the smaller and noisier
dataset. MUST surpasses baseline models on all datasets and across all
metrics, while remaining efficient w.r. t. model size and training time.

5. Conclusion

As repeatedly demonstrated in existing research, combining mul-
tiple modalities enables deep learning models to be more powerful
predictors compared to unimodal approaches. At the same time, the
choice of a fusion method is not trivial and highly depends on the
data and use case. To this end, we introduced MUST, a multimodal
Transformer-based model which learns the optimal representation of
the data from multiple fusion strategies automatically, thereby elimi-
nating the requirement of extra manual tuning. The model has been
applied to solve a highly complex problem in the industrial domain,
where, to the best of our knowledge, multimodal Transformers have
not yet been used. We have shown that MUST can predict, based on
the combination of recent events and signal data as input, whether an
alarm is going to be triggered after the given forecasting horizon and,
if yes, it also predicts an alarm location. In a series of experiments,
our model not only matched, but even outperformed state-of-the-art
fusion baselines such as early and late fusion, as well as the competitive
novel skip, deep late and hybrid fusion strategies. Our experimental
evaluation on two real world industrial datasets and a simulated dataset
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Fig. 7. Confusion matrices for operation predictions: MultiFusion Transformer can successfully learn the difference between operations even in the presence of large number
of classes on the simulated dataset (with true labels along the y axis and predicted labels along the x axis).

demonstrates that the proposed MultiFusion method yields state-of-the-
art predictive performance while eliminating the need to implement
and choose among conventional fusion techniques, thus reducing the
tuning costs and the GPU runtime.

One potential direction for further exploration would be incorpo-
rating the plant topology to take into consideration the causal rela-
tionships between the individual units. Further, other applications of
MultiFusion in industry can be explored, such as prediction of pro-
cess KPIs and what-if scenarios. Other interesting applications would
be quality assurance and fault detection, which would naturally im-
ply including more modalities such as image data in the MultiFusion
architecture.

CRediT authorship contribution statement

Nika Strem: Conceptualization, Data curation, Methodology, Visu-
alization, Writing — original draft. Devendra Singh Dhami: Writing —
review & editing. Benedikt Schmidt: Data curation. Kristian Kersting:
Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported by ABB AG Forschungszentrum Mannheim,
the Collaboration Lab ‘Al in Construction‘ (AICO), the ICT-48 Network
of Al Research Excellence Center ‘TAILOR‘ (EU Horizon 2020, GA
No 952215) and the HMWK cluster project ‘The Third Wave of AI‘.
The Eindhoven University of Technology authors received support
from their Department of Mathematics and Computer Science and the
Eindhoven Artificial Intelligence Systems Institute.

Data availability

The data that has been used is confidential.

References

Akbari, H., Yuan, L., Qian, R., Chuang, W.-H., Chang, S.-F., Cui, Y., Gong, B., 2021.
VATT: Transformers for multimodal self-supervised learning from raw video, audio
and text. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W.
(Eds.), Advances in Neural Information Processing Systems, Vol. 34. Curran
Associates, Inc., pp. 24206-24221.

Boulahia, S.Y., Amamra, A., Madi, M.R., Daikh, S., 2021. Early, intermediate and late
fusion strategies for robust deep learning-based multimodal action recognition.
Mach. Vis. Appl. 32 (6), 121. http://dx.doi.org/10.1007/s00138-021-01249-8.

Cai, S., Palazoglu, A., Zhang, L., Hu, J., 2019. Process alarm prediction using deep
learning and word embedding methods. ISA Trans. 85, 274-283. http://dx.doi.
org/10.1016/j.isatra.2018.10.032.

Chatterjee, J., Dethlefs, N., 2020. A dual transformer model for intelligent decision
support for maintenance of wind turbines. In: 2020 International Joint Conference
on Neural Networks. IJCNN, pp. 1-10. http://dx.doi.org/10.1109/1JCNN48605.
2020.9206839.

Chen, S., Guhur, P.-L., Schmid, C., Laptev, 1., 2021la. History aware multimodal
transformer for vision-and-language navigation. In: Ranzato, M., Beygelzimer, A.,
Dauphin, Y., Liang, P., Vaughan, J.W. (Eds.), Advances in Neural Information
Processing Systems, Vol. 34. Curran Associates, Inc., pp. 5834-5847.

Chen, M., Peng, H., Fu, J., Ling, H., 2021b. AutoFormer: Searching transformers for
visual recognition. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. ICCV, pp. 12270-12280.

Chitty-Venkata, K.T., Emani, M., Vishwanath, V., Somani, A.K., 2022. Neural ar-
chitecture search for transformers: A survey. IEEE Access 10, 108374-108412.
http://dx.doi.org/10.1109/ACCESS.2022.3212767.

Cho, J., Lei, J., Tan, H., Bansal, M., 2021. Unifying vision-and-language tasks via text
generation. In: Meila, M., Zhang, T. (Eds.), Proceedings of the 38th International
Conference on Machine Learning. In: Proceedings of Machine Learning Research,
vol. 139, PMLR, pp. 1931-1942.

Datong, L., Yu, P., Xiyuan, P., 2009. Fault prediction based on time series with online
combined kernel svr methods. In: 2009 IEEE Instrumentation and Measurement
Technology Conference. pp. 1163-1166. http://dx.doi.org/10.1109/IMTC.2009.
5168630.


http://refhub.elsevier.com/S0952-1976(24)01801-3/sb1
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb1
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb1
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb1
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb1
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb1
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb1
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb1
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb1
http://dx.doi.org/10.1007/s00138-021-01249-8
http://dx.doi.org/10.1016/j.isatra.2018.10.032
http://dx.doi.org/10.1016/j.isatra.2018.10.032
http://dx.doi.org/10.1016/j.isatra.2018.10.032
http://dx.doi.org/10.1109/IJCNN48605.2020.9206839
http://dx.doi.org/10.1109/IJCNN48605.2020.9206839
http://dx.doi.org/10.1109/IJCNN48605.2020.9206839
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb5
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb5
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb5
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb5
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb5
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb5
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb5
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb6
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb6
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb6
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb6
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb6
http://dx.doi.org/10.1109/ACCESS.2022.3212767
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb8
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb8
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb8
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb8
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb8
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb8
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb8
http://dx.doi.org/10.1109/IMTC.2009.5168630
http://dx.doi.org/10.1109/IMTC.2009.5168630
http://dx.doi.org/10.1109/IMTC.2009.5168630

N. Strem et al.

Di Lello, E., Klotzbiicher, M., De Laet, T., Bruyninckx, H., 2013. Bayesian time-series
models for continuous fault detection and recognition in industrial robotic tasks.
In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. pp.
5827-5833. http://dx.doi.org/10.1109/IR0S.2013.6697200.

Fadzail, N.F., Zali, S.M., Mid, E.C., Jailani, R., 2022. Application of automated machine
learning (AutoML) method in wind turbine fault detection. J. Phys. Conf. Ser. 2312
(1), 012074. http://dx.doi.org/10.1088/1742-6596,/2312/1/012074.

Feng, C.-M., Yan, Y., Chen, G., Xu, Y., Hu, Y., Shao, L., Fu, H., 2023. Multimodal
transformer for accelerated MR imaging. IEEE Trans. Med. Imaging 42 (10),
2804-2816. http://dx.doi.org/10.1109/TMI1.2022.3180228.

Giurgiu, I., Schumann, A., 2019. Explainable failure predictions with RNN classifiers
based on time series data. arXiv:1901.08554.

Helbing, G., Ritter, M., 2018. Deep learning for fault detection in wind turbines. Renew.
Sustain. Energy Rev. 98, 189-198. http://dx.doi.org/10.1016/j.rser.2018.09.012,
URL https://www.sciencedirect.com/science/article/pii/S1364032118306610.

Hendricks, L.A., Mellor, J., Schneider, R., Alayrac, J.-B., Nematzadeh, A., 2021.
Decoupling the Role of Data, Attention, and Losses in Multimodal Transformers.
Trans. Assoc. Comput. Linguist. 9, 570-585.

Hu, R., Singh, A., 2021. UniT: Multimodal multitask learning with a unified transformer.
In: Proceedings of the IEEECVF International Conference on Computer Vision. ICCV,
pp. 1439-1449.

IEC, 2014. IEC 62682 Management of Alarm Systems for the Process Industries.
Standard IEC 62682, International Electrotechnical Commission, IEC, Geneva,
Switzerland.

ljaz, M., Diaz, R., Chen, C., 2022. Multimodal transformer for nursing activity
recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops. pp. 2065-2074.

Inceoglu, A., Aksoy, E.E., Cihan Ak, A., Sariel, S., 2021. FINO-net: A deep multimodal
sensor fusion framework for manipulation failure detection. In: 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IROS, pp. 6841-6847.
http://dx.doi.org/10.1109/IR0S51168.2021.9636455.

Jabeen, S., Li, X., Amin, M.S., Bourahla, O., Li, S., Jabbar, A., 2023. A review on
methods and applications in multimodal deep learning. ACM Trans. Multimed.
Comput. Commun. Appl. 19 (2s), http://dx.doi.org/10.1145/3545572.

Just, G., Khaydarov, V., Urba, L., Klopper, B., Bdhner, F.D., 2022. Hidden Markov
models und active learning zur automatisierten kennzeichnung von batchphasen in
der prozessindustrie. VDI-Ber. 2022 (2399), 615-624.

Kingma, D.P., Ba, J., 2017. Adam: A method for stochastic optimization. arXiv:1412.
6980.

Klein, G., Kim, Y., Deng, Y., Senellart, J., Rush, A.M., 2017. OpenNMT: Open-source
toolkit for neural machine translation. arXiv:1701.02810.

Koltsidopoulos Papatzimos, A., Thies, P.R., Dawood, T., 2019. Offshore wind turbine
fault alarm prediction. Wind Energy 22 (12), 1779-1788. http://dx.doi.org/10.
1002/we.2402.

Langone, R., Alzate, C., Bey-Temsamani, A., Suykens, J.A.K., 2014. Alarm prediction in
industrial machines using autoregressive LS-SVM models. In: 2014 IEEE Symposium
on Computational Intelligence and Data Mining. CIDM, pp. 359-364. http://dx.doi.
org/10.1109/CIDM.2014.7008690.

Langone, R., Cuzzocrea, A., Skantzos, N., 2020. Interpretable Anomaly Prediction:
Predicting anomalous behavior in industry 4.0 settings via regularized logistic
regression tools. Data Knowl. Eng. 130, 101850. http://dx.doi.org/10.1016/j.datak.
2020.101850.

Li, H., Huang, J., Huang, J., Chai, S., Zhao, L., Xia, Y., 2021. Deep multimodal learning
and fusion based intelligent fault diagnosis approach. J. Beijing Inst. Technol. 30
(2), 172-185. http://dx.doi.org/10.15918/j.jbit1004-0579.2021.017.

Li, H., Qian, B., Parikh, D., Hampapur, A., 2013. Alarm prediction in large-scale sensor
networks — A case study in railroad. In: 2013 IEEE International Conference on
Big Data. pp. 7-14. http://dx.doi.org/10.1109/BigData.2013.6691771.

Li, Z., Wang, Y., sheng Wang, K., 2017. Intelligent predictive maintenance for fault
diagnosis and prognosis in machine centers: Industry 4.0 scenario. Adv. Manufact.
5, 377-387.

Limoyo, O., Ablett, T., Kelly, J., 2023. Learning sequential latent variable models
from multimodal time series data. In: Intelligent Autonomous Systems 17. Springer
Nature Switzerland, pp. 511-528.

Lomov, L., Lyubimov, M., Makarov, L., Zhukov, L.E., 2021. Fault detection in Tennessee
Eastman process with temporal deep learning models. J. Ind. Inf. Integr. 23,
100216.

Lu, J., Batra, D., Parikh, D., Lee, S., 2019. Vilbert: Pretraining task-agnostic visi-
olinguistic representations for vision-and-language tasks. In: Advances in Neural
Information Processing Systems, vol. 32, Curran Associates, Inc.

Lucke, M., Stief, A., Chioua, M., Ottewill, J.R., Thornhill, N.F., 2020. Fault detection
and identification combining process measurements and statistical alarms. Control
Eng. Pract. 94, 104195. http://dx.doi.org/10.1016/j.conengprac.2019.104195.

Ma, M., Ren, J., Zhao, L., Testuggine, D., Peng, X., 2022. Are multimodal transformers
robust to missing modality? In: Proceedings of the IEEECVF Conference on
Computer Vision and Pattern Recognition. CVPR, pp. 18177-18186.

Papineni, K., Roukos, S., Ward, T., Zhu, W.-J., 2002. Bleu: a method for automatic
evaluation of machine translation. In: Isabelle, P., Charniak, E., Lin, D. (Eds.),
Proceedings of the 40th Annual Meeting of the Association for Computational
Linguistics. Association for Computational Linguistics, Philadelphia, Pennsylvania,
USA, pp. 311-318. http://dx.doi.org/10.3115/1073083.1073135.

10

Engineering Applications of Artificial Intelligence 139 (2025) 109643

Perez-Rua, J.-M., Vielzeuf, V., Pateux, S., Baccouche, M., Jurie, F., 2019. MFAS:
Multimodal fusion architecture search. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. CVPR.

Pramanik, S., Agrawal, P., Hussain, A., 2020. OmniNet: A unified architecture for
multi-modal multi-task learning. arXiv:1907.07804.

Proto, S., Ventura, F., Apiletti, D., Cerquitelli, T., Baralis, E., Macii, E., Macii, A., 2019.
PREMISES, a scalable data-driven service to predict alarms in slowly-degrading
multi-cycle industrial processes. In: 2019 IEEE International Congress on Big Data.
BigDataCongress, pp. 139-143. http://dx.doi.org/10.1109/BigDataCongress.2019.
00032.

Psomopoulos, C., Bourka, A., Themelis, N., 2009. Waste-to-energy: A review of the
status and benefits in USA. Waste Manage. 29 (5), 1718-1724. http://dx.doi.
org/10.1016/j.wasman.2008.11.020, URL https://www.sciencedirect.com/science/
article/pii/S0956053X08004066.

Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., Krueger, G., Sutskever, I., 2021. Learning trans-
ferable visual models from natural language supervision. In: Meila, M., Zhang, T.
(Eds.), Proceedings of the 38th International Conference on Machine Learning. In:
Proceedings of Machine Learning Research, vol. 139, PMLR, pp. 8748-8763, URL
https://proceedings.mlr.press/v139/radford21a.html.

Rahman, W., Hasan, M.K., Lee, S., Zadeh, A., Mao, C., Morency, L.-P., Hoque, E.,
2020. Integrating multimodal information in large pretrained transformers. In:
Proceedings of the Conference. Association for Computational Linguistics. Meeting,
Vol. 2020. NIH Public Access, p. 2359.

Reinartz, C., Kulahci, M., Ravn, O., 2021. An extended Tennessee Eastman simulation
dataset for fault-detection and decision support systems. Comput. Chem. Eng. 149,
107281. http://dx.doi.org/10.1016/j.compchemeng.2021.107281.

Roy, S.K., Deria, A., Hong, D., Rasti, B., Plaza, A., Chanussot, J., 2023. Multimodal
fusion transformer for remote sensing image classification. IEEE Trans. Geosci.
Remote Sens. 61, 1-20. http://dx.doi.org/10.1109/TGRS.2023.3286826.

Snoek, C.G.M., Worring, M., Smeulders, A.W.M., 2005. Early versus late fusion in
semantic video analysis. In: Proceedings of the 13th Annual ACM International Con-
ference on Multimedia. MULTIMEDIA 05, Association for Computing Machinery,
New York, NY, USA, pp. 399-402. http://dx.doi.org/10.1145/1101149.1101236.

Song, X., Sun, P., Song, S., Stojanovic, V., 2023. Finite-time adaptive neural resilient
DSC for fractional-order nonlinear large-scale systems against sensor-actuator faults.
Nonlinear Dyn. 111 (13), 12181-12196.

Stauffer, T., Clarke, P., 2016. Using alarms as a layer of protection. Process Saf. Prog.
35 (1), 76-83. http://dx.doi.org/10.1002/prs.11739.

Strem, N., Dhami, D.S., Schmidt, B., Klopper, B., Kersting, K., 2025. APT: Alarm
Prediction Transformer. Expert Systems with Applications 261, 125521. http://dx.
doi.org/10.1016/j.eswa.2024.125521.

Sun, C., Baradel, F., Murphy, K., Schmid, C., 2019. Learning video representations using
contrastive bidirectional transformer. arXiv:1906.05743.

Tan, R., 2022. Datasets from Multiple Cycles. Root, http://dx.doi.org/10.57826/KEEN/
ODU6MA.

Tan, H., Bansal, M., 2019. LXMERT: Learning cross-modality encoder representations
from transformers. arXiv:1908.07490.

Tsai, Y.-H.H., Bai, S., Liang, P.P., Kolter, J.Z., Morency, L.-P., Salakhutdinov, R.,
2019. Multimodal transformer for unaligned multimodal language sequences. In:
Proceedings of the Conference. Association for Computational Linguistics. Meeting,
Vol. 2019. NIH Public Access, p. 6558.

Vaswani, A., Bengio, S., Brevdo, E., Chollet, F., Gomez, A.N., Gouws, S., Jones, L.,
Kaiser, 1., Kalchbrenner, N., Parmar, N., Sepassi, R., Shazeer, N., Uszkoreit, J.,
2018. Tensor2Tensor for neural machine translation. arXiv:1803.07416.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.,
Polosukhin, I., 2017. Attention is all you need. In: Guyon, I, Luxburg, U.V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (Eds.), Advances
in Neural Information Processing Systems, Vol. 30. Curran Associates, Inc.

V.G.B. Kraftwerkstechnik GmbH Essen, 2021. KKS Kraftwerk-Kennzeichensystem. VGB
Kraftwerkstechnik GmbH Essen.

Villalobos, K., Suykens, J., lllarramendi, A., 2021. A flexible alarm prediction system for
smart manufacturing scenarios following a forecaster-analyzer approach. J. Intell.
Manuf. 32 (5), 1323-1344.

Wang, J., Hu, X., Gan, Z.,, Yang, Z., Dai, X., Liu, Z., Lu, Y., Wang, L., 2021. UFO: A
UniFied Transformer for vision-language representation learning. arXiv:2111.10023.

Wang, X., Liang, D., 2020. LSTM-based alarm prediction in the mobile communi-
cation network. In: 2020 IEEE 6th International Conference on Computer and
Communications. ICCC, pp. 561-567. http://dx.doi.org/10.1109/ICCC51575.2020.
9344951.

Wang, P., Yang, A., Men, R., Lin, J., Bai, S., Li, Z., Ma, J., Zhou, C., Zhou, J.,
Yang, H., 2022. OFA: Unifying architectures, tasks, and modalities through a
simple sequence-to-sequence learning framework. In: Chaudhuri, K., Jegelka, S.,
Song, L., Szepesvari, C., Niu, G., Sabato, S. (Eds.), Proceedings of the 39th
International Conference on Machine Learning. In: Proceedings of Machine Learning
Research, vol. 162, PMLR, pp. 23318-23340, URL https://proceedings.mlr.press/
v162/wang22al.html.

Wang, R., Zhuang, Z., Tao, H., Paszke, W., Stojanovic, V., 2023. Q-learning based
fault estimation and fault tolerant iterative learning control for MIMO systems.
ISA Trans. 142, 123-135.


http://dx.doi.org/10.1109/IROS.2013.6697200
http://dx.doi.org/10.1088/1742-6596/2312/1/012074
http://dx.doi.org/10.1109/TMI.2022.3180228
http://arxiv.org/abs/1901.08554
http://dx.doi.org/10.1016/j.rser.2018.09.012
https://www.sciencedirect.com/science/article/pii/S1364032118306610
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb15
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb15
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb15
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb15
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb15
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb16
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb16
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb16
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb16
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb16
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb17
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb17
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb17
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb17
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb17
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb18
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb18
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb18
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb18
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb18
http://dx.doi.org/10.1109/IROS51168.2021.9636455
http://dx.doi.org/10.1145/3545572
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb21
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb21
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb21
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb21
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb21
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1701.02810
http://dx.doi.org/10.1002/we.2402
http://dx.doi.org/10.1002/we.2402
http://dx.doi.org/10.1002/we.2402
http://dx.doi.org/10.1109/CIDM.2014.7008690
http://dx.doi.org/10.1109/CIDM.2014.7008690
http://dx.doi.org/10.1109/CIDM.2014.7008690
http://dx.doi.org/10.1016/j.datak.2020.101850
http://dx.doi.org/10.1016/j.datak.2020.101850
http://dx.doi.org/10.1016/j.datak.2020.101850
http://dx.doi.org/10.15918/j.jbit1004-0579.2021.017
http://dx.doi.org/10.1109/BigData.2013.6691771
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb29
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb29
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb29
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb29
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb29
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb30
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb30
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb30
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb30
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb30
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb31
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb31
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb31
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb31
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb31
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb32
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb32
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb32
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb32
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb32
http://dx.doi.org/10.1016/j.conengprac.2019.104195
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb34
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb34
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb34
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb34
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb34
http://dx.doi.org/10.3115/1073083.1073135
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb36
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb36
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb36
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb36
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb36
http://arxiv.org/abs/1907.07804
http://dx.doi.org/10.1109/BigDataCongress.2019.00032
http://dx.doi.org/10.1109/BigDataCongress.2019.00032
http://dx.doi.org/10.1109/BigDataCongress.2019.00032
http://dx.doi.org/10.1016/j.wasman.2008.11.020
http://dx.doi.org/10.1016/j.wasman.2008.11.020
http://dx.doi.org/10.1016/j.wasman.2008.11.020
https://www.sciencedirect.com/science/article/pii/S0956053X08004066
https://www.sciencedirect.com/science/article/pii/S0956053X08004066
https://www.sciencedirect.com/science/article/pii/S0956053X08004066
https://proceedings.mlr.press/v139/radford21a.html
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb41
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb41
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb41
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb41
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb41
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb41
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb41
http://dx.doi.org/10.1016/j.compchemeng.2021.107281
http://dx.doi.org/10.1109/TGRS.2023.3286826
http://dx.doi.org/10.1145/1101149.1101236
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb45
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb45
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb45
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb45
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb45
http://dx.doi.org/10.1002/prs.11739
http://dx.doi.org/10.1016/j.eswa.2024.125521
http://dx.doi.org/10.1016/j.eswa.2024.125521
http://dx.doi.org/10.1016/j.eswa.2024.125521
http://arxiv.org/abs/1906.05743
http://dx.doi.org/10.57826/KEEN/ODU6MA
http://dx.doi.org/10.57826/KEEN/ODU6MA
http://dx.doi.org/10.57826/KEEN/ODU6MA
http://arxiv.org/abs/1908.07490
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb51
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb51
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb51
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb51
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb51
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb51
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb51
http://arxiv.org/abs/1803.07416
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb53
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb53
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb53
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb53
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb53
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb53
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb53
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb54
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb54
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb54
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb55
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb55
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb55
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb55
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb55
http://arxiv.org/abs/2111.10023
http://dx.doi.org/10.1109/ICCC51575.2020.9344951
http://dx.doi.org/10.1109/ICCC51575.2020.9344951
http://dx.doi.org/10.1109/ICCC51575.2020.9344951
https://proceedings.mlr.press/v162/wang22al.html
https://proceedings.mlr.press/v162/wang22al.html
https://proceedings.mlr.press/v162/wang22al.html
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb59
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb59
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb59
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb59
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb59

N. Strem et al.

Wissing, F., Wirtz, S., Scherer, V., 2017. Simulating municipal solid waste incineration
with a DEM/CFD method - influences of waste properties, grate and furnace design.
Fuel 206, 638-656. http://dx.doi.org/10.1016/j.fuel.2017.06.037.

Yang, Z., Baraldi, P., Zio, E., 2021. A multi-branch deep neural network model for
failure prognostics based on multimodal data. J. Manuf. Syst. 59, 42-50. http:
//dx.doi.org/10.1016/j.jmsy.2021.01.007.

Yazdani, S., Salimipour, E., Moghaddam, M.S., 2020. A comparison between a natural
gas power plant and a municipal solid waste incineration power plant based on an
emergy analysis. J. Clean. Prod. 274, 123158. http://dx.doi.org/10.1016/j.jclepro.
2020.123158.

Ye, B., Shi, B., Shi, M., Zhang, L., Zhang, R., 2021. Process simulation and comprehen-
sive evaluation of a system of coal power plant coupled with waste incineration.
Waste Manag. Res. 39 (6), 828-840.

11

Engineering Applications of Artificial Intelligence 139 (2025) 109643

Zhang, W., Qiu, F., Wang, S., Zeng, H., Zhang, Z., An, R., Ma, B., Ding, Y., 2022.
Transformer-based multimodal information fusion for facial expression analysis.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops. pp. 2428-2437.

Zhao, H., Hu, Y., Ai, X., Hu, Y., Meng, Z., 2018. Fault detection of Tennessee eastman
process based on topological features and SVM. IOP Conference Series: Materials
Science and Engineering, IOP Conference Series: Materials Science and Engineering,
vol. 339 (1).http://dx.doi.org/10.1088/1757-899X/339/1/012039,

Zhu, J., Wang, C., Li, C, Gao, X., Zhao, J., 2016. Dynamic alarm prediction for
critical alarms using a probabilistic model. Chin. J. Chem. Eng. 24 (7), 881-885.
http://dx.doi.org/10.1016/j.cjche.2016.04.017.


http://dx.doi.org/10.1016/j.fuel.2017.06.037
http://dx.doi.org/10.1016/j.jmsy.2021.01.007
http://dx.doi.org/10.1016/j.jmsy.2021.01.007
http://dx.doi.org/10.1016/j.jmsy.2021.01.007
http://dx.doi.org/10.1016/j.jclepro.2020.123158
http://dx.doi.org/10.1016/j.jclepro.2020.123158
http://dx.doi.org/10.1016/j.jclepro.2020.123158
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb63
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb63
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb63
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb63
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb63
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb64
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb64
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb64
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb64
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb64
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb64
http://refhub.elsevier.com/S0952-1976(24)01801-3/sb64
http://dx.doi.org/10.1088/1757-899X/339/1/012039
http://dx.doi.org/10.1016/j.cjche.2016.04.017

	Multimodal transformer for early alarm prediction
	Introduction
	Related Work
	Alarm Prediction Techniques
	Fault Detection Techniques
	Multimodal Learning outside of Industrial Context

	MultiFusion Transformer
	Early Alarm Prediction Use Case
	Multimodal Encoder
	MultiFusion
	Alarm Decoder

	Experimental Evaluation
	Datasets
	Waste Incineration Plants Datasets
	Simulated Dataset

	Baseline Models
	Training Parameters and Scoring
	Results and Discussion

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


