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A B S T R A C T

Distributed control systems (DCS) are essential to operate complex industrial processes. A major part of a DCS
is the alarm system, which helps plant operators to keep the processes stable and safe. Alarms are defined
as threshold values on individual signals taking into account minimum reaction time of the human operator.
In reality, however, alarms are often noisy and overwhelming, and thus can be easily overlooked by the
operators. Early alarm prediction can give the operator more time to react and introduce corrective actions
to avoid downtime and negative impact on human safety and the environment. In this context, we introduce
Alarm Prediction Transformer (APT), a multimodal Transformer-based machine learning model for early alarm
prediction based on the combination of recent events and signal data. Specifically, we propose two novel fusion
strategies and three methods of label encoding with various levels of granularity. Given a window of several
minutes of event logs and signal data, our model predicts whether an alarm is going to be triggered after a
few minutes and, if yes, it also predicts its location. Our experiments on two novel real industrial plant data
sets and a simulated data set show that the model is capable of predicting alarms with the given horizon and
that our proposed fusion technique combining inputs from different modalities, i. e. events and signals, yields
more accurate results than any of the modalities alone or conventional fusion techniques.
1. Introduction

In modern industries, with increasingly comprehensive automation,
plant operators are facing an increasingly complex scope of tasks,
including monitoring numerous process indicators to ensure normal
operation and process safety. Yet the number of measurements to
track and assess is overwhelming for a human, therefore, in case of
deviations, the process monitoring system triggers alarms to indicate
an impending critical situation, equipment malfunction, process de-
viation, or abnormal condition requiring a timely response from the
operator (IEC 62682 Management of Alarm Systems for the Process
Industries, 2014). Alarms are defined based on thresholds that may
not be exceeded by sensor measurements, such as temperature, flow,
level or pressure. Alarm thresholds are configured in such a way as to
notify the operator early enough to allow for corrective actions, yet
not too early to avoid noisy alarms caused by temporary fluctuations
(Fig. 1(a)). When an alarm is raised, the operator must take corrective
action, such as opening or closing a valve, or changing a setpoint value
to bring the process back to normal conditions. If the operator fails to
respond timely to prevent further deterioration of the situation, this
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can lead to failures, damage of equipment, downtime and hazards to
the employees (Fig. 1(b)).

Whereas incipient changes in the system leading to a state where an
alarm is triggered cannot be noticed by a human, a machine learning
model trained on historic data can potentially capture characteristic
patterns, interactions and dependencies among various signals and
events. Such a model can be used to predict alarms before they occur to
give an operator more time to resolve the issue and additionally help
identify the cause of the problem. Real-world industrial data is often
multivariate and complex. To provide the operator with early warning,
unlike studies that predict alarms based on past alarms or concentrate
on a particular alarm type, we attempt to predict an alarm when there
have not been any recent alarms and the situation seems normal.

Within the context of distributed control systems, there are two ma-
jor data types that could be used for data-driven early alarm prediction:
signals and events. Signals include measurements of physical quantities
like temperatures, flows, pressures; setpoint and output values of con-
trol loops; and information about actuators like rotations per minute or
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(a) Alarm response timeline (adapted from (IEC 62682 Management
of Alarm Systems for the Process Industries, 2014))

(b) Layers of protection (adapted from (Stauffer & Clarke,
2016))

Fig. 1. Alarms notify the operator of an equipment failure or process deviation
requiring an intervention to restore normal operation. Alarm thresholds are defined
taking into account such factors as operator response time, process schedule and
response time, as well as severity of potential consequences. Without operator’s
response, an anomaly can result in equipment damage and downtime, or even major
hazards or a plant shutdown.

valve positions. Events include changes automatically registered in the
system or introduced by an operator, binary changes, setpoint changes,
alarms with different severity levels, etc. It is important to notice that
only limited information is displayed to operators to avoid information
overload.

Existing machine learning based approaches to early alarm predic-
tion analyze signals and events in an isolated fashion (see Section 2.1).
At the same time, considering that most real world data comprises
more than a single modality, there has recently been a surge in meth-
ods that belong to multimodal machine learning, especially for high
impact real-world problems such as hurricane forecasting (Boussioux,
Zeng, Guénais, & Bertsimas, 2022), drug-drug interaction prediction
(Dhami, Yan, Kunapuli, Page, & Natarajan, 2021), healthcare (Tiulpin
et al., 2019) and human–robot collaboration (Liu, Fang, Zhou, Wang,
& Wang, 2018), to name a few. In particular, Transformers (Vaswani
et al., 2017) have revolutionized the performance of deep neural net-
works and are used in a wide variety of real-world applications: from
machine translation (Devlin, Chang, Lee, & Toutanova, 2018; Radford
et al., 2019) to protein prediction (Nambiar et al., 2020) and even
playing chess (Noever, Ciolino, & Kalin, 2020). Transformers have also
been extended to multimodal setting (Rahman et al., 2020) but most
implementations are focused on combining the standard modalities
such as image, text and audio (Akbari et al., 2021; Chen, Guhur,
Schmid, & Laptev, 2021). Despite the success of multimodal machine
learning methods and Transformers in particular in other domains, to
the best of our knowledge, there have been no attempts yet to model
multimodal industrial data using the Transformer architecture.

To this end, we introduce Alarm Prediction Transformer (APT), a
multimodal Transformer-based model for early alarm prediction based
on the combination of recent events and signal data. Given a window
of several minutes of event logs and signal data, the model predicts
whether an alarm is going to be triggered after the next few minutes.
In addition, while analyzing data coming in from an entire plant, the
2 
model learns to identify the problematic area within the plant where
the alarm is predicted to happen and also predicts the alarm location.
In APT, we compare three alternative strategies of combining inputs
from different modalities: ‘skip’ fusion, whereby input modalities are
transformed to a uniform hidden dimensionality separately and passed
to the decoder directly, without applying self-attention; ‘early’ fusion,
whereby the initially transformed inputs are combined and passed
through a single Transformer block; and ‘late’ fusion, whereby separate
self-attention Transformer blocks are used for each modality and their
outputs are combined. Going beyond these classical fusion types, we
propose a novel ‘hybrid’ fusion, whereby early and late fusion encoders
are combined in a single block. Whereas either early or late fusion
may prove more efficient for different datasets and applications, hybrid
fusion could achieve on par or better performance without preliminary
fine-tuning. Finally, a decoder is applied to predict the alarms sequen-
tially at various levels of granularity. APT is validated on a real-world
customer use case.

Overall, we make the following important contributions:

C1. We present APT, the first work on using Transformers in a multi-
modal setting for real industrial data thereby paving the way for
industrial transformation.

C2. We propose to predict alarm labels sequentially, by encoding them in
three novel ways, namely (a) as characters, (b) as ‘morphemes’ and
(c) as entire tags.

C3. We propose a novel fusion strategy and show that it achieves on par
or higher performance than the commonly used early and late fusion
methods.

C4. We show that APT is effective in dealing with heavily unbalanced
datasets with 100 s of classes.

2. Multimodal learning in industrial settings and academia

Machine learning techniques are widely studied in application to
industrial tasks, such as alarm prediction, however, they mostly rely
on unimodal data.

2.1. Alarm prediction techniques

Data-driven approaches to alarm prediction commonly use sig-
nal data. For instance, Langone, Alzate, Bey-Temsamani, and Suykens
(2014) train a nonlinear autoregressive model for temperature predic-
tion. Based on its forecast, a binary classifier predicts future alarms.
Similarly, Villalobos, Suykens, and Illarramendi (2021) forecast sensor
measurements with an LSTM model and apply a ResNet classifier to
predict alarms based on the forecast. Proto et al. (2019-07) predict
alarms using a Random Forest or Gradient Boosted Tree classifiers
using summary statistics over process variables as tabular inputs. In
a similar vein, Li, Qian, Parikh, and Hampapur (2013-10) train a cus-
tomized Support Vector Machine to predict bearing related alarms from
statistics over sensor measurements. Koltsidopoulos Papatzimos, Thies,
and Dawood (2019) predict wind turbine alarms based on wind speed
distribution analysis. Chatterjee and Dethlefs (2020) use a transformer
model to predict an alarm class from sensor measurements of wind
turbines. In other studies, next alarm is predicted based on previous
alarm records, for example, Zhu, Wang, Li, Gao, and Zhao (2016)
convert alarm sequences into n-grams and apply maximum likelihood
estimation to predict the next alarm. Cai, Palazoglu, Zhang, and Hu
(2019) convert alarm sequences into word embeddings and predict the
next alarm using an LSTM network. Wang and Liang (2020) train binary
LSTM-based classifiers per each alarm type and predict the next alarm
using alarm clustering and model voting. In relying on a sequence of
already triggered alarms however, such studies lie out of the scope of
early alarm prediction.

To the best of our knowledge, multimodal learning has not yet been
used to solve the task of early alarm prediction.



N. Strem et al.

e
c
o
l

a
t
Z
c
o
l

c
d

S

p

m
p
a
u

c

n
n
l
(
(
s
t
e
d
i
t

c
l

o

p
s
a
o
w
E
m
p

n
p
E

Expert Systems With Applications 261 (2025) 125521 
2.2. Fault detection techniques

In a related task of fault detection, several studies can be found
where modalities are combined. Inceoglu, Aksoy, Cihan Ak, and Sariel
(2021) use a multimodal classifier for failure detection. The model uses
arly fusion to combine RGB and depth frames in convolutional and
onvLSTM layers, then late-fuses the output via concatenation with that
f convolutional layers for audio data, then applies fully connected
ayers and produces a binary output. In a similar fashion, Li et al.

(2021) use a stacked denoising autoencoder to extract audio features
nd a CNN to process images. The concatenated outputs are passed
hrough linear and softmax layers to predict a fault. Yang, Baraldi, and
io (2021) use separate CNNs for images and text records and a fully
onnected network for structured maintenance data. The concatenated
utputs are passed through a regression layer to output degradation
evel. Limoyo, Ablett, and Kelly (2022) late-fuse outputs from image

and signal CNNs in a GRU network to predict real-valued 2D position
ommands. The majority of approaches however also use unimodal
ata, namely, process variables: (Datong, Yu, & Xiyuan, 2009-05; Di

Lello, Klotzbucher, De Laet, & Bruyninckx, 2013; Fadzail, Mat Zali,
Mid, & Jailani, 2022; Giurgiu & Schumann, 2019; Helbing & Ritter,
2018-12-01; Langone, Cuzzocrea, & Skantzos, 2020-11-01; Li, Wang,
& Wang, 2017; Lomov, Lyubimov, Makarov, & Zhukov, 2021; Lucke,
tief, Chioua, Ottewill, & Thornhill, 2020-01-01; Reinartz, Kulahci, &

Ravn, 2021; Zhao, Hu, Ai, Hu, & Meng, 2018-03).

2.3. Multimodal learning outside of industrial context

Outside of the industrial context, multimodal learning is studied
much more extensively. Most studies rely on the state-of-the-art Trans-
former models (Vaswani et al., 2017), which successfully capture de-
pendencies between data points regardless of their distance in the input
or output sequences. In particular, multimodal Transformers pretrained
on large datasets (with millions of samples) have become popular,
especially in the audiovisual domain. Various models rely on different
types of fusion and pretraining strategies.

ViLBERT (Lu, Batra, Parikh, & Lee, 2019) is a joint model for
learning task-agnostic visual grounding from paired visiolinguistic data
with co-attention pretrained on multimodal tasks. LXMERT (Tan &
Bansal, 2019) consists of two unimodal and one cross-modal encoders,
retrained on multimodal tasks: masked language modeling, masked

object prediction (feature regression and label classification), cross-
odality matching, and image question answering. Sun, Baradel, Mur-
hy, and Schmid (2019) extend an existing language Transformer with
 video encoder and pretrain simultaneously on losses from individ-
al modalities and a cross-modal noise contrastive estimation loss.

MuLT (Tsai et al., 2019) is built from multiple stacks of pairwise and
bidirectional crossmodal attention blocks that directly attend to low-
level features (without self-attention). They use six pairs of crossmodal
Transformers, plus one Transformer per modality to merge two cor-
responding crossmodal blocks. The model has no decoder and is not
pretrained. OmniNet (Pramanik, Agrawal, & Hussain, 2019) combines
modalities using gated multi-head attention and is trained simultane-
ously on several unimodal and multimodal tasks. CLIP (Radford et al.,
2021) jointly trains image and text encoders to align samples using a
ontrastive loss. At test time the learned text encoder synthesizes a zero-

shot linear classifier. In UFO (Wang et al., 2021), a single Transformer
etwork is used as the image encoder, the text encoder, or the fusion
etwork in different pretraining tasks with the image-text contrastive
oss, image-text matching loss, and masked language modeling loss
with one pretraining loss randomly sampled per epoch). UniT model
Hu & Singh, 2021), consisting of modality-specific encoders and a
hared decoder with task-specific output heads, is jointly trained end-
o-end on all tasks. Cho, Lei, Tan, and Bansal (2021) extend text
ncoders of existing language Transformers with image region embed-
ings and pretrain on multimodal VL tasks. OFA (Wang et al., 2022)
s an encoder–decoder framework pretrained on uni- and multimodal
asks where output modalities are represented in a unified space using

a unified output vocabulary.
3 
3. Alarm Prediction Transformer (APT)

In modern industries, thousands of signals are continuously moni-
tored to ensure stable operation. When a signal crosses a pre-defined
threshold, an alarm is triggered to indicate a potential problem to the
operator, yet the existing alarm configurations tend to generate too
many false positive alarms, thus confusing the operator. We propose
a data-driven method for early alarm prediction which, based on the
combination of recent sensor readings and events, detects anomalous
patterns in the data and gives the operator an early warning, thus
reducing the amount of noise and allowing for more time to fix the
issue. The method leverages state-of-the-art deep learning techniques,
extended through a novel multimodal fusion technique combining two
complementary modalities, and a sequential prediction approach.

3.1. Early alarm prediction methodology

In industrial processes, events and sensor measurements are con-
tinuously logged by the control system. Anomalous conditions are
indicated to the operator by triggering alarms when predefined thresh-
olds are crossed. Assuming that deviations in the process can start
manifesting themselves in events and in the interaction of various
signals before a threshold of a specific process variable is reached, the
approach is to detect such deviations in a data-driven fashion and give
the operator an early warning. To achieve this, at every point in time 𝑡:

1. A window of 𝑁 minutes of most recent events and signal data
from 𝑡 −𝑁 to 𝑡 is fed into the model’s encoder — Fig. 2 (1).

2. The model, trained on historic data, makes a prediction 𝑀
minutes into the future including a binary output (whether and
alarm is going to fire at time 𝑡 +𝑀) and a multiclass output (at
which tag an alarm is going to be triggered) — Fig. 2 (2).

3. If an alarm is predicted, an early warning is shown to the oper-
ator so that he can take corrective actions in time — Fig. 2 (3).

Based on preliminary experiments as well as discussions with the
ustomer, 𝑁 was chosen to be 15 min as a time window sufficiently
ong to contain useful information, whereas 𝑀 was fixed at 5 min as

a prediction horizon which both enables high prediction accuracy and
allows the operator to take corrective actions to prevent an actual alarm
from being triggered. Both the input window 𝑁 and the prediction
horizon 𝑀 can be chosen depending on the dataset and the properties
f a given process.

Problem Statement. Predict an alarm in conditions which
appear normal to the operator, that is, in the absence of other
alarms.

Without an early warning, an upcoming alarm would fire unex-
ectedly for the operator. Therefore, to train the model, samples are
elected in such a way that none of the data windows contain previous
larms in the past 20 min. The model is trained on a dataset consisting
f alarm-free time windows followed by alarms at time 𝑡 + 𝑀 , as
ell as alarm-free time windows that are not followed by alarms.
ach time window contains two input modalities: events and sensor
easurements, and is followed by a label sequence indicating the
resence or absence of alarms at time 𝑡 +𝑀 as well as the alarm tag.

3.2. Multimodal learning

We introduce Alarm Prediction Transformer (APT), a multimodal
attention-based model for early alarm prediction based on the combi-
ation of recent events and signal data. Existing approaches to alarm
rediction rely either on signals or events separately (see Section 2.1).
ncouraged by the recent advances in multimodal learning (see Sec-

tion 2.3), we propose to combine two complementary modalities to
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Fig. 2. Input and output modalities. The encoder creates a representation of the past 15 min of events and signal data, which is used by the decoder to forecast an alarm 5 min
into the future.
Fig. 3. Input layers of the model for the initial transformation of the two modalities
into the hidden space.

leverage the model’s representation learning capacity and maximize
prediction accuracy. To predict alarms across the entire plant and also
identify the specific tag where an alarm would fire, a model must learn
a rich representation of the underlying industrial process, capturing
not only patterns in the individual process variables but also their
interactions with other signals and events.

The two modalities include signal data and events. Signal data is
represented as continuous multivariate time series, whereas events are
logged as structured entries indicating state changes (each containing
a tag, status, event type, priority, operator message, etc.), which are
concatenated and treated as text. Both signal and event data have
timestamps, however, the two modalities are not aligned: unlike pro-
cess variables, which can be resampled at a desired rate, events are
unevenly distributed over time, therefore, samples are created using
sliding windows. For each alarm, time windows are selected starting
20 min before an alarm and ending 5 min before it, and balanced with
randomly sampled time windows of the same duration not followed by
alarms. Since the goal is to learn process representation in a data-driven
way and develop a scalable solution which can be directly applied to
a different dataset or a different process (see Section 4.1.2), all events
and process variables are treated equally and sliced into windows on
the same timestamps.
4 
Both modalities undergo necessary preprocessing. Signal data is
resampled, imputed and scaled, then sliced based on timestamps.
Events are selected based on timestamps and filtered, then useful at-
tributes, e.g., tag, status, type, priority, and operator message, are kept,
while timestamps and uninformative columns are removed, and string
representations of event entries are tokenized (unlike natural language,
event attributes contain abbreviations, special terms and symbols,
therefore no lemmatization or similar procedures are necessary and
entries are simply split into tokens on whitespace). Sequences of tokens
representing events within the same time windows are concatenated,
then either padded or left-trimmed to the length of 300 (keeping the
most recent ones).

To enable multimodal processing, time windows of recent events
and sensor measurements first undergo a series of modality-specific
transformations in the input layers of APT (Fig. 3). In the first layer, the
window of scaled process variables undergoes a linear transformation,
while the sequence of event tokens is passed through an embedding
layer such that both modalities are projected into the same hidden
dimension 𝐷. The input features of each sample can be denoted as
𝑋{𝑆 ,𝐸} ∈ R𝑇{𝑆 ,𝐸}×𝐷{𝑆 ,𝐸} , where 𝑇 denotes the number of timestamps
within a window for signal data 𝑆 and the number of tokens within
the concatenated sequence of events 𝐸 (sequences of event tokens are
trimmed to the length of 300). Both the embedding layer for events
and the linear layer for signal data have a hidden dimension of 512.
A learnable positional encoding is added to the transformed inputs of
both modalities separately. Next, a linear transformation is applied to
both modalities to reduce dimensionality to 128. These initial layers
preparing events and process variables for multimodal processing can
be seen in Figs. 3(a) and 3(b), respectively.

3.3. Overall transformer architecture

We treat the alarm forecasting task as a sequence-to-sequence learn-
ing problem and tackle it using an encoder–decoder Transformer model
shown in Fig. 4. The encoder projects the multimodal input sequence
of events and continuous multivariate signal data from the past sev-
eral minutes to a joint hidden representation, which is then fed into
the decoder. The decoder autoregressively generates a sequence of
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Fig. 4. Model architecture: encoder–decoder.

output tokens representing the presence or absence of an upcom-
ing alarm and a specific alarm tag indicating where in the system
the alarm is expected to be triggered. At each step, decoder relies
both on the representation from the encoder and on the previously
generated symbols.

APT uses Transformer architecture (Vaswani et al., 2017), the state-
of-the-art machine learning model relying entirely on self-attention to
compute representations of its input and output sequences, without
using RNNs or convolutions (which makes Transformers faster). By
attending over each position in a sequence, Transformers can learn
long-range dependencies, thus overcoming the known limitation of
recurrent networks (Hochreiter, Bengio, Frasconi, Schmidhuber, et al.,
2001).

The initial layers of APT are followed by a Transformer block, which
in its turn consists of two Transformer layers. Each Transformer layer,
as shown in Fig. 5 includes a four-headed attention sublayer, and a
fully connected feed-forward sublayer, each followed by a residual
connection. Following previous works (Klein, Kim, Deng, Senellart, &
Rush, 2017; Vaswani et al., 2018), APT uses pre-normalization where
layer normalization precedes a Transformer layer.

The model includes three Transformer blocks: a self-attention block
in the encoder, a self-attention block in the decoder and a cross-
attention block in the decoder (Fig. 4). Correspondingly, attention
layers of these blocks take different inputs:

1. In a self-attention Transformer block in the encoder, encoder
inputs (i. e. windows of events and process variables) serve as
inputs to the self-attention layer — Fig. 6(a).

2. In a self-attention Transformer block in the decoder, decoder
inputs (i. e. the auxiliary beginning-of-sequence token (<bos>)
followed by the previously generated output sequence desig-
nating the alarm) serve as inputs to the self-attention layer.

3. In a cross-attention Transformer block in the decoder, decoder
inputs along with the encoder outputs serve as inputs to the
cross-attention layer — Fig. 6(b).

A single attention layer applies a scaled dot product operation to the
inputs as shown in Figs. 6(a) and 6(b), followed by a linear projection.
In the final decoder layer, the outputs of the cross-attention Trans-
former block are passed through a linear layer, followed by a softmax,
5 
Fig. 5. Transformer block.

and are finally mapped to the output symbols. At inference time, for
each sample, the prediction is generated sequentially, predicting one
output token at a time: while the encoder output representing events
and process variables remains fixed, the decoder output sequence rep-
resenting the alarm and its tag is extended through a newly generated
token at each step, and this extended sequence is fed into the decoder
self-attention Transformer block to generate the next token until the
predefined sequence length is reached. A full pass through the model
is described in detail in Algs. 1 and 2.

3.4. Multimodal encoder

To combine the input modalities (events and process variables),
the encoder can incorporate one of four various modality fusion types,
namely, the state-of-the-art early and late fusion, as well as the novel
‘skip’ and hybrid fusion. The traditional early and late fusion as well
as the novel ‘skip’ fusion are implemented as baselines whereas the
proposed APT model incorporates the novel hybrid fusion. The different
fusion types are implemented as follows:

1. In early fusion, the transformed inputs from both modalities
are concatenated and passed through a single Transformer block
(Fig. 7(a)).

2. In late fusion, signal data and events are passed through separate
Transformer blocks and concatenated after (Fig. 7(b)).

3. ‘Skip’ fusion implies a simple concatenation of the transformed
inputs from both modalities, the result of which is passed to the
decoder directly, without self-attention, like a residual connec-
tion (Fig. 7(c)).

4. Hybrid fusion is a combination of the early and late fusion:
on the one hand, signal data and events are concatenated and
passed through a single Transformer block, on the other, the
same inputs are passed through separate Transformer blocks and
concatenated after. Then, the outputs of both the early-fused and
the late-fused blocks are concatenated and passed to the decoder
(Fig. 7(d)).

Whereas either early or late fusion may achieve higher accuracy de-
pending on the dataset, the hybrid fusion has the potential to combine
the advantages of both early and late fusion.

A forward pass through the encoder with hybrid fusion is captured
in Alg. 1.

3.5. Alarm decoder

In addition to the binary prediction of whether an alarm would
occur within the given horizon, the model also predicts its tag, i.
e. the specific component where the alarm would fire. Tags are en-
coded according to KKS, the identification standard for power stations
(Essen, 2021), as an alphanumeric string designating the hierarchy of
a component’s location in the plant: the plant, function, equipment
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Fig. 6. Attention layers of the encoder and decoder. Encoder self-attention computes a representation of the input sequence by relating different positions within the sequence.
Decoder attention layer is similar to that of the encoder, but with decoder inputs ‘attending’ over the encoder outputs.
Fig. 7. Fusion types: the state-of-the-art early and late fusion and the novel skip and hybrid fusion (used in APT).
and component. To enable the model to implicitly learn this structure,
the prediction is made sequentially. The target sequence begins with a
binary identifier Alarm/No_alarms, followed by the token No_tag
in case of No_alarms, else by the alphanumeric tag representation
(e.g., X0HNA70FQ013XH52). Based on the domain knowledge about
the structure of tag labels, we propose to encode them at one of
three levels:

1. Entire tags: As a baseline option, each tag is encoded as a
single token (e.g., Alarm X0HNA70FQ013XH52). In this case,
the sequence length is minimal (2 without <bos> tokens), but
the number of classes is maximal (108 or 200 in our datasets).
On the one hand, small sequence length is beneficial in that
the decoder would be less prone to errors at test time that
could be caused by potentially erroneous outputs in the already
predicted part of the sequence. On the other, it is hard to capture
the patterns for a high number of classes given their highly
imbalanced distribution.

2. Characters: As an opposite approach, the tags are split into
characters, each of them being treated as a separate token (e.g.,
Alarm X 0 H N A 7 0 F Q 0 1 3 X H 5 2). This permits to
reduce the number of classes to be predicted at each time step to
a minimum (43), however, the sequence length is maximal with
this option (tag length for alarms equals 16 characters). This can
help the model learn the character-level n-gram structure of tags
correlated with input windows. At the same time, this can result
in prediction of strings of characters which are likely to co-occur
but do not constitute a valid tag label.
6 
3. Morphemes: Finally, the tags are split into four parts corre-
sponding to the plant, function, equipment and component (e.g.,
Alarm X0 HNA70 FQ013 XH52). The motivation for this is
that it could be easier for the model to capture correlations at
different hierarchical levels rather than tags as a whole, given
the limited amount of data and its unbalanced distribution. At
the same time, this allows to reduce the probability of generating
invalid tags. The number of classes in this case is slightly lower
than that of the entire tags (103 or 166 for the given datasets),
and the sequences remain reasonably short (5).

Overall, these three options represent a trade-off between the num-
ber of classes and the length of the sequence to be predicted. The
decoder generates its prediction for each subsequent token based on
the hidden representation produced by the multimodal encoder and the
previously generated tokens, beginning with the auxiliary beginning-
of-sequence token (<bos>). Given that, unlike with natural language
generation, where the outputs need to be not only semantically plausi-
ble, but also stylistically varied, in case of alarm prediction the highest
priority is fidelity to ground truth, tokens are generated greedily, at
each step selecting the one with highest probability.

A forward pass through the decoder is described in Alg. 2.

3.6. Training

During training, for each window of events and signals, the model
iteratively outputs a sequence of tokens representing an alarm predic-
tion. Given the ground truth labels, cross-entropy loss is calculated for
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Algorithm 1 Encoder Pass

Input: 𝑋𝑒, 𝑋̂𝑎 ∈ 𝑉 *, sequence of token IDs of input events; 𝑋𝑠 ∈ 𝑅*,
input sequence of signals
Output: 𝑒𝑛𝑐, encoding of the input sequences of events and alarms
Hyperparameters: 𝑙𝑒, 𝑙𝑠, 𝑑𝑒, 𝑑𝑓 , 𝑛𝑒, 𝑛𝑠 ∈ 𝑁 , lengths of input sequences
of event tokens and signals; embedding depth and depth of the
feed-forward layers; number of encoder layers and signals
Parameters:
𝑊 𝑒

𝑒 ∈ 𝑅𝑑𝑒×|𝑉 |, 𝑊 𝑒
𝑝𝑒 ∈ 𝑅𝑑𝑒×𝑙𝑒 ; 𝑊 𝑠

𝑒 ∈ 𝑅𝑑𝑒×𝑛𝑠 , 𝑊 𝑠
𝑝𝑒 ∈ 𝑅𝑑𝑒×𝑙𝑒 , embedding

and positional encoding matrices for events and signals
For 𝑙 ∈ [𝑛𝑒]: 𝑊 𝑠𝐴𝑡𝐸

𝑙 , 𝑊 𝑠𝐴𝑡𝑆
𝑙 , 𝑊 𝑠𝐴𝑡𝐸 𝑆

𝑙 ∈ 𝑅𝑑𝑒×𝑑𝑒 ,
𝑊 𝑓 𝑓 𝐼 𝐸

𝑙 , 𝑊 𝑓 𝑓 𝐼 𝑆
𝑙 , 𝑊 𝑓 𝑓 𝐼 𝐸 𝑆

𝑙 ∈ 𝑅𝑑𝑓×𝑑𝑒 , 𝑊 𝑓 𝑓 𝑂 𝐸
𝑙 , 𝑊 𝑓 𝑓 𝑂 𝑆

𝑙 , 𝑊 𝑓 𝑓 𝑂 𝐸 𝑆
𝑙 ∈

𝑅𝑑𝑒×𝑑𝑓 , parameters of encoder self-attention (sAt) and inner (ffI)
and outer (ffO) feed-forward layers for individual (E, S) and fused
(ES) events and signals

function attn(𝑄, 𝐾 , 𝑉 , 𝑊 )
[𝑄, 𝐾 , 𝑉 ] ← [𝑄, 𝐾 , 𝑉 ] ×𝑊
return softmax(𝑄𝐾𝑇

√

𝑑𝑒
)𝑉

end function

Encoding:
𝑒𝑛𝑐𝑒 ← 𝑊 𝑒

𝑒 𝑋𝑒 +𝑊 𝑒
𝑝𝑒𝑋𝑒

𝑒𝑛𝑐𝑠 ← 𝑊 𝑠
𝑒 𝑋𝑠 +𝑊 𝑠

𝑝𝑒𝑋𝑒
𝑒𝑛𝑐𝑒𝑠 ← [𝑊 𝑒

𝑒 𝑋𝑒 +𝑊 𝑒
𝑝𝑒𝑋𝑒, 𝑊 𝑠

𝑒 𝑋𝑠 +𝑊 𝑠
𝑝𝑒𝑋𝑒]

for 𝑙 ∈ [𝑛𝑒] do
𝑒𝑛𝑐𝑒 ← attn(𝑒𝑛𝑐𝑒, 𝑒𝑛𝑐𝑒, 𝑒𝑛𝑐𝑒, 𝑊 𝑠𝐴𝑡𝐸

𝑙 )
𝑒𝑛𝑐𝑒 ← 𝑒𝑛𝑐𝑒 +𝑊 𝑓 𝑓 𝐸 𝑆

𝑙 max(𝑊 𝑓 𝑓 𝐼 𝐸
𝑙 norm(𝑒𝑛𝑐𝑒))

𝑒𝑛𝑐𝑠 ← attn(𝑒𝑛𝑐𝑠, 𝑒𝑛𝑐𝑠, 𝑒𝑛𝑐𝑠, 𝑊 𝑠𝐴𝑡𝑆
𝑙 )

𝑒𝑛𝑐𝑠 ← 𝑒𝑛𝑐𝑠 +𝑊 𝑓 𝑓 𝑂 𝑆
𝑙 max(𝑊 𝑓 𝑓 𝐼 𝑆

𝑙 norm(𝑒𝑛𝑐𝑠))
𝑒𝑛𝑐𝑒𝑠 ← attn(𝑒𝑛𝑐𝑒𝑠, 𝑒𝑛𝑐𝑒𝑠, 𝑒𝑛𝑐𝑒𝑠, 𝑊 𝑠𝐴𝑡𝐸 𝑆

𝑙 )
𝑒𝑛𝑐𝑒𝑠 ← 𝑒𝑛𝑐𝑒𝑠 +𝑊 𝑓 𝑓 𝑂 𝐸 𝑆

𝑙 max(𝑊 𝑓 𝑓 𝐼 𝐸 𝑆
𝑙 norm(𝑒𝑛𝑐𝑒𝑠))

end for
return [𝑒𝑛𝑐𝑒, 𝑒𝑛𝑐𝑠, 𝑒𝑛𝑐𝑒𝑠]

Algorithm 2 Decoder Pass
Input: 𝑒𝑛𝑐, encoding of the input sequences of events and alarms,
𝑋̂𝑎 ∈ 𝑉 *, sequence of alarms predicted until step 𝑡
Output: 𝑃 ∈ (1, 2)|𝑉 |×𝑙𝑎 , probabilities of alarm tokens given the input
and alarms predicted until timestamp 𝑡
Hyperparameters: 𝑙𝑎, 𝑑𝑒, 𝑑𝑓 , 𝑛𝑑 ∈ 𝑁 , lengths of input sequences of
event tokens and signals, and output token sequences for an alarm;
embedding depth and depth of the feed-forward layers; number of
encoder and decoder layers
Parameters:
𝑊 𝑎

𝑒 ∈ 𝑅𝑑𝑒×|𝑉 |, 𝑊 𝑎
𝑝𝑒 ∈ 𝑅𝑑𝑒×𝑙𝑒 , embedding and positional encoding

matrices for alarm tokens
For 𝑙 ∈ [𝑛𝑑 ]: 𝑊 𝑠𝐴𝑡

𝑙 ∈ 𝑅×, 𝑊 𝑐 𝐴𝑡
𝑙 ∈ 𝑅×, 𝑊 𝑓 𝑓 𝐼

𝑙 ∈ 𝑅𝑑𝑓×𝑑𝑒 , 𝑊 𝑓 𝑓 𝑂
𝑙 ∈

𝑅𝑑𝑒×𝑑𝑓 , parameters of the decoder self- (sAt) and cross-attention
(cAt), and the inner (ffI) and outer (ffO) feed-forward layers

Decoding:
for 𝑡 ∈ 𝑙𝑎 do

𝑑 𝑒𝑐𝑡 ← 𝑊 𝑎
𝑒 [∶ 𝑋̂𝑎[𝑡]]𝑋̂𝑎 +𝑊 𝑎

𝑝𝑒[∶ 𝑡]𝑋̂𝑎
end for
for 𝑙 ∈ [𝑛𝑑 ] do

𝑑 𝑒𝑐 ← attn(𝑑 𝑒𝑐 , 𝑑 𝑒𝑐 , 𝑑 𝑒𝑐 , 𝑊 𝑠𝐴𝑡
𝑙 )

𝑒𝑛𝑐𝑠 ← attn(𝑑 𝑒𝑐 , 𝑒𝑛𝑐 , 𝑒𝑛𝑐 , 𝑊 𝑐 𝐴𝑡
𝑙 )

𝑑 𝑒𝑐 ← 𝑑 𝑒𝑐 +𝑊 𝑓 𝑓 𝑂
𝑙 max(𝑊 𝑓 𝑓 𝐼

𝑙 norm(𝑑 𝑒𝑐))
end for
return softmax(𝑊 𝑎𝑇 𝑑 𝑒𝑐)
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Algorithm 3 Training Algorithm
Input: 𝑚𝑜𝑑 𝑒𝑙, the encoder-decoder Transformer model to be trained,
𝑋𝑒, 𝑋𝑎 ∈ 𝑉 *, sequences of token IDs of input events and ground
truth alarm tokens; 𝑋𝑡

𝑠 ∈ 𝑅*, input sequences of signals; 𝐿, the loss
function; 𝑠𝑐, stopping criteria

Training:
Randomly initialize the weights of the 𝑚𝑜𝑑 𝑒𝑙
while not 𝑠𝑐 do

𝑙 𝑜𝑠𝑠 ← 𝐿(𝑋𝑎, 𝑚𝑜𝑑 𝑒𝑙(𝑋𝑒, 𝑋𝑠))
Calculate gradients of 𝑚𝑜𝑑 𝑒𝑙 weights w. r. t 𝑙 𝑜𝑠𝑠 and update the

weights
end while

the predictions. Then, in a backpropagation step, the derivative of the
oss function is calculated with respect to the model layers and the
eights are updated. The process is repeated over several epochs until

onvergence. An outline of the procedure can be found in Alg. 3. The
xact training parameters are provided in Section 4.3.

4. Experimental evaluation

For validation of APT, its performance is compared on the alarm
orecasting task against unimodal Transformers and Transformers with
raditional fusion techniques, which are state-of-the-art in academic
esearch. In addition, a late-fusion LSTM-based model (which is state-
f-the-art in the industry) has been built and fine-tuned to use as a
aseline. Experiments on alarm forecasting were performed using two
eal datasets and supplemented with an experiment on the operation
orecasting task on a simulated dataset. In addition, the effects of
ncoding alarms at various levels of granularity are explored.

4.1. Datasets

We use two proprietary real-world industrial datasets from two
aste incineration plants and one simulated dataset which is used

to predict upcoming operations in a chemical batch process to vali-
ate APT.

4.1.1. Waste incineration plants datasets
Municipal solid waste incineration is a traditional method of urban

waste disposal and simultaneously power generation: the heat released
from the incineration of the municipal solid wastes can be used as
he input energy to thermal power plants (Yazdani, Salimipour, &

Moghaddam, 2020). Fig. 8 shows an example of a waste incineration
plant. Waste is burned on a moving grate in the combustion chamber
using flue gas and pre-heated air and the resulting steam is used
within a cogeneration system to produce energy and heat. The electric
energy is produced by a turbine connected to a generator (Moya, Aldás,
López, & Kaparaju, 2017; Pavlas, Touš, Klimek, & Bébar, 2011; Xia,
Shan, Chen, Du, Huang, & Bai, 2020). Waste-to-Energy technologies
such as waste incineration reduce the environmental impact of waste
management and at the same time decrease the dependency on fossil
fuels (Psomopoulos, Bourka, & Themelis, 2009).

Municipal solid waste consists of multiple heterogeneous fractions
ith very different physical and chemical properties, and, hence, dif-

ferent combustion and transport behaviors, which makes the waste
ncineration power generation technology unstable and introduces a lot
f uncertainties of the measurement (Wissing, Wirtz, & Scherer, 2017;

Ye, Shi, Shi, Zhang, & Zhang, 2021). Together with the high complexity
of the system as a whole, this makes the process relatively unstable
and generates a fair number of alarms. Early alarm prediction can give
the operator more time to react and introduce corrective actions to
eliminate possible failures, downtime and negative impact on human
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Fig. 8. An example of a waste incineration plant scheme (courtesy of Doosan Lentjes GmbH).
safety and the environment. We propose to use historic data to forecast
alarms in a data-driven fashion.

To validate APT on the task of early alarm prediction based on
the combination of recent events and signal data, real data from two
incineration plants is used, recorded over 6 months. For reasons ex-
plained above, the data is characterized by a high degree of noise due
to the inherent randomness in the process. In both datasets, the signal
data includes 31 continuous process variables selected by a domain
expert and resampled at a frequency of 30 seconds (such as flow rates
and temperatures of primary air, natural gas and flue gas, amount of
incinerated waste, or feed water temperatures and pressures). The event
log consists of automatically generated entries indicating state changes
throughout the plant, covering different functional areas. These entries
are composed of various attributes such as timestamp, tag (a code
specifying the component), status, event type, priority, message, etc.
Overall, there are 8284205 events logged over the given period in one
dataset and 9193762 in the other.

In practice, after an alarm is fired, the changes causing it cascade
further and trigger other alarms, potentially leading to alarm floods
(IEC 62682 Management of Alarm Systems for the Process Industries,
2014). In addition, unless properly handled, an alarm can deteriorate
into higher severity if the next critical threshold is crossed. For this
reason, for the sake of this task, only the first alarm is predicted, since
otherwise the operator would already be aware of the anomalous sit-
uation, even though predicting subsequent alarms could be easier due
to the alarms already recorded in the log as well as a more prominent
footprint of the anomaly in the signal data. Therefore, the model is
trained on time windows preceding alarms such that there are no other
alarms in the same functional area 20 min before, balanced with an
equal number of time windows not followed by alarms. Specifically,
for every sample, a window is taken starting 20 min before an alarm
and ending within a forecasting horizon of 5 min before the alarm.

Overall, there are 10,714 samples (half of them positive, half alarm-
free) in dataset A, which is randomly split into train, dev and test sets
of 8572, 1071 and 1071 samples, respectively (0.80/0.10/0.10). There
are 102 different alarm types, 98 of which are seen at least once in the
train set. In dataset B, there are 33,534 samples, randomly split into
train, dev and test sets of 26828, 3353, 3355 samples, respectively, with
194 different alarm types, 188 of which are at least once seen in the
train set. With this, the datasets are balanced w. r. t. binary prediction
and highly unbalanced w. r. t. multiclass prediction, with half of the
samples labeled as having No_Tag and the rest being distributed as
seen in Figs. 9(a) and 9(b). To ensure fair comparison of different
model architectures we therefore ensure that the samples are split into
train, dev and test sets in a balanced way and fix the split across all
experiments.
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Initially, various data augmentation techniques have also been ex-
plored, such as adding noise to signal data as well as oversampling
events based on temporal or topological proximity to the alarm or in
a random fashion, yet these did not yield any significant advantage.
Given that this work is focused on comparing multimodal learning
techniques, for the final experiments, the data was used as is, without
augmentation.

Depending on the decoding option (characters, ‘morphemes’, or
entire tags — see Section 3.5), at each step the model has to choose
one of 43, 103, or 108 classes, respectively, in dataset A and one of 43,
166, or 200 classes in dataset B (including auxiliary tokens like Alarm
or No_alarms.).

To sum up, both datasets pose several challenges:

1. The datasets are relatively small, considering the number of
classes and the number of samples per class, as well as the
complexity of the task;

2. The distribution of classes is highly unbalanced, with the vast
majority of classes represented by very few samples;

3. The input events are very sparse: with data coming from the
entire plant, events are spread across numerous plant functions,
equipment and components;

4. The modalities cannot be directly aligned;
5. The data comes from real plants, characterized by a high degree

of randomness in the process, and contains a lot of noise;
6. There are a lot of gaps with individual process variables missing.

Moreover, a lot of event data is lost due to trimming;
7. Events are logged across the plants and domain expertise would

be required to identify which events could be the cause of
specific alarms. It is also likely that relevant events get trimmed
and do not appear in the input;

8. Early prediction of alarms means that the underlying changes
causing the alarm might not have yet manifested themselves in
the data;

9. The available process variables are not linked to alarm tags.
The task could be easier if all signals corresponding to different
alarm tags could be used: in that case, given enough data, the
model could learn the thresholds. However, a mapping from
alarm tags to appropriate process variables is unavailable, and
only 31 signals are used to predict 102 or 194 alarm types.

4.1.2. Simulated dataset
In addition to real datasets, our approach is validated on a more

tractable task of forecasting operations in a chemical batch process
using a simulated dataset (Tan, 2022). Batch production processes
consist of cyclic sequences of operations like heating, cooling, chemical
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Fig. 9. Alarm type distribution. Alarm types in both datasets are highly unbalanced with ca. 20% of the alarm types accounting for 90% of the samples.
reactions, or stirring. The specific instances of such operations can vary
considerably even for the same product (Just, Khaydarov, Klöpper,
Bähner, & Urbas, 2022), e.g. due to variation in the raw material. A
reliable prediction when such operation will end are valuable inputs
for production, logistics and personnel planning. The dataset covers
the simulated equivalent of more than 2 months of a batch production
process and contains 4268 events of 18 classes designating the start
of a new operation (such as filling, processing, draining and cleaning)
and signal data including 5 continuous process variables resampled at
a frequency of 15 seconds (vessel filling levels, motor rotation speed,
cooling water flow rate, as well as steam flow).

The model is trained on time windows preceding each new opera-
tion starting 36 min before it begins and ending within a forecasting
horizon of 6 min. These windows are balanced with an equal number
of time windows not followed by new operations within the forecasting
horizon. The task solved here is to first make a binary prediction of
whether a new operation is going to begin after the forecasting horizon
and, if yes, which operation it would be.

Overall, the simulated dataset contains 5496 samples, which are
randomly split into train, dev and test sets of 4398, 549 and 549 sam-
ples, respectively (0.80/0.10/0.10). The events in this dataset belong to
25 classes (including auxiliary tokens) and refer to discrete operations
and not hierarchical tag IDs, therefore they are not split into characters
or ‘morphemes’ and each is treated as a separate class (cf. entire tag in
the real datasets).

4.2. Baseline models

As a multimodal Transformer-based model with hybrid fusion,
APT is compared against several baselines: a multimodal LSTM model
(which is state-of-the-art in the industry), as well as unimodal Trans-
formers and Transformers with traditional fusion techniques, which
are state-of-the-art in academic research, yet have not been applied to
solve industrial tasks before. Specifically, the following baseline models
are used:

1. A multimodal LSTM-based model, in which both input modali-
ties are passed through LSTM encoders separately and concate-
nated into a joint hidden representation, which is further passed
to the decoder.

2. A Transformer-based model relying solely on signal data as
input.

3. A Transformer-based model using only events.
4. Three Multimodal Transformer-based models with ‘skip’, early

and late fusion, respectively.

For more details on different fusion types, we refer the reader to
Section 3.4.
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4.3. Training parameters and scoring

The models are trained using Adam optimizer (Kingma & Ba, 2014)
with 𝛽1 = 0.9, 𝛽2 = 0.99 and a learning rate of 1.0−3. The dropout rate is
0.3. The batch size is 128. The model is trained using a cross-entropy
loss averaged over all tokens (excluding padding), which, depending on
alarm encoding, can be represented by a complete alarm tag, its parts
(‘morphemes’) or individual characters.

Due to the highly unbalanced distribution of alarm classes, the main
evaluation metric used is F1 score, computed separately for binary and
multiclass predictions. To calculate F1 score for binary predictions, only
the first token of each sample is considered (Alarm/No_alarms).
For multiclass predictions, the subsequent tokens of each sample are
concatenated to bring them back to the initial form in case they were
encoded as characters or ‘morphemes’. The F1 score is calculated on
these concatenated tokens (e.g., X0HNA70FQ013XH52).

In Table 1, one can see examples of correct and incorrect predictions
across different alarm encoding methods. The rows marked as ‘True’
show the ground truth, the rows marked as ‘Pred’ contain predictions
with differences highlighted in accordance with the alarm encoding
method: during training, a predicted token that differs from the truth
is considered wrong, regardless of the Levenstein distance between the
true and predicted alarm tag on character level. At test time, tokens
constituting one alarm tag are concatenated, and even if one of them is
wrong, the whole tag is considered as incorrect for evaluation purposes.

Since the multiclass F1 is strict and ignores partial matches in alarm
tag predictions, the evaluation also includes the BLEU score (Papineni,
Roukos, Ward, & Zhu, 2002) to compare representation capacity of APT
against the baseline models. The BLEU score is a precision-oriented
metric traditionally used for assessing natural language generation
tasks. The BLEU score essentially calculates the proportion of words
in a generated sentence which are also found in a reference sentence.
However, in this work the score is only applicable for comparison
of fusion methods but not different alarm encodings: BLEU is highly
sensitive to sentence length, therefore it is not comparable at different
levels of granularity.

4.4. Results and discussion

The results for real datasets are summarized in Tables 2 (with alarms
encoded as whole tags), 3 (with alarms encoded as ‘morphemes’), and
4 (with alarms encoded as characters). The tables present average
F1 scores for binary (Alarm/No_alarms) and multiclass predictions
(specific tags) for two plants across different models.

The results for the simulated dataset are summarized in Table 5
(operations are encoded as whole tags for all of the experiments).
In addition, Fig. 10 shows the confusion matrices for the simulated
dataset.

Overall, the scores are highest for the simulated dataset, which is
small but has much less noise and fewer classes, and lowest for the
real dataset from plant A, which is both highly noisy and relatively
small. This is in line with findings of a comparative study of multimodal
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Table 1
Examples of correct and incorrect predictions for different alarm encoding strategies. During training, with alarms encoded as characters, the model is penalized only for incorrectly
predicted characters; with alarms encoded as ‘morphemes’, the loss considers incorrect ‘morphemes’; with alarms encoded as classes, the whole tag must match to be correct.
During test time, the evaluation is done at the level of whole tags.

Classes ‘Morphemes’ Characters

Correct True Alarm, X0EKG11CP001ZH52 Alarm, X0EKG, 11, CP001, ZH52 Alarm, X, 0, H, N, A, 7, 0, F, Q, 0, 1, 3, X, H, 5, 2
Pred Alarm, X0EKG11CP001ZH52 Alarm, X0EKG, 11, CP001, ZH52 Alarm, X, 0, H, N, A, 7, 0, F, Q, 0, 1, 3, X, H, 5, 2

Incorrect True Alarm, X0SAB05CP001XH52 Alarm, X0SAB, 05, CP001, XH52 Alarm, X, 0, H, N, A, 7, 0, F, Q, 0, 1, 3, X, H, 5, 2
Pred Alarm, X0LBN91CT901XH52 Alarm, X0HNA, 70, FQ013,XH52 Alarm, X, 0, H, B, K, 4,0, F, Q, 9, 0, 1,X, H, 5, 2
Table 2
Effects of fusion on prediction accuracy on the real datasets with labels encoded as classes. For F1 Bin (binary predictions), F1 MC (multiclass)
and BLEU, higher is better. Bold: best, underlined: second best. APT is marked with an asterisk (*) if better than either early or late fusion
and with two (**) if better than both.

Plant A Plant B
Fusion Type F1 Bin F1 MC BLEU F1 Bin F1 MC BLEU

LSTM 58.9 ±2.5 34.3 ±0.9 53.1 ±4.4 84.7 ±1.0 44.1 ±1.4 65.1 ±0.7
Signal Only 58.8 ±0.6 47.7 ±0.1 41.2 ±6.5 85.2 ±0.5 50.9 ±0.1 55.2 ±1.7
Events Only 68.6 ±1.4 47.5 ±0.0 52.1 ±1.9 82.5 ±0.4 50.3 ±0.0 62.2 ±0.6
Skip Fusion 69.8 ±0.7 44.6 ±7.4 51.1 ±2.3 84.0 ±0.3 50.6 ±0.2 62.3 ±1.1
Early Fusion 68.2 ±1.0 44.6 ±7.3 52.5 ±1.1 85.1 ±1.1 51.1 ±0.5 64.3 ±2.2
Late Fusion 69.0 ±0.9 48.2 ±0.2 53.8 ±1.4 84.9 ±1.8 51.0 ±0.4 65.1 ±1.9

APT 69.1 ±1.3** 45.2 ±7.1* 53.1 ±1.1* 86.2 ±1.8** 51.5 ±0.2** 66.1 ±2.8**
Table 3
Effects of fusion on prediction accuracy on the real datasets with labels encoded as ‘morphemes’. For F1 Bin (binary predictions), F1 MC
(multiclass) and BLEU, higher is better. Bold: best, underlined: second best. APT is marked with an asterisk (*) if better than either early or
late fusion and with two (**) if better than both.

Plant A Plant B
Fusion Type F1 Bin F1 MC BLEU F1 Bin F1 MC BLEU

Signal Only 59.1 ±1.5 43.4 ±5.5 33.2 ±0.9 85.5 ±0.5 45.3 ±1.9 39.7 ±0.9
Events Only 68.3 ±1.1 50.7 ±5.0 39.4 ±2.8 82.6 ±0.7 50.4 ±1.4 44.0 ±0.6
Skip Fusion 69.8 ±0.8 48.6 ±4.5 40.4 ±0.9 83.9 ±0.8 50.4 ±0.6 44.1 ±0.9
Early Fusion 68.8 ±0.8 48.1 ±4.8 40.5 ±1.7 86.4 ±1.7 53.6 ±1.1 48.1 ±1.3
Late Fusion 69.8 ±1.1 48.7 ±4.1 40.4 ±1.3 85.7 ±1.7 52.9 ±1.9 47.0 ±2.3

APT 69.1 ±1.9* 50.0 ±1.7** 41.0 ±2.2** 86.9 ±1.4** 54.5 ±1.4** 48.7 ±1.1**
Table 4
Effects of fusion on prediction accuracy on the real datasets with labels encoded as characters. For F1 Bin (binary predictions), F1 MC (multiclass)
and BLEU, higher is better. Bold: best, underlined: second best. APT is marked with an asterisk (*) if better than either early or late fusion
and with two (**) if better than both.

Plant A Plant B
Fusion Type F1 Bin F1 MC BLEU F1 Bin F1 MC BLEU

Signal Only 58.1 ±0.9 41.3 ±8.4 42.9 ±9.8 85.5 ±0.5 45.4 ±2.4 51.0 ±1.3
Events Only 68.5 ±0.5 47.2 ±3.8 49.9 ±5.7 81.9 ±0.8 50.8 ±1.6 55.0 ±1.2
Skip Fusion 69.5 ±0.6 47.7 ±3.6 50.8 ±6.0 83.0 ±1.3 51.3 ±1.1 55.7 ±0.9
Early Fusion 68.4 ±1.2 47.8 ±3.2 49.4 ±3.6 86.4 ±2.1 54.1 ±2.4 60.0 ±2.3
Late Fusion 70.7 ±0.8 50.1 ±3.5 47.2 ±4.4 86.0 ±1.9 54.4 ±2.7 58.2 ±2.6

APT 69.2 ±1.4* 47.9 ±2.7* 51.2 ±0.5** 86.8 ±0.9** 54.2 ±1.3* 60.4 ±1.3**
t

Transformers (Hendricks, Mellor, Schneider, Alayrac, & Nematzadeh,
2021), which showed that the quality of pretraining datasets is more
ignificant than their size.

As can be seen, APT performs either on par with or better than other
usion methods, unimodal Transformers and LSTM for both binary and
ulticlass predictions. The effect is even stronger for the BLEU score,
hich would have been used to evaluate a model’s performance in

he domain of natural language and which is used here as a proxy
or representation learning capacity of the models. In Tables 2, 3,

4 and 5, it can be seen that APT is almost always best (bold) or
econd best (underlined). Additionally, when compared to multimodal

Transformers with traditional early and late fusion, it outperforms
ither one of them (marked with an asterisk) or both (marked with two
sterisks). This suggests that, while, depending on the dataset and the
umber of classes, either early or late fusion may perform better than
he other, in most cases with APT, which relies on the novel hybrid

usion, one gains advantage either over both or at least one. t

10 
Table 5
Effects of fusion on prediction accuracy on the simulated dataset with
labels encoded as classes. For F1 Bin (binary predictions), F1 MC (multiclass)
and BLEU, higher is better. Bold: best, underlined: second best. APT is marked with
an asterisk (*) if better than either early or late fusion and with two (**) if better
han both.

F1 Bin F1 MC BLEU

LSTM 87.6 ±1.1 66.5 ±6.9 78.7 ±2.7
Signal Only 94.4 ±0.2 67.6 ±1.0 78.0 ±1.1
Events Only 89.8 ±0.3 45.9 ±0.4 70.4 ±0.6
Skip Fusion 94.8 ±0.3 68.5 ±1.5 79.2 ±0.4
Early Fusion 94.7 ±0.4 69.0 ±0.8 79.2 ±0.6
Late Fusion 94.5 ±0.1 68.9 ±0.7 79.5 ±1.3

APT 94.8 ±0.1** 69.1 ±1.0** 79.3 ±0.9*

On the other hand, preliminary experiments produced compara-
ively high scores of models with ‘skip’ fusion, which suggests that
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Fig. 10. Confusion matrices for operation predictions with APT on the simulated dataset.
Fig. 11. F1 score distribution per alarm type sorted by alarm type frequency (test set).
residual connections including ‘raw’ inputs that have not been passed
through a Transformer block need to be further investigated.

With regard to alarm tag encoding, one can see a benefit of using
alarms encoded as ‘morphemes’ or characters instead of whole tags.
The binary F1 scores (for the prediction of the presence or absence
of an alarm) are essentially the same across the three settings, which
makes sense because the granular alarm encoding affects only the alarm
tags. BLEU scores are used for the comparison of fusion techniques but
are inapplicable for comparing alarm encodings since the vocabulary
sizes for alarm tags encoded as characters, morphemes or whole words
are different. Multiclass F1 scores however, reflecting how accurately
alarm tags are predicted, show a clear advantage of the granular
encoding, 3 to 5 percentage points for morphemes over the entire
tags. It should also be observed that, although forecasting a specific
alarm tag remains hard, the model easily learns its structure: tag parts
corresponding to plant, function, equipment and component are always
predicted in proper order (see examples in Table 1). This also supports
our intuition that sequential prediction of alarm tags can leverage the
model’s representation learning capacity and yield better results over
simple one-step multiclass classification.

As described above, the task at hand is complex due to multiple
factors such as sparse and noisy input data, a high number of classes
(108 and 200 classes in real datasets — cf. 25 classes in the simulated
dataset) and the highly unbalanced distribution of labels (as illustrated
in Figs. 9(a) and 9(b)). Considering the distribution of average F1
scores sorted by alarm type frequency (see Figs. 11(a) and 11(b)),
the complexity of the task is caused not only by the highly skewed
distribution of labels, but also by that of events and signal data in the
11 
input (see the outline of data limitations in Section 4.1.1). Nonetheless,
the experiments demonstrate competitive performance of our model.

5. Conclusion

We introduced APT, a multimodal Transformer-based model for the
industrial domain, where, to the best of our knowledge, multimodal
Transformers have not yet been used. The Transformer has been cho-
sen as the state-of-the-art architecture allowing to efficiently capture
long-distance dependencies in sequences. We used APT to tackle a
complex real-world task of early prediction of alarms belonging to
over a hundred of classes with a highly unbalanced distribution. APT
predicts, based on the combination of recent events and signal data
as input, whether an alarm is going to be triggered after the given
forecasting horizon and, if yes, it also predicts an alarm type. In a
series of experiments, our model outperformed unimodal baselines and
an LSTM-based multimodal baseline. We proposed a new hybrid fusion
method to combine modalities and compared it to early and late fusion
strategies. The experiments show that the proposed fusion method
achieves comparable or better results. The advantage of using hybrid
fusion is thus that it allows to replace early or late fusion methods and
combine the benefits of both.

In addition, relying on domain knowledge, we introduced several
methods of alarm encoding at different levels of granularity and demon-
strated the benefits of the granular approach whereby alarm tag labels
are predicted sequentially as compared to prediction of the whole tag.

For practical purposes, our approach allows improving the results by
postprocessing model outputs, such as changing the prediction of a tag
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based on more reliable binary outputs and searching the closest valid
ag in case the tag predicted at the level of characters or morphemes
oes not happen to be in the set of valid tags, but this is out of scope

of the present work.
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