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Abstract
We present an empirical evaluation of interaction techniques used
in Augmented Reality (AR) for worker guidance systems. Recent
advancements in AR technology have shown promise in improv-
ing worker assembly efficiency, yet few empirical studies directly
compare the performance and usability of different AR Graphical
User Interfaces (GUI) and Natural User Interfaces (NUI). We com-
pare task completion times and usability between voice commands,
gestures and virtual buttons, across anchored and floating GUI.
Thirty-six participants completed an AR-based worker training
task as part of a 2×3 between-subjects design. Taking into account
the small sample size, our results showed no differences between
GUI and NUI in task completion times or usability scores. Learning
rates were better in anchored interfaces in comparison to floating
ones. We discuss these results in the frame of Mental Models theory
and discuss their limitations, providing insights for optimizing AR
interaction design in industrial training applications.
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1 Introduction and Background Work
Augmented Reality (AR) has gained recognition as a cost-efficient
and flexible training tool, as it reduces reliance on static instruc-
tional materials, offering real-time, interactive guidance [2, 8, 21].
AR superimposes holographic instructions onto the physical workspace
via see-through lenses, allowing workers to interact with digital
overlays. It can be found in different forms such as Head-Mounted
Displays (HMD) and handheld devices (tablets and mobile phones).
Equipped with multiple sensors, it supports different interaction
methods and Natural User Interfaces (NUI), such as gestures and
voice commands [10, 24].

HMD AR-based training is particularly interesting for complex
manual assembly tasks as it offers visualization in context [7]. To
ensure its advantages and effectiveness, user interaction methods
must be adaptive, frictionless, and user-friendly[10, 24]. User-based
studies can shape AR design practices and create universally ac-
cepted standards to align them with user needs and environmental
variables [1, 12]. Moreover, according to [1] addressing ergonomic
issues in AR design minimizes risks of occupational hazards. Yet,
limited research has been done into standardized design guidelines
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and interaction techniques for AR guidance applications, especially
in industrial settings, and different NUI [1].

Mental Models theory highlights the importance of internal rep-
resentations and user expectations in interface design [14]. Users
rely on prior knowledge and experience when interacting with
new systems [6]. Inconsistencies in Graphical User Interface (GUI)
can divert user expectations and hinder usability [3, 22]. Addition-
ally, factors such as memory, attention capacity, and information
placement must be considered to optimize learning [17].

Previous research has shown that different AR NUI can have dif-
ferent learning rates. For example, [16] showed that naive AR users
initially preferred voice commands over gestures, due to problems
with accidental gestures. However, users who are more familiar
with AR hand gestures prefer them. The authors note that both in-
teraction techniques had a learning curve [16]. Additionally, voice
command use in AR is constrained by ambient noise, privacy, and
confidentiality concerns [20]. A combination of different modalities
is sometimes required for optimal operation [1, 15].

The present study provides empirical data on user performance
in an AR-guided assembly task with LEGO-like bricks in an in-
dustrial setting. With an exploratory approach, we compare voice
commands, gestures, and virtual button interactions across two
different GUI, with anchored or floating panels to pinpoint the
most feasible interface for task guidance systems based on user per-
formance metrics. Behavioural measures such as task completion
times, subjective system usability evaluation, and learning rates
were measured. Our results will inform future AR GUI and NUI
design, stepping towards the development of more intuitive and
efficient training systems in industrial settings.

2 Methods
2.1 Participants
Thirty-six participants (12 female, Mage=27.3 years) took part in the
study. They all had normal or corrected-to-normal vision. Partici-
pants had no diagnosis of psychological or neurological disorders
according to self-reports. They all gave their informed written con-
sent before participating. The experiment was approved by the
ethics committee of the Faculty of Social Sciences at the University
of Kaiserslautern, according to the ethical standards of the insti-
tution as well as aligning with the German Research Center for
Artificial Intelligence guideline and in compliance with the 1964
Helsinki Declaration. Additionally, as the recruitment took place
in an academic setting, participants were students, researchers and
employees of educational bodies. None of the participants were ex-
perts in AR experiences, having their experiences varying between
interacting for the first time with AR and merely trying them.

2.2 Apparatus and Materials
The study was conducted using a Microsoft HoloLens 2 (HL2) head-
mounted display (HMD), which provides see-through holographic
lenses with a 42° horizontal field of view (HFoV) and a 29° vertical
field of view (VFoV). The device features a per-eye resolution of
1440x936 and a refresh rate of 60 Hz. An assembly workstation,
measuring 0.83 m in height, was positioned in front of an Industry
4.0 production island where participants assembled the model as
shown in figure 1.

Figure 1: Experimental setup, showing a participant during
the study, the production island, and the laboratory setup.

The AR application was developed using the Unity game engine
2021.3.40f1 [23] and the Mixed Reality Toolkit 3.2.1 [18]. Figma
(2024, February) [11] was utilized for interface prototyping, en-
suring a clean and intuitive design. Blender 4.1 [4] was employed
to create animations, allowing modular integration into Unity for
enhanced flexibility.

Figure 2: Figma prototypes for anchored (Left) and floating
(Right) panels.

2.3 Questionnaires
To assess usability participants completed the System Usability
Scale[5] (SUS): Consists of 10 alternating positive and negative
statements rated on a 5-point Likert scale (1 = strongly disagree, 5
= strongly agree).

2.4 Experimental Design
Participants started the experiment with a set of instructions to
familiarize themselves with the AR system. They then assembled a
miniature truck model, shown in figure 3, using LEGO-like bricks
and 3D-printed parts in 32-steps, divided into two symmetrical
subassemblies (cab and trailer). For each step, they received text-
based assembly instructions, a rotating 3D preview of the required
part and an animated demonstration of the assembly process. After
the preview, animations faded out and a corresponding image was
displayed in the top-right corner of the tutorial panel. The control
panel provided navigation indicators for progressing through steps,
pausing, resuming, and repeating animations. Step times were de-
fined as the time between the end of the preview and the activation
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Figure 3: Assembled truck, placed on an A4 paper for refer-
ence.

of the “next-step” button. Completion times were calculated as the
sum of all step times. The interface also included a progress bar for
completed steps, and a control panel with a help button (see [9] for
interaction design elements). Click sound played upon successful
interaction with the different UI elements as feedback. Following
the assembly, participants completed the SUS questionnaire and
were debriefed about the intention of the experiment. Addition-
ally, they were asked to report any inconveniences, relevant to the
interactions, during the task.

Figure 4: Designs rendered in HoloLens 2, Floating SI de-
sign(Left) and Anchored SI Design(Right).

2.4.1 Analysis. To evaluate time-based performance metrics (com-
pletion times, mean step times, learning rates), and usability ratings,
we conducted a 2×3 between-subjects ANOVA for each metric, with
factors GUI (anchored, floating) and NUI (Virtual buttons, Voice
commands, Gestures). Steps 1, 16, and 32 were excluded from the
analysis, which comprise the first and last steps, as well as the step
after the end of the first assembly unit. Statistical analyses were
performed using JASP (0.19.3).

3 Results
3.1 Completion Times
Results of completion times are shown in Figure 5a. No significant
main effect of GUI (F (1, 30) = 1.06, p = .312, 𝜂2 = .025), NUI (F (2, 30)
= 2.94, p = .068, 𝜂2 = .142) and no significant interaction (F (2, 30) =
2.25, p = .123, 𝜂2 = .109).

3.2 Average Step Time
Results of Average Step Times are shown in Figure 5b. No significant
main effect of GUI (F (1, 30) = 3.95, p = .056, 𝜂2 = .095) nor NUI (F (2,
30) = 0.23, p = .799, 𝜂2 = .011) were found. A significant interaction

(a) Completion times.

(b) Mean step times.

(c) Learning rates.

Figure 5: Experimental results across different interfaces. (a)
Mean step times, (b) Task completion times, and (c) Learning
rates.

between GUI and NUI was observed (F (2, 30) = 3.56, p = .041, 𝜂2
= .171). Post hoc tests for the interaction however revealed no
significant differences (all p Tukey ≥ .076).
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3.3 Learning Rates
Results for learning rates are shown in Figure 5c. A significant main
effect of GUI was found (F (1, 30) = 11.65, p = .002, 𝜂2 = .249), where
learning rates for Anchored GUIs were consistently higher than
Floating ones across all NUI conditions. No significant main effect
of NUI (F (2, 30) = 2.07, p = .144, 𝜂2 = .088) and no interaction (F (2,
30) = 0.52, p = .599, 𝜂2 = .022) were found.

3.4 System Usability Scale (SUS) Score
No significant differences in SUS scores across conditions (p > .05).

4 Discussion
This study investigated the effectiveness of different AR GUI and
NUI in worker guidance systems by analysing their impact on
completion time, learning rates, and usability scores in a man-
ual assembly task. The results showed no significant main effects
or interactions on task completion times or usability scores. All
participants demonstrated positive learning rates, which varied
significantly depending on the GUI. Anchored panels were associ-
ated with higher rates than floating ones, and no effects of NUI or
interaction were observed.

Previous studies comparing AR to traditional worker guidance
systems suggest that prior user experience and interface complex-
ity influence task learning rates [13, 19]. Anchored GUI appears to
leverage users’ familiarity with conventional interfaces, enabling
more intuitive interaction and minimising learning effort. In con-
trast, floating GUImay disrupt users’ establishedmental models and
demand greater cognitive adaptation, reducing learning efficiency.

While anchored GUI demonstrated a learning advantage, the
absence of effects related to NUI may reflect limitations in statistical
power due to the small sample size. Additionally, the task might
have been generally too easy, likely introducing ceiling effects, as
all participants completed it with minimal reliance on in-UI help
functions. These may also have concealed potential differences in
completion times, usability, and interaction effects. Furthermore,
participants reported unintended activation of gesture-based con-
trols, particularly in floating GUI conditions, which may have neg-
atively impacted the performance. Environmental distractions in
the open lab setting, such as ambient noise, may also have affected
the measures, especially those relying on voice commands.

To strengthen the generalisability of these findings, future re-
search should replicate themwith larger samples, and task difficulty
should be increased to resemble manual assembly tasks on the shop
floor. In conclusion, increasing user exposure to AR hardware in
industrial contexts may improve usability, learning outcomes, and
technology adoption, leading to broader adoption of AR-based guid-
ance systems and more effective AR training solutions.
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