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Abstract—In smart manufacturing environments, accurate and
real-time recognition of worker actions is essential for produc-
tivity, safety, and human-machine collaboration. While skeleton
based human activity recognition (HAR) offers robustness to
lighting, viewpoint, and background variations, most existing
approaches rely on centralized datasets, which are impractical
in privacy-sensitive industrial scenarios. This paper presents a
federated learning (FL) framework for pose-based HAR using a
custom skeletal dataset of eight industrially relevant upper-body
gestures, captured from five participants and processed using
a modified FastPose model. Two temporal backbones, an LSTM
and a Transformer encoder, are trained and evaluated under four
paradigms: centralized, local (per-client), FL. with weighted fed-
erated averaging (FedAvg), and federated ensemble learning (Fe-
dEnsemble). On the global test set, the FL Transformer improves
over centralized training by +12.4 % point, with FedEnsemble
delivering a +16.3 % point gain. On an unseen external client, FL
and FedEnsemble exceed centralized accuracy by +52.6 and +58.3
% point, respectively. These results demonstrate that FL not
only preserves privacy but also substantially enhances cross-user
generalization, establishing it as a practical solution for scalable,
privacy-aware HAR in heterogeneous industrial settings.

Index Terms—Federated learning, smart manufacturing, In-
dustry 4.0, skeleton-based human activity recognition, federated
action recognition, federated ensemble learning

I. INTRODUCTION

In smart industrial environments, real-time recognition of
worker actions plays a crucial role in enhancing productivity,
ensuring safety, and enabling intelligent assistance systems.
Skeleton-based action recognition has proved to be a ro-
bust alternative to RGB-based methods due to its invariance
to lighting conditions, viewpoint changes, and background
clutter [1], [2]. Using skeletal keypoints for human activity
recognition (HAR) is well established, reducing input dimen-
sionality and focusing on motion dynamics. Recent models
often extract 2D pose sequences via OpenPose [3], YOLOVS-
Pose [4], FastPose [5], or BlazePose [6], and feed them
into temporal architectures such as long short-term memory
(LSTM) networks and vision transformers (ViTs) [2], [7].
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LSTM networks have shown strong performance in model-
ing temporal dependencies in joint sequences [8], [9], while
transformer-based architectures have gained popularity for
their ability to model long-range interactions without recur-
rence [7]. However, training such models typically assumes
access to large, centralized datasets. In industrial settings, ac-
tion data is often collected from multiple sites or workers, each
with potentially sensitive information. Centralizing such data
not only poses logistical challenges but also raises significant
privacy concerns, especially in safety-critical applications.

Federated learning (FL) addresses these challenges by en-
abling decentralized model training without transferring raw
data [10]. Instead, clients train local models on their private
data and share only model updates with a central aggrega-
tor. This paradigm is particularly suitable for smart worker
assistance systems, where data is inherently distributed and
heterogeneous, and privacy-preserving solutions are crucial for
deployment [11]. Although several studies have explored FL
for action recognition, most rely on simulated environments
and public datasets. For example, Guo et al. [12] intro-
duced FSAR, which combines adaptive topology learning with
knowledge distillation to enhance FL performance on skeleton-
based action recognition. Tu et al. [13] proposed FedFSLAR,
focusing on few-shot federated action recognition using 3D-
CNNs. However, these approaches neither utilize custom
industrial datasets nor simulate realistic client distributions
representative of worker-specific variability in manufacturing
environments.

This work addresses these gaps by introducing a custom
skeleton-based dataset of eight industrially relevant upper-
body gestures, captured from five participants. Pose data is
extracted using a modified FastPose model, and models are
trained using both LSTM and vision transformer architectures
over sliding windows of 20 frames. Each participant’s data
is treated as a distinct client dataset, enabling realistic FL
evaluation under client heterogeneity.
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Fig. 1. Overview of federated learning for skeleton-based human action recognition in smart manufacturing environments.

The key contributions of this paper are as follows:

1) We present a novel federated action recognition use case
using a custom skeletal dataset tailored for smart worker
assistance in industrial settings.

2) We implement and evaluate two temporal models,
LSTM and vision transformers under centralized, client
local training, FL. and FedEnsemble learning paradigms.

3) We assess all models on a unified global test set com-
piled from held-out data of all participants, enabling
a fair evaluation of generalization performance under
client data heterogeneity.

4) We also test all models on an unseen external participant
to evaluate their generalization ability under domain
shift, providing practical insight into deployment fea-
sibility.

Our objective is to develop a federated global model that
generalizes across all participating clients and retains strong
performance on heterogeneous, client-specific data, all while
respecting privacy constraints and realistic industrial deploy-
ment conditions.

II. RELATED WORK

Skeleton-based HAR has emerged as a robust alternative
to RGB-based approaches, offering compact and interpretable
pose representations that are resilient to variations in lighting,
background, and viewpoint [1], [2]. This modality is partic-
ularly valuable in privacy-sensitive domains such as smart
manufacturing, where visual data cannot be easily shared.
HAR pipelines typically begin with pose estimation, extracting
2D or 3D joint coordinates from video frames. Classical
methods like OpenPose [3] introduced part affinity fields for
multi-person keypoint detection, while later models such as
FastPose [5] and BlazePose [6] improved efficiency for edge
deployment. Recent solutions like YOLOvV8-Pose [4] unify
object detection and pose estimation for real-time applications.

A. Skeleton-Based Action Recognition

Earlier approaches to skeleton-based HAR relied on hand-
crafted features such as joint angles and motion trajecto-
ries [2], but these lacked robustness across subjects and view-
points. Deep learning methods, particularly recurrent neural
networks (RNNs) and LSTM models, advanced the field by
modeling temporal dynamics directly from raw keypoints. Du
et al. [8] proposed a hierarchical RNN to learn part-wise
motion patterns, while Liu et al. [9] introduced GCA-LSTM
with attention mechanisms to emphasize salient joints. Graph
convolutional networks (GCNs) further improved performance
by modeling the human skeleton as a spatio-temporal graph,
enabling structured reasoning across joints. Although not the
focus of this work, GCNs remain a popular alternative to
sequential models.

Recently, transformer-based models have gained traction
due to their ability to capture long-range dependencies in a
parallelized manner. Plizzari et al. [7] introduced a spatio-
temporal transformer for joint and motion encoding, Aksan et
al. [14] developed SLRFormer for sign language recognition,
and Mehmood et al. [15] proposed ST-RTR to model rela-
tive joint movements. These architectures show promise for
industrial HAR due to their scalability and expressive power.

B. Federated Learning for Action Recognition

FL enables collaborative model training across distributed
data silos without sharing raw data, addressing privacy and
compliance concerns in industrial settings [10]. FL has seen
success in image classification and object detection for quality
inspection [16]-[18], as well as in language modeling [19],
[20]. However, its application to HAR, particularly using
skeletal data, remains underexplored.

Most FL-HAR studies focus on sensor or RGB modali-
ties [21], overlooking skeletal representations that offer both



compactness and privacy advantages [2]. Furthermore, many
rely on synthetic client splits from public datasets without
considering real-world factors such as user heterogeneity,
domain shifts, or unseen subjects. Guo et al. [12] proposed
FSAR, an early FL framework for skeleton-based HAR that
leverages adaptive graph topology and multi-grain knowledge
distillation, but did not assess generalization to new users. Tu
et al. [13] introduced FedFSLAR for few-shot video-based
HAR using 3D CNNs on RGB inputs, without exploiting
the advantages of skeletal data. FedCLAR [21] explored
personalization via clustering for sensor data, yet relied heavily
on public datasets such as NTU RGB+D and OPPORTUNITY,
limiting practical transferability.

Existing FL-HAR approaches commonly assume idealized
client distributions, lack evaluation under external test condi-
tions, and rarely incorporate modern temporal backbones like
transformers. To address these gaps, we develop a custom
dataset simulating worker actions in smart manufacturing.
Pose keypoints are extracted using FastPose, and clients are
partitioned by subject to model realistic non-IID distribu-
tions. We evaluate both LSTM and transformer-based models
under centralized, local, and federated settings, and assess
generalization on an unseen user. This work contributes a
realistic experimental framework and benchmark for federated
skeleton-based HAR in industrial environments, highlighting
the interaction between model architecture, data distribution,
and deployment robustness.

III. METHODOLOGY

The objective of this work is to evaluate FL-HAR using
a custom dataset collected in an industrial context. Each
participant is treated as an independent client in the FL
setup, enabling training of a global model without sharing
raw data. The performance of this global model is compared
against locally trained per-client models and a centralized
model trained on pooled data. This comparison demonstrates
the benefits of collaborative learning over isolated training
and serves as a motivator for potential industrial partners.
Additionally, we assess model robustness using data from an
external participant not involved in training.

A. Dataset and Preprocessing

We collected a custom pose-based HAR dataset comprising
eight upper-body gestures: down, grab, left, nothing, right,
stop, ungrab, and up (as shown in Fig.2) . Recordings were
performed with five volunteer participants, each acting as a
separate client in the FL setup. RGB-D video data was pro-
cessed using a modified FastPose [5] pose estimation model,
selected for its open-source availability, compact VGG-based
architecture, and real-time CPU performance. FastPose is
approximately 46% smaller and 47% faster than OpenPose [3],
exceeding 50 FPS on a 2.7 GHz Core i5 CPU, and sustaining
29-30 FPS in our deployment environment.

In the original COCO-trained pipeline, 17 keypoints are
estimated, including separate left/right eyes and ears [22]. We
simplify this by merging the four facial landmarks into a single
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Fig. 2. Representative frames from the eight upper-body gestures with
FastPose skeletal keypoint overlay. Green skeletal points show the 13-joint
representation used for action recognition.
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Fig. 3. Simplified 13-joint skeletal representation used for Action Recognition

rightHip

head point, yielding 13 joints in total (nose, head, shoulders,
elbows, wrists, hips, knees, ankles) as shown in Fig. 3. This
reduces input dimensionality, mitigates noise from occluded
keypoints, and improves downstream processing efficiency
without sacrificing recognition accuracy. Each frame is repre-
sented as a 26-dimensional vector (13 joints x 2 coordinates).

The dataset contains 29,963 annotated frames across all
gestures and clients. For each client, frames are stratified by
gesture and split into training (88 %), validation (6 %), and test
(6 %) subsets. Temporal dynamics are captured using a fixed-
length sliding window of 20 consecutive frames, producing
samples of shape 26 x 20. Each sample inherits the action label
and the client ID. On average, each client has ~6,000 samples,
though counts vary with gesture frequency and recording
duration. This setup produces a realistic non-IID distribution,
with differences in gesture proportions and motion styles
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Fig. 4. Action class distribution across the five clients showing data hetero-
geneity.

between clients and can be referred in Fig.4. Both per-client
datasets (for FL and local training) and a pooled dataset (for
centralized training) are prepared. A summary of the workflow
is shown in Fig. 5. The final processed dataset of each client
are also uploaded to hugging face for public access'.

B. Model Architectures and Training

We designed two simple and small temporal sequence
models for classifying the 20-frame pose windows: a recurrent
LSTM and a Transformer encoder. The LSTM consists of two
stacked recurrent layers (hidden size 128) followed by a fully
connected softmax output layer. The Transformer comprises
four self-attention encoder layers (model dimension 128, four
heads), operating on the sequence of pose vectors after po-
sitional encoding. Both models are implemented in PyTorch
Lightning, trained with the Adam optimizer (learning rate
2% 1074, batch size 64), and use standard weight initialization.
No pre-training or data augmentation beyond pose estimation
was applied. Models are trained on CPU-only hardware to
simulate edge deployment constraints, with early stopping
(patience 15 epochs) and check pointing enabled. The idea
behind this was to have more emphasis on the FL part than
the model architecture it self.

C. Federated Learning Setup

In the FL setup, each participant corresponds to one client,
resulting in a five-client configuration. At each communication
round ¢, clients train locally for a fixed number of epochs and
send updated model weights wgt) to the server. The server
aggregates these using the weighted Federated Averaging
(FedAvg) rule:

K
(t+1) L0

w ) = ; N W (1)
where n; is the number of samples at client ¢ and
N = Zfil n;. This ensures that clients with more data have
proportionally greater influence on the global update. Both the
FL setup and the FedEnsemble models use this aggregation
rule, differing only in the initial data partitioning across clients.

Thttps://huggingface.co/datasets/WSKL/FederatedHAR/tree/main

All the 5 clients participate in each communication round due
to low number of clients.

D. Experimental Setup

To evaluate the impact of different training strategies on
model generalization, we compared four paradigms: FL, local
(per-client) training, centralized learning, and FedEnsemble
learning using a unified global test set. The global test set
was compiled by combining the held-out test data from all
five clients, ensuring identical evaluation conditions across
paradigms. Each setup was designed to maintain a comparable
computational budget, where the total number of training
epochs is calculated as:

Total rounds = Local epochs x Communication rounds.

This ensured that differences in performance could be at-
tributed solely to the training strategy rather than unequal
training time or parameter tuning.

1) Federated Learning: In the standard FL setup, each of
the five clients trained locally on its own dataset for 25 epochs
per communication round. After each round, the locally up-
dated model weights were sent to the central server, where they
were aggregated using the weighted FedAvg rule from Eq. (1).
This process was repeated for 20 communication rounds,
giving an equivalent of 20 x 25 = 500 total local epochs per
client, matching the training budget of the centralized baseline.
Only model weights and the number of samples per client
were shared; no raw data or class distribution statistics were
exchanged, preserving data privacy. The final global model
obtained after the last communication round was evaluated on
the unified global test set.

2) Local (Per-Client) Training: For the local baseline,
separate LSTM and Transformer models were trained inde-
pendently on each client’s training and validation sets for up
to 500 epochs, using early stopping with a patience of 15
epochs to prevent overfitting as the clients on their own had
much smaller dataset. This produced five distinct models, one
per client without any collaboration or parameter sharing. Each
model was then evaluated on all five client test sets and for
generalizability the models were also tested with the global
test dataset.

3) Centralized Training: In the centralized baseline, the
training data from all five clients was pooled into a single
dataset, removing any client-specific data separation. Both
LSTM and Transformer architectures were trained on this
combined dataset for 500 epochs, ensuring the same total
training budget as in FL. The trained model was then evaluated
on the unified global test set. This scenario represents the
idealized case without privacy constraints, where all training
data is available to a single learning process.

4) Federated Ensemble Learning: The FedEnsemble con-
figuration was inspired by prior ensemble-based FL ap-
proaches [18], [23]. In this setup, the centralized dataset was
uniformly partitioned into five client datasets of equal size,
each containing a mix of data from at least three original
participants. This created an IID distribution across clients
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Fig. 5. Federated action recognition pipeline with five clients. Each client trains locally on segmented pose sequences before model aggregation at the server.

while ensuring identical overall data coverage to the cen-
tralized baseline. Training was performed using the FedAvg
protocol for 20 communication rounds with 25 local epochs
per round, mirroring the FL setup. Since privacy is not a factor
in this configuration, the purpose of this experiment was to
isolate and assess the benefits of FL as an ensemble learning
method, particularly for small datasets as often encountered in
manufacturing.

All experiments used identical model architectures, opti-
mizer configuration, batch sizes, and total training budgets
(500 total rounds) as mentioned in III-B. No data augmentation
was applied beyond the preprocessing provided by the pose
estimation pipeline. All models were trained and evaluated
on CPU-only hardware to simulate deployment in resource-
constrained edge environments.

IV. RESULTS AND DISCUSSION

Global test accuracy of LSTM vs. Transformer models
under different training paradigms is summarized in Table 1.
The results of all algorithms on global test dataset are explain
in more detail in further subsections.

A. Federated Learning

Remarkably, FL. outperformed centralized training despite
never sharing raw data. The federated Transformer attained
69.5% test accuracy (+12.4% over centralized), and the
federated LSTM reached 59.9 % (+9.9 %). We attribute this
boost to a regularization-like effect: aggregating diverse local
updates prevents overfitting to any single client’s bias. By
structuring training as 20 rounds of 25 local epochs (totaling
500 total rounds), FedAvg matched the centralized training
budget while harnessing complementary knowledge from each
client. This demonstrates FL’s potential to leverage distributed
heterogeneity for improved generalization.

B. Local (Per-Client) Training

Each client’s model achieved below par accuracy on its own
held-out data, and also failed to generalize to other users.
Off-diagonal entries in the 5 X 5 accuracy matrix frequently
dropped below 20 %, with some as low as 0% (e.g., a model
trained on Client 1 scored 0% on Client 2 Test set). This
severe degradation highlights overfitting to personal motion
patterns and confirms that collaborative training is necessary
for robust cross-user HAR models. The Transformer slightly
outperformed the LSTM locally, but both suffered from poor
cross-client transfer, indicating that rather than model capacity,
insufficient data was the root issue.

C. Centralized Training

Training on the pooled dataset yielded better generalization:
the centralized Transformer achieved 57.1 % accuracy on the
global test set, while the centralized LSTM reached around
50 %. The Transformer’s superior performance aligns with its
ability to capture global temporal patterns more effectively
than recurrent networks. Nevertheless, 57.1 % leaves substan-
tial room for improvement, suggesting that simple pooling did
not fully resolve data diversity issues. Underrepresented clients
may have been dominated by more frequent patterns, leading
to biased predictions.

D. Federated Ensemble Learning

In the FedEnsemble scenario, the federated Transformer
achieved 73.4 % accuracy and the federated LSTM 61.6 %.
This setup used the exact same training dataset as centralized
learning, which was uniformly partitioned among clients,
meaning privacy preservation was not a factor. The results
show that applying FL as an ensemble learning method yields
higher accuracy than centralized learning, an improvement of
+16.3 % for the Transformer and +11.6 % for the LSTM over
their centralized counterparts. This indicates that the ensemble



TABLE I
COMPARATIVE ACCURACY OF LEARNING PARADIGMS ON THE GLOBAL TEST SET

.. . . Global Test Performance
Training Paradigm Model Architecture Accuracy (%) Delta vs. Centralized
. LSTM ~ 50 % (own), < 20 % (other) N/A
Local (Per-Client) Transformer ~ 50 % (own), < 20 % (other) N/A
Centralized LSTM 50.0 Baseline
entrafize Transformer 57.1 Baseline
LSTM 59.9 +9.9
Federated (FedAvg) Transformer 69.5 +12.4
LSTM 61.6 +11.6
Ensemble Federated Transformer 73.4 +16.3
LSTM Model external client test set corresponding to an unseen subject,
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Fig. 6. Cross-client validation results showing local model performance on
individual client test sets and global test set.

effect of bagging and boosting by combining multiple inde-
pendently trained client models, which can extract more robust
representations than a single centralized model, particularly
when working with small datasets, which is common in
manufacturing scenarios. Such a strategy could be adopted as
a standard practice when data volume is limited.

E. External Client Evaluation

To assess real-world generalization, all centralized, FL. and
FedEnsemble with Transformer models were evaluated on an

whose data was excluded from training in all paradigms.
Here we only selected Transformer architecture models as
they outperformed LSTM models. As shown in Table II, both
federated approaches substantially outperformed centralized
training. The FL Transformer achieved 64.29 % accuracy, a
+52.58 % point gain over its centralized counterpart, while
the FedEnsemble Transformer further improved to 69.98 %,
a +58.27 % point gain. The centralized model just predicted
‘Stop’ label for most of the actions, resulting in very poor
performance. The snapshots from the results from few of
actions as shown in Fig. 7. Both FedEnsemble and FL models
perform well and predict actions with high confidence scores.
This demonstrates that FL not only preserves privacy but also
yields models that transfer better to new users, likely due to
the diversity of local updates acting as a regularizer.

TABLE 11
PERFORMANCE ON EXTERNAL CLIENT TEST SET (UNSEEN SUBJECT)
FOR TRANSFORMER

Training Paradigm Accuracy
FedEnsemble Learning 69.98 %
Federated Learning 64.29 %
Centralized 11.71 %

F. Summary of Results

Overall, the experiments confirm that FL is highly effective
for pose-based HAR in heterogeneous industrial settings,
consistently outperforming both centralized training and local
models. On the global test set, FL with Transformer achieved
a +12.4 % point gain over centralized learning, while Fe-
dEnsemble pushed this to +16.3 % point, demonstrating the
added benefit of combining independently trained models.
The external client evaluation further validated these trends,
with FL improving accuracy by over 50 % and FedEnsemble
by nearly 60 % compared to centralized training. These
gains highlight FL’s dual advantage: preserving privacy while
producing models that generalize better to unseen users. The
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results also establish FedEnsemble as a viable strategy for
boosting performance even in non-privacy scenarios, making
it especially valuable when data is scarce or distributed across
isolated sources. Together, these findings position FL and
FedEnsemble as strong candidates for scalable, privacy-aware
HAR solutions in real-world manufacturing environments.

V. CONCLUSION

This paper investigated FL for pose-based HAR in industrial
contexts, introducing a custom dataset of eight upper-body
gestures recorded from five participants, each acting as an
independent client. The pipeline combined RGB-D video cap-
ture, 2D skeletal keypoint extraction via a modified FastPose
with a compact 13-joint representation, and segmentation into
20-frame windows to emulate realistic non-IID client data.
Two temporal architectures, LSTM and Transformer encoders,
were trained under four paradigms: centralized learning, local
per-client training, FL with weighted FedAvg, and FedEnsem-
ble learning. Models were evaluated on a unified global test
set as well as an unseen external participant to measure
generalization under domain shift.

Across all evaluations, FL consistently outperformed cen-
tralized learning while preserving data privacy. On the
global test set, the FL Transformer achieved 69.5 % accuracy
(+12.4 % over centralized), and the FL. LSTM reached 59.9 %
(+9.9 %). FedEnsemble learning, using the exact same dataset
as centralized training but uniformly partitioned into IID client

splits, further improved results to 73.4 % (Transformer) and
61.6 % (LSTM), highlighting the benefit of model aggregation
as an ensemble mechanism even when privacy is not a factor.

External client testing reinforced these trends: the FL Trans-
former reached 64.29 % accuracy and the FedEnsemble Trans-
former achieved 69.98 %, compared to only 11.71 % for cen-
tralized training. This substantial improvement demonstrates
that FL not only supports privacy-preserving collaboration but
also yields models that transfer better to unseen users, likely
due to the diversity of local updates acting as a regularizer.

Overall, the results establish FL as both a privacy-preserving
and performance-enhancing paradigm for cross-user HAR in
heterogeneous industrial environments. The observed ensem-
ble effect in FedEnsemble suggests that, even without privacy
constraints, FL. can be exploited as a robust training strategy
for small, distributed datasets common in manufacturing.
Future work will scale this framework to larger client popu-
lations, incorporate advanced aggregation and personalization
methods, and integrate multi-sensor fusion to further improve
robustness and real-world deployability.

VI. LIMITATIONS AND OUTLOOK

The present study has several limitations that provide av-
enues for future research. First, the dataset size constrained the
number of simulated clients to five, limiting both the diversity
of motion patterns and the degree of domain heterogeneity
that can be modeled. Expanding the dataset to include between



10 and 15 clients with varying anthropometric characteristics,
gesture speeds, and environmental conditions would enable
a more representative evaluation of real-world deployments.
Second, only the weighted FedAvg aggregation strategy was
employed. While it demonstrated strong performance, ex-
ploring advanced federated optimization methods such as
FedProx, FedAdam, FedBN, and personalized FL approaches
may further improve robustness under non-IID and imbalanced
client data distributions. Third, the study relied exclusively
on RGB-D based skeletal pose estimation, which may be
affected by occlusion, lighting variations, or sensor noise.
Incorporating multi-sensor fusion (e.g., IMUs or depth-only
processing) could enhance robustness in challenging industrial
environments.

Building on these findings, our ongoing research focuses on
deploying the federated pose-based HAR system in a robotics
application. Specifically, we are integrating the trained models
into a ROS 2 pipeline to control a robotic arm based on
recognized human gestures. The system will stream RGB-
D camera data to perform real-time pose estimation via the
modified FastPose, followed by on-device classification, and
will translate predicted actions (e.g., grab, left, stop, up)
into corresponding arm control commands. This deployment
targets assistive technology scenarios where the robot responds
promptly to user gestures, ensuring low-latency inference and
robust closed-loop performance. ROS 2 will be leveraged
for efficient sensor data handling, real-time processing, and
seamless integration between the machine learning module and
the robot motion controllers.

Beyond robotics, the proposed FL-HAR framework can be
extended to collaborative manufacturing cells, remote training
environments, and safety monitoring systems, where privacy-
preserving, real-time human action recognition is critical.
Integrating adaptive client weighting, federated domain adap-
tation, and lightweight on-device inference models will be
key to enabling large-scale, heterogeneous deployments. In the
long term, this line of research can contribute to establishing
standardized FL benchmarks for industrial HAR, enabling
reproducible evaluation and accelerating adoption across in-
dustries.
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