SLR: Automated Synthesis for Scalable Logical Reasoning

Lukas Helff>, Ahmad Omar!, Felix Friedrich!?, Antonia Wiist!, Hikaru Shindo', Tim Woydt!,
Rupert Mitchell 2, Patrick Schramowski'**4, Wolfgang Stammer->5, Kristian Kersting!->>>¢
!TU Darmstadt 2hessian.AI 3DFKI *CERTAIN, Germany
°Lab1141 %Centre for Cognitive Science, Darmstadt
Code: https://github.com/ml-research/ScalableLogicalReasoning
Data: https://huggingface.co/datasets/ AIML-TUDA/SLR-Bench

arXiv:2506.15787v4 [cs.Al] 6 Aug 2025

Abstract

We introduce SLR, an end-to-end framework
for systematic evaluation and training of Large
Language Models (LLMs) via Scalable Logical
Reasoning. Given a user’s task specification,
SLR automatically synthesizes (i) an instruc-
tion prompt for an inductive reasoning task,
(ii) a validation program, executable on model
outputs to provide verifiable rewards, and (iii)
the latent ground-truth rule. This process is
fully automated, scalable, requires no human
annotations, and offers precise control over task
difficulty. Using SLR, we create SLR-BENCH,
a benchmark comprising 19k prompts orga-
nized into 20 curriculum levels that progres-
sively increase in relational, arithmetic, and re-
cursive complexity. Large-scale evaluation re-
veals that contemporary LLMs readily produce
syntactically valid rules, yet often fail at cor-
rect logical inference. Recent reasoning LLMs
demonstrate improved performance but incur
very high test-time computation, with costs ex-
ceeding $300 for just 1,000 prompts. Finally,
curriculum learning via SLR doubles Llama-3-
8B accuracy on SLR-BENCH, achieving parity
with Gemini-Flash-Thinking at a fraction of
computational cost. Moreover, these reason-
ing capabilities generalize to a wide range of
established benchmarks, underscoring the ef-
fectiveness of SLR for downstream reasoning.

1 Introduction

Logical reasoning is a fundamental aspect of intelli-
gence, yet state-of-the-art Al systems still struggle
with tasks that require robust reasoning and system-
atic generalization (Delfosse et al., 2025; Kostikova
et al., 2025; Woydt et al., 2025; Wiist et al., 2025;
Helff et al., 2025; Sinha et al., 2019). Existing
benchmarks intended to evaluate reasoning capabil-
ities, however, primarily emphasize deductive rea-
soning, where conclusions necessarily follow from
given premises. This includes tasks such as math
word problems (Hendrycks et al., 2021) and logic

puzzles (Lin et al., 2025; Xie et al., 2025; Liu et al.,
2025). Inductive reasoning, by contrast, involves
inferring general rules or patterns from specific
examples, which remains particularly challenging
and underexplored in large language models (Luo
et al., 2024; Xie et al., 2024) (see also Tab. 1).

Current evaluation frameworks commonly em-
ploy constrained formats (e.g., multiple-choice) or
rely on other LL.Ms as judges (Patel et al., 2024a;
Lin, 2024; Lin et al., 2024), making it difficult
to assess whether models genuinely understand
logical structure or are merely exploiting super-
ficial patterns in the data. Moreover, as training
sets grow, benchmark items or their paraphrases
increasingly overlap with pre-training data, making
apparent reasoning abilities potentially just memo-
rization (Shojaee et al., 2025; Xie et al., 2024).

To tackle these challenges, this paper intro-
duces SLR (Scalable Logical Reasoning), an open-
source framework for evaluating and training mod-
els in inductive logical reasoning. Based on a user-
defined logic task (Fig. 1, left), the task synthesizer
(center) automatically generates novel inductive
logic programming (ILP) tasks (Muggleton and de
Raedt, 1994; Cropper and Dumancié, 2022) of con-
trollable complexity. Each task comes with (i) a
latent ground-truth rule, (ii) an executable valida-
tion program, and (iii) an instruction prompt for the
reasoning task. The ground-truth rule serves as the
reference answer, while the validation program de-
terministically evaluates any candidate hypothesis.
SLR supports both systematic model evaluation
(Fig. 1, top right) and downstream model training,
via supervised finetuning or reinforcement learning
with rewards provided by the integrated symbolic
judge (Fig. 1, bottom right). SLR ’s fully sym-
bolic and automated pipeline eliminates the need
for human annotation and avoids dataset overlap.

Leveraging SLR, we present SLR-BENCH (Fig.
3), a 19k task benchmark that forms a twenty-level
curriculum of increasing logical complexity. These

https://github.com/ml-research/ScalableLogicalReasoning
https://huggingface.co/datasets/AIML-TUDA/SLR-Bench
https://arxiv.org/abs/2506.15787v4

Task Specification —11
Language £

4 Vocabulary

Predicates: :Cl_:car_len()

@ car_color() @8-Chas_car()

\

Scalable Logical Reasoning

Synthesiser

Generate
D(L,0y)

Task Evaluation

1000

qll

T
2 8 8
g8 8 8

Performance
g

Combinatorial

Constants: @ train Qcar L. 4

Rule

®red @blue (Jlong Oshort eastbound(Train):- (EvaI-Score ‘/X)cosrizllzgty
Grammar has_car(Train,Car), *

{has_car(train, car), car_len(Car,short) Training

car_color(car, red), _ Y,

Logical Complexity

_) Space (log)

car_color(car, blue)...
N\ J e

Tt
_[@ Symbolic

Ut Judge
. / ge
J

(Rule (Length, Sampling)

: ==, Valdiation A g
TaskConfig @ a B
! Program [LLM Hypothesisj =

<

Rlon =1, Rsampl(z - 'U'n/]’.f(”)m ®t
BK (Size, Distribution)
\ Bk = (2,2), B, = uniform)

(
-

Instruction &
Task Prompt

A

LLM

J

=

B 3 j((i
SET
J

N

/

Figure 1: Overview of the SLR Framework, including task specification, automated task synthesis, training, and
evaluation. Left (blue): Language defines vocabulary and grammar, Task Config specifies configuration parameters
for the synthesis. Middle (green): The task synthesizer automatically generates ground-truth rules, validation
programs, and instruction prompts. Right (purple): Training LLMs on logic tasks via SFT (cross-entropy) or RL
(symbolic judge feedback). Right (orange): Evaluates LLMs using feedback provided by the symbolic judge.
Arrows denote data and control flow through synthesis, prompting, evaluation, and downstream training loops.

levels are further organized into four curriculum
tiers: basic, easy, medium, and hard. Each task is
unique, with a precise and systematic assessment
of inductive logical reasoning skills. In evaluations,
we find that while LLMs are generally well-versed
in generating syntactically valid rules, robust log-
ical reasoning remains challenging. Performance
declines sharply as task complexity increases. Scal-
ing model size brings only marginal improvements,
while scaling test-time compute boosts reasoning,
but returns diminish as complexity rises.

Beyond evaluation, SLR enables curriculum
learning, boosting reasoning both in-domain and
across established reasoning benchmarks. SLR-
tuned Llama-3-8B not only surpasses all conven-
tional LLMs on SLR-BENCH, but also outper-
forms recent reasoning LLMs such as Gemini-2.0-
flash-thinking, while using fewer inference tokens.
Notably, these enhanced reasoning capabilities gen-
eralize downstream, improving performance on
MMLU, LogicQA, HellaSwag, and GPQA.

In sum, our contributions are: (i) SLR, an open
framework for automated synthesis and symbolic
evaluation of logical reasoning in LLMSs; (ii) SLR-
BENCH, a 19k-task benchmark organized as a 20-
level curriculum of increasing logical complexity,

enabling both training and evaluation across a con-
trolled reasoning spectrum; (iii) a large-scale eval-
uation of LLMs on SLR-BENCH, revealing key
insights and trade-offs in model performance; (iv)
curriculum learning with SLR substantially im-
proves both in-domain and downstream reasoning.

2 Related Work

Evaluating LLMs’ Logical Reasoning. Tab. 1
provides an overview of existing logical rea-
soning benchmarks in terms of inference types,
dataset origins, and evaluation formats. Notable
datasets include LogiQA/2.0 (Liu et al., 2020,
2023), FOLIO (Han et al., 2022) (deductive rea-
soning), AbductionRules (Young et al., 2022) (ab-
ductive reasoning), bAbl (Weston et al., 2015),
and CLUTRR (Sinha et al., 2019) (synthetic QA
with inductive reasoning). Aggregate testbeds
such as BIG-Bench (Kazemi et al., 2025; Suz-
gun et al., 2023), HLE (Phan et al., 2025), FineL-
ogic (Zhou et al., 2025), and LogiGLUE (Luo et al.,
2024) span a range of tasks and inference styles.
Other benchmarks, such as Proofwriter, PrOntoQA,
KOR-Bench, FLD, Multi-LogiEval, SynLogic, Ze-
bralLogic, and the K&K Sandbox (Oyvind et al.,
2021; Saparov and He, 2023; Morishita et al., 2024;

Table 1: Comparison of logic reasoning benchmarks. Reasoning Type: Logical inference type (deduction,
induction, abduction). Creation: Dataset origin (synthetic, human-annotation, DS collection). Evaluation: Output
scoring (symbolic execution, multiple choice (MC), LLM, exact match (EM)). Task Synthesis: Supports for tasks
generation. Custom Tasks: User-defined task creation (via language, grammar, or setup). Curriculum Learning:
Curriculum-based progression of difficulty. Scalable Complexity: Supports arbitrarily scaling task complexity.
(v: fully supported, X: not supported, (v): partially/limited)

Reasoning Data Evaluation Task Custom Curriculum Scalable
Dataset Type Creation Methodology Synthesis Tasks Learning Complexity
LogiQA wiueta, 2020 Deduction Human MC X X X X
LogiQA 2.0 wivetat, 2023) Mix Human MCQA/Auto X X X X
FOLIO #anetal, 2022) Deduction Human EM X X X X
AbductionRules (voungetar, 202 Abduction Synthetic/Human EM X X X X
FineLogic @houetal, 2025) Deduction DS collection Symbolic/LLM X X X X
HLE phan et ar, 2025) Mix DS collection LLM X X X X
Big-Bench (phan etal. 2025) Mix DS collection Mix X X X X
LogiGLUE wuwoetal, 2024) Mix DS collection MCQA/Auto X X X X
CLUTRR (sinha et at.. 2019) Induction Synthetic EM X X X X
KOR-Bench ovactat, 2024) Mix Synthetic/Human EM/Symbolic V) X X X
PrOntoQA (saparov and He, 2023) Deduction Synthetic EM X X X
SynLogic iuetal, 2025) Deduction Synthetic EM X X X
FLD Morishita ctal., 2024) Deduction Synthetic Symbolic X)
K&K (xic et at., 2025, 2024 Deduction Synthetic EM X W) W)
ZebralLogic (winetal. 2025) Deduction Synthetic EM X) V)
SLR (ours) Induction Synthetic Symbolic

Patel et al., 2024b; Liu et al., 2025; Lin et al., 2025;
Xie et al., 2025, 2024; Mondorf and Plank, 2024)
generate tasks using various logics or ontologies,
often with fixed configurations or evaluation via
exact match. However, most existing benchmarks
lack key features such as scalability, extensibility,
controlled curricula, and flexible task synthesis, all
of which are addressed by SLR.

Limits and Promises of Reasoning LLMs. LLMs
like GPT-4 (OpenAl et al., 2024), Llama-3 (Meta
et al., 2024), and Qwen (Bai et al., 2023) can
handle basic reasoning and coding tasks but often
struggle with true abstraction (Shojaee et al., 2025;
Xie et al., 2024). Recent reasoning LLMs attempt
to bridge this gap by scaling fest-time compute.
Systems like OpenAl’s 0l/03 (OpenAl, 2025) or
DeepSeek-R1 (DeepSeek-Al et al., 2025) generate
and re-rank thousands of reasoning traces per query,
achieving state-of-the-art results on, e.g., math or
coding (Quan et al., 2025; Hendrycks et al., 2021;
Rein et al., 2024; Gao et al., 2024a; Fourrier et al.,
2024; Clark et al., 2018). However, these gains
come at a steep cost (Fan et al., 2025; Kim et al.,
2025). Some studies question whether such mod-
els truly learn logical structure or merely exploit
surface-level patterns (Fan et al., 2025; Shojaee
et al., 2025; Xie et al., 2024). Curriculum learn-
ing has been shown to enhance training robustness
and generalization (Bengio et al., 2009; Bursztyn
et al., 2022), yet no prior framework offers a flex-

ible framework for task synthesis for automatic
curriculum generation with symbolic evaluation
for reasoning at scale. SLR addresses this gap.

3 SLR: Automatic Benchmark Synthesis

SLR is a scalable methodology for systematically
generating, evaluating, and training LL.Ms on in-
ductive reasoning tasks. Its goal is to automate
the creation of diverse, challenging logical reason-
ing benchmarks, embedded as natural language
prompts, with model outputs that can be efficiently
verified via symbolic execution of Inductive Logic
Programming (ILP) programs (Muggleton and de
Raedt, 1994; Cropper and Dumanci¢, 2022). The
overall pipeline (Fig. 1) has three main stages: task
specification, synthesis, and evaluation/training.

3.1 Task Specification (Input)

The SLR synthesizer is controlled by the Task Lan-
guage £, which defines the logical vocabulary and
grammar, and the Task Configuration ©, which
controls the generation process (see Fig. 1, left).

Language Specification (£): We define a lan-
guage £ = (V, G) that specifies the building blocks
for task generation. The Vocabulary V comprises
a set of constant, function, and predicate symbols
that form the syntax for generating rules, examples,
and background knowledge. The vocabulary in-
duces the Herbrand base HB(V), which is the set of

Algorithm 1 Task Synthesizer

Require: £7 B, Kpos;, Kneg, Rsamp1e7 Rien
: B« O, Et « g E- « @
Rule Synthesis
2: R* < RULEGENERATOR(L, Rien, Rsampie)
3: while |ET| < Kpos OF |E7| < Kneg do
Background Synthesis
4: b <~ BACKGROUNDGENERATOR(L, Br)
5 (y,q) < ASSIGNLABEL(R*,b)
Stratified Rejection Sampling

6: ify =1and |E"| < spos then > accept positive
7: B+ BU{b}; ET + EtU{q}
8: elseif y = 0 and | E~| < kne then 1> accept negative
9: B+ BU{b}; E- «+ E~ U{q}
10: else
11: continue > reject sample
12: end if
13: end while

Synthesizer Output

14: program < VALIDATIONPROGRAM(B, E* E™)
15: prompt <~ PROMPTGENERATOR (B, E*, E™)
16: return (R*, program, prompt)

all syntactically valid ground atoms (facts) (Lloyd,
2012). The Grammar G is formed by a set of se-
mantic rules that filter the Herbrand base to include
only meaningful atoms, HBg (V). For instance, a
color can be assigned to a car (car_color(car, red))
but not to semantically incompatible objects.

Task Configuration (©): The configuration param-
eters © = (Rsample, Rien, Br, k) give control over
the synthesis process. The (i) Rule Sampling Pol-
icy (Rsample) controls the synthesis of the ground
truth rule R*, which can either be sampled ran-
domly (Uniform Sampling) or generated via an
LLM (LLM-Guided Generation). To ensure the
LLM produces diverse and challenging logic rules,
we leverage an exhaustive prompt (see App. E)
that covers a wide array of logical structures and
Prolog features (containing arithmetics, recursions,
variables, cuts, or comparison operators, etc.). The
(i1) Rule Length (Re,) specifies the number of lit-
erals in the body of the ground-truth rule R*. The
(iii) Background Sampling Policy (B;) defines a
probability mass function that assigns a selection
probability to each ground atom in the grammar-
filtered Herbrand base HBg (1), enabling designers
to encode priors on the data distribution (e.g., uni-
form). We also include mirror sampling, where
backgrounds for (E, E™) are identical except for
ground atoms relevant to R*. The (vi) Problem Size
(k = (Kpos, Fneg)) specifies the target number of
positive (kpos = |E) and negative (kneg = |E~|)
examples. This directly controls the size and class
balance of each generated task.

3.2 Task Synthesis (Generation)

The task synthesizer (Fig. 1, center) is an auto-
mated process detailed in Alg. 1. Given a high-
level task specification, the synthesizer generates
complete and solvable ILP problems. The process
consists of two main phases: rule synthesis and
background synthesis.

Rule Synthesis (Alg. 1, line 2). The process be-
gins with the RULEGENERATOR creating a latent,
ground-truth rule R*. This rule represents the un-
derlying logical pattern that a model is expected to
induce. The generation is guided by pre-defined
parameters (Rjen, Rsample) that control the length
and generation policy for the rule. The resulting
rule is a syntactically valid definite clause of the
form h:-b1, ..., bg,,-

Background Synthesis (Alg. 1, lines 3-13). Once
R* is fixed, the synthesizer enters a loop to con-
struct the background knowledge B and the label
sets B+ and E~. This loop executes three steps
until the desired number of positive and negative
examples is generated:

(i) Sample Background: The BACKGROUND-
GENERATOR samples a set of ground atoms speci-
fying the properties and relationships of the back-
ground instance. Ground atoms are drawn from the
probability mass function B, over HBg (V).

(ii) Assign Label: The function determines
whether a query atom ¢ (that is the ground atom of
the target predicate h) is logically entailed by the
sampled background b and the ground-truth rule
R* (i.e., whether bU R* |= ¢ holds). This produces
a label (positive or negative) for the query. We
denote the labeling function as:

(1,9),
(0,9),

(>iii) Accept/Reject Sample: To ensure the de-
sired class balance, a stratified rejection sampling
strategy is used to populate the example sets. The
generated background b and query q are accepted
only if the corresponding example set (E* or E7)
is not yet full, as specified by the task size param-
eter (). If accepted, b is added to the task’s main
background knowledge B, and ¢ is added to the
appropriate example set. Otherwise, it is discarded.
Synthesizer Outputs (Alg. 1, lines 14-17). For
each task, the synthesizer generates three outputs:
(1) the latent ground-truth rule R*; (2) a validation
program, an executable logic program encoding
(B, E*, E~) for automatic evaluation; and (3) an

ifbUR" =¢q

ASSIGN(R*,b) = { .
otherwise

4 Verifiable Logic Rewards)
&g Validation Program)

east(train0

has, car(traan car) 1).
car_hum

car_col rcar0‘1 re).
car_len(car0_T, long).

west(trainl).

has car(tralnl, carl_1).
num(carl 1, 11

car color carl_1, blue).

car_len(carl_T, long).

LLM Hypothesis)
eastbound(T) :—has_car(T,Car),car_len(Car, long)]

Syntax: /
Solved: Y
Partial: 1/2

N j
Figure 2: Verifiable Logic Rewards: A candidate hy-
pothesis is evaluated by executing it against the valida-
tion program. It outputs three metrics: syntactic validity
(binary), perfect task completion (binary), and a partial
score for the fraction of correctly classified examples.

& Symbolic Judge
?-eastbound(train0) .—>true.
?-eastbound (train1) .—>true. X

instruction prompt presenting the task in natural
language or Prolog, ready for LLM input. See App.
Fig.6 for an example synthesis run.

3.3 Training and Evaluation

The final stage, shown in Fig. 1 (right), uses the
synthesized task to evaluate and train models.

VERIFIABLE LOGIC REWARDS. The Symbol-
icJudge is a core component of SLR, used for
both training and evaluation. It deterministically
assesses candidate hypotheses for logic tasks by ex-
ecuting them against a validation program and pro-
viding verifiable logic rewards (see Fig. 2). Specifi-
cally, it checks whether all positive examples (ET)
are entailed and all negative examples (£ ™) are not
entailed, producing three types of feedback:

SYNTAX SCORE: A binary score (0 or 1) that
indicates whether the candidate hypothesis H is
a syntactically valid Prolog rule. If H is invalid,
subsequent scores are set to 0.

OVERALLSCORE: Indicates perfect task com-
pletion. It returns 1 if the hypothesis H, in con-
junction with the background knowledge B entails
all positive examples (E) and refutes all negative
examples (£ 7). Otherwise, the score is 0.

OVERALLSCOREp g+ - (H) = [
Vge ET:(BUH)Eq A
Vge E~ : (BUH) [~ q] € {0,1}

Where [-] is the Iverson bracket, evaluating to 1 if

the condition inside is true, and O otherwise.
PARTIALSCORE: The proportion of examples

(from ET U E™) that are correctly classified by

Basic Easy Medium Hard

100 - .\<! N /L
\ - 800)
) S 3
O 75- =
% - 600 @
N
E - o
~400 .
b= Q
5 £
Ay 25- =200 O
@)

-.--.

Logical Complexity

Figure 3: Overview of SLR-BENCH: The benchmark
curriculum spans from basic to hard tasks with increas-
ing logical and combinatorial complexity (bars, right
y-axis). As logical complexity increases, Model perfor-
mance (red, left y-axis) declines, highlighting current
LLMs’ limitations on more challenging reasoning tasks.

H given B, providing a continuous measure of
progress even if the task is not perfectly solved.

PARTIALSCOREg p+ - (H) =

Y oqept((BUH) = q] + > cp-[(BUH)]

|E+ U E~|

The numerator counts correctly entailed positives
and refuted negatives, and the denominator normal-
izes the score to [0, 1].

Model Evaluation. SLR streamlines the creation
of logical reasoning benchmark datasets for sys-
tematic model evaluation. By specifying various
combinations of task language and configuration,
users can generate diverse ILP tasks that span a
broad range of domains, prompt styles, and rea-
soning complexities. Each synthesized task com-
prises a natural language prompt, the correspond-
ing ground-truth rule, and an executable validation
program for assessment by the Symbolic Judge.

Model Training. SLR enables automated train-
ing loops, with model feedback available in two fla-
vors. For supervised fine-tuning (SFT), the ground-
truth rule R* serves as the training target, allowing
for cross-entropy loss updates based on predicted
rules. For reinforcement learning, the symbolic
judge provides verifiable rewards (RLVR) to guide
the model’s policy updates. This cohesive, auto-
mated pipeline enables scalable generation, evalua-
tion, and training of LLMs, facilitating systematic
advances in logical reasoning capabilities.

Novelty and Systematic Generalization. As
SLR is fully synthetic, overlap with existing data
is statistically negligible, making it robust against

(Instruction & Task Prompt)

You are a train classifier who is observing trains that are traveling either east- or westbound. Each train is
composed of one or more cars, and each car is characterized by a set of properties, represented as ground atoms over
a fixed set of predicates. The direction (eastbound or westbound) of a train is to be determined from its composition.
To describe the trains we define a set of predicates and grounding domains:

'has_car(Train, Car)':
'car_num(Car, CarNumber)':
'car_color(Car, Color)': Specifies the color of the car.
'car_len(Car, Length)': Specifies the length of the car.

Specifies that 'Car' is part of the train 'Train’.

Specifies the position of the car within its train. 'CarNumber' is a positive integer.
'Color' can be 'red', 'blue', 'green', 'yellow', or 'white'.
'Length' can be either 'short' or 'long'.

'has_wall(Car, WallType)': Specifies the wall type of a car.

'WallType' can be either 'full' or a 'railing’.

You are provided with positive and negative examples in the form of eastbound(t) or westbound(t) for each train t,
together with background knowledge consisting of ground facts over the above predicates which describe its composition.

eastbound (train0) .

has_car (train0, car0_1).
car_num(car0_1, 1).
car_color(car0_1, red).
car_len(car0_1, long).
has_wall(car0O_1, railing).

westbound (traini) .

has_car (trainl, carl_1).
car_num(carl_1, 1).
car_color(carl_1, red).
car_len(cari_1, short).
has_wall(carl_1, railing).

Your task is to formulate a hypothesis, i.e. a prolog rule of the form 'eastbound(Train) :- Body.' that correctly

distinguishes eastbound from westbound trains. The hypothesis must be true for all positive examples
and false for all negative examples (i.e., westbound trains). Aim to find the shortest correct rule, that is,

trains

(i.e., eastbound

one that uses the fewest possible body literals subject to the prior constraints. Your rule must use only predicates
defined above and must perfectly separate eastbound from westbound trains.

(Ground-Truth Rule)

eastbound (Train)

:= has_car(Train,Car), car_len(Car,long)

Figure 4: Illustrative prompt and ground-truth rule generated by SLR (Level 1, SLR-BENCH). Language (£): 5
predicates, 1 car variable per train. Task configuration (0): k = (1,1) (one positive and one negative example);
B = mirror; Rjey = 1; Rgampte = uniform. The prompt provides the full ILP instance, including background B,
positive/negative examples (E+, E7), and natural-language instructions for the learning task.

data leakage and memorization. By default, test
set ground-truth rules (R*) are excluded from the
training set, guaranteeing that inputs and outputs at
test time are completely novel to the model. This
enables assessing whether the model is capable of
systematically generalizing to entirely new rules.

4 SLR-BENCH: Instantiating SLR

With SLR-BENCH, we instantiate SLR as a 20-
level curriculum of logical reasoning tasks with
increasing complexity (see Fig. 3). Each level spec-
ifies its own language £ and configuration 6, pro-
ducing a total of 19k generated reasoning tasks.
Each level contains 1k train!, 10 eval, and 50 test
samples. Each task comes with (i) a generated
latent ground-truth rule, (ii) the corresponding vali-
dation program, and associated instruction prompt
for the task. An illustrative example for prompts
and ground-truth rules can be found in Fig. 4.

Design rationale. The logic task is inspired by
the V-LoL trains domain (Helff et al., 2025; Michal-
ski, 1980; Mitchell, 1997), chosen for three main
reasons. First, its hierarchical object structure
(trains — cars — attributes) naturally gives rise
to first-order rules that are far richer than simple
lookups, yet more tractable than general theorem

IThe train sets of levels 1-3 are smaller (26, 234, and 793),
due to the limited number of different tasks available

proving. Second, every attribute has a small, dis-
crete grounding domain, which allows us to mea-
sure and control the complexity of the problem pre-
cisely. Third, we ensure expandability and novelty,
as SLR-BENCH is fully synthetic and programmat-
ically generated.

Languages. Each curriculum level is parame-
terized by level-specific language £, detailed in
App. A.1. The vocabulary includes mutually exclu-
sive class labels eastbound and westbound,
which serve as the targets for classification
tasks. Additionally, the vocabulary includes five
predicates (has_car, car_num, car_color,
car_len, and has_wall) with their respective
grounding domains specified in App. A.1. As
curriculum levels increase in complexity, the vocab-
ulary expands monotonically by introducing new
predicates and grounding domains selected from
a predefined set. These include categorical pred-
icates such as has_roof, has_payload,
has_window, car_type, and numeri-
cal predicates load_num, has_wheel,
passenger_num. Semantic coherence is
ensured by constraining predicate groundings to
valid combinations (e.g., only colors as arguments
for car_color), and by enforcing mutually
exclusive constraints across predicates (e.g.,
passenger cars cannot carry payloads).

Table 2: SLR-BENCH Learning Curriculum: The table details how both language and task configuration are
systematically increased throughout the curriculum levels. Notably, higher levels involve richer problems with more

constants and predicates, larger problems, longer rules,

and a transition from mirror to uniform and LLM-guided

sampling. The final column reports the approximate combinatorial size of unique tasks available at each level.

Stage Basic Easy Medium Hard
Levels 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Language
#Const. 1 1 1 2 2 2 2 23 23 23 24 24 46 46 46 56 56 56 56 56
#Pred. 55 5 5 5 5 6 6 6 7 7 9 9 9 9 10 10 12 12 12
Task Config.
K 2 2 4 4 6 6 6 8§ 10 12 14 16 18 20 22 24 26 28 30 32
B, MMMM M U U U U U U U u u u u u u 12 u
Rien, 1 1212 12 12 12 12 12 23 23 23 34 34 45 45 45 45 45 5 5
Rempe U U U U U U/LU/LU/LU/LU/LU/LU/L U/L U/L U/L U/L U/L U/L U/L U/L
Comb. Size 10% 10% 10° 1010 1016 106 1024 1032 10%0 10°° 10%° 10'2° 1027 10390 10330 10597 10549 1080° 10361 10919

M mirror sampling U/ uniform sampling L: LLM-guid

Task configs. Each curriculum level is parame-
terized by level-specific settings of §, summarized
in App. Tab.2 and supplied directly to the synthe-
sizer (Alg.1). Problem size (k) increases steadily
across levels, maintaining an equal balance of posi-
tive and negative samples. Levels 1-5 use a mirror
sampling policy for background knowledge, gener-
ating simple, nearly identical east- and westbound
trains that differ only in ground atoms relevant to
R*. From level 6 onward, the background is sam-
pled uniformly from the filtered Herbrand base,
increasing diversity. Rule generation is uniform
for the basic levels; from level 6, 30% of rules are
LLM-guided, introducing greater variety in vari-
ables, arithmetic, recursion, and more.

Curriculum. SLR-BENCH comprises 20 levels
across four tiers: basic, easy, medium, and hard.
Each level systematically increases complexity by
expanding task size (), adding new car constants
and predicates, lengthening rules, and varying both
the background knowledge and rule sampling pol-
icy; see App.Sec.A, Tab. 2. As a result, the com-
binatorial space of possible tasks grows exponen-
tially, and later levels become progressively harder
and require deeper reasoning beyond surface cues.

Intended Use. SLR-BENCH is designed for two
complementary purposes. (1) As a static bench-
mark, it enables fine-grained evaluation of an
LLM’s reasoning abilities across tasks of increas-
ing logical complexity. It is also easily extensible
to accommodate future improvements in model ca-
pabilities. (2) As a dynamic curriculum, it serves
as a training backbone, supplying structured rea-
soning tasks and feedback to enhance reasoning in
both conventional and reasoning LLMs.

ed generation

5 LLMs Can’t Do Induction at Scale

We evaluate and train LLMs on SLR-BENCH, as-
sessing reasoning, syntactic correctness, and com-
putational efficiency across four difficulty levels:
basic, easy, medium, and hard. Our analysis high-
lights key trends, common failure modes, and the
effectiveness of curriculum-based logic-tuning.

Training Setup. We investigate how LLMs ben-
efit from curriculum training on SLR-BENCH with
SFT (for more details see App. Sec. G). To prevent
data leakage, we ensure that no prompts or rules
from the test set are included in the training set.

Evaluation Setup. All models are evaluated in a
zero-shot setting using SLR-BENCH prompts, with
a single attempt per task (pass@1). We report the
following metrics:

(1) Logical Reasoning Level (LRL): The cumu-
lative model score over all curriculum levels L,
where #solved; and #tasks, denote the number of
solved and total tasks at level ¢, respectively:

LRL = Z

(i1) Syntax Score: The proportion of predicted
logic rules that are syntactically valid.

(ii1) Logical-Reasoning Accuracy: The fraction
of correct solutions per complexity tier.

(iv) Compute: The aggregate completion tokens
and computational cost for each the models.

For further details on downstream evaluations,
see App. Sec. G, and for pricing, refer to Tab. 5.

#solvedy
F#tasksy

5.1 Analysis and Key Findings

In the following, we highlight downstream gains
from training via SLR curriculum learning (Tab. 3).

Table 3: Curriculum Learning and Generalization. Benchmark scores (1%) for base and SLR-tuned models
(Llama3.1-8b-it) on SLR-BENCH and downstream benchmarks; LRL measuring cumulative curriculum progress.
The tuned model surpasses the baseline across all curriculum stages, while generalizing to other reasoning tasks.

Curriculum Learning (SLR-BENCH)

LRL (t0200 Syntaxt) Basict) Easya) Mediuma%) Hardaae)
Llama-8b-it 3.6 99 61 10 1 0
Llama-8b-it-SLR 8.8 (+5.2) 100 (+1) 96 (+35) 56 (+46) 20 (+19) 5 (+5)

Downstream Reasoning Performance

MMLU % MMLU-Stats ¢%) MMLU-CS ¢#%) MMLU-ML %) LogiQA % LogiQA2 %)
Llama-8b-it 63.3 42.6 61.0 49.1 30.1 343
Llama-8b-it-SLR 66.1 (+2.8) 59.7 (+17) 75.0 (+14) 52.7 (+3.6) 31.0 (+0.9) 39.4 (+5.2)

GPQA % GPQA-Ext. 1% GPQA-Dia. %) ARC-Easy 0% ARC ¢%) HellaSwag (%)
Llama-8b-it- 31.7 26.9 21.7 81.4 52.7 574
Llama-8b-it-SLR 32.8 (+1.1) 33.0 (+6.1) 28.3 (+6.6) 82.8 (+1.4) 54.6 (+1.9) 58.9 (+1.5)

Next, we benchmark SOTA conventional and rea-
soning LLMs on SLR-BENCH (Tab. 4), showcas-
ing the trade-offs of test-time compute (Fig. 5).

SLR Boosts Downstream Reasoning. Curricu-
lum learning on SLR-BENCH yields substantial im-
provements in both in-domain and downstream rea-
soning (see Tab 3). SLR-tuned models outperform
all conventional LLMs on SLR-BENCH (cf. Tab.4)
and surpass reasoning LLMs such as Gemini-2.0-
flash-thinking, while using far fewer inference to-
kens and compute resources. On popular reasoning
benchmarks, SLR delivers gains on logic-intensive
tasks, e.g., on MMLU High School Statistics (+17),
Computer science (+14), and Machine learning
(+3.6) (Hendrycks et al., 2021), as well as no-
table improvements on LogicQA (Liu et al., 2020),
LogicQA2 (Liu et al., 2023), ARC (Clark et al.,
2018), HellaSwag (Zellers et al., 2019), GPQA,
and GPQA-Extended, GPQA-Diamond (Rein et al.,
2024). These consistent gains across curriculum
levels and downstream benchmarks demonstrate
that curriculum learning with SLR not only en-
hances in-domain reasoning but also generalizes
effectively to diverse reasoning tasks.

Curriculum Levels Modulate Task Complexity:
LLMs Break Down as Complexity Increases.
SLR-BENCH creates a controlled gradient in logi-
cal complexity as model performance steadily de-
clines throughout the curriculum levels (c¢f. Fig. 3,
Tab. 4). Most models readily solve the basic lev-
els. However, base LLMs already struggle on the
easy tasks, solving less than half. Reasoning LLMs
provide improved performance, though they incur
substantial drops at the medium levels. Only a few
reasoning LLMs manage to solve more than half

the medium tasks, yet none on hard. This pattern
is also reflected in the LRL score, empirically in-
dicating how far each model can progress before
performance collapses.

Reasoning Remains Challenging; Syntax Not.
Base LLMs reliably generate syntactically valid
rules, reflected in their high syntax scores (see
Tab. 4). Reasoning models exhibit slightly lower
scores, particularly on more complex reasoning
tasks, where longer outputs can lead to invalid or
missing responses. Nonetheless, the primary bar-
rier to higher performance is semantic, as reflected
by the gap between syntax and LRL in Tab. 4.

Scaling Test-time Compute Improves Reason-
ing, but Returns Diminish and Costs Escalate.
Reasoning LLMs clearly outperform the base mod-
els; not even the best base model is able to match
any of the reasoning LLMs (cf. Tab. 4). This, how-
ever, comes at a steep cost as moving from GPT-
40 to 03 doubles accuracy, but considerably in-
creases the number of completion tokens (1777%)
and thus the computational costs (1034%). More-
over, scaling test-time compute on the same model
also boosts overall performance, but does not guar-
antee higher accuracy across all tasks. For exam-
ple, while o4-mini-high typically outperforms o4-
mini (LRL: 12.8 vs. 12.3), it underperforms on
the medium complexity tier (40% vs. 52%). This
plateau effect demonstrates that, beyond a certain
threshold, additional compute may yield diminish-
ing or even negative returns.

Scaling Model Parameters Brings Limited
Gains in Logical Reasoning. Increasing model
size yields only marginal gains in logical reasoning.

Table 4: SLR-BENCH Leaderboard. We report the models’ Logical Reasoning Level (LRL), syntax score,
stage-specific logical reasoning accuracy (basic, easy, medium, hard), total completion tokens, and inference cost.
Higher LRL and accuracy indicate superior logical reasoning; lower compute, greater efficiency. Performance drops
as complexity increases, while Reasoning LLMs (orange) consistently outperform conventional LLMs (blue).

LRL Syntax Logical-Reasoning Acc. ()t Total Compute

Model 10200 Score 1% Basic Easy Medium Hard Tokens M) Costs ($)
03 15.5 80 929 93 74 45 4.30 207.24
04-mini-high 12.8 88 98 96 40 21 4.62 24.24
04-mini 12.3 86 93 88 52 13 3.98 21.43
ol 11.9 68 92 89 41 15 5.19 364.72
03-mini 11.6 75 97 90 37 7 4.73 24.71
04-mini-low 10.3 91 91 81 25 9 0.77 7.26
ol-mini 10.1 95 97 82 20 3 3.65 19.98
R1-Llama-70B? 8.8 75 98 67 8 4 11.61 5.33
Gemini-thinking' 8.6 83 93 65 13 1 — —

gpt-4.5-prev 7.3 100 94 47 5 1 0.37 576.40
gpt-4o 6.2 100 93 29 2 0 0.26 20.03
Llama-3.3-70B 5.9 100 94 24 0 0 0.48 0.81
gpt-4-turbo 54 100 89 18 2 0 0.41 81.30
Llama 3.1-8B 3.6 99 61 10 1 0 1.96 0.20
Llama 3.2-3B 0.7 70 13 1 0 0 2.10 0.16
Llama 3.2-1B 0.0 34 0 0 0 0 5.30 0.23

! Gemini-2.0-flash-thinking-exp-01-21 2DeepSeek-R 1-Distill-Llama-70B

Complexity Tier and Model Type
basic medium ® LLM
easy M hard ® Reasoning LLM

100

Accuracy
[0 ~
o wu

N
w

0 2500 5000 7500 10000 12500 15000 17500
Completion Tokens

o

Figure 5: Compute-Performance Trade-Off. Rea-
soning LLMs achieve higher accuracy than base LLMs
but require more compute. While more complex tasks
typically demand more completion tokens, increased
compute does not always translate to higher accuracy.

While larger models like Llama-3-70B and GPT-
4.5-prev generally outperform their smaller coun-
terparts, returns diminish as improvements are in-
creasingly modest (see Tab. 4). As even the largest
base models still fall short of the reasoning models,
a capability gap remains that suggests that scaling
model parameters alone does not guarantee sub-
stantial advances in logical reasoning capabilities.

— information not available

Compute Increases with Task Complexity. As
reasoning tasks become more complex, reasoning
LLMs require more tokens to solve the tasks, lead-
ing to increased financial costs (see Fig. 5). These
increased demands impose limits on scaling rea-
soning through increased test-time compute.

6 Conclusion and Future Direction

In this work, we introduced SLR, a fully automated
and scalable framework for synthesizing logical
reasoning benchmarks with verifiable rewards pro-
vided by logic programs. Our instantiation, SLR-
BENCH, offers a 20-level curriculum spanning 19k
tasks with increasing logical complexity.

Our evaluations reveal that while current LLMs
readily produce syntactically valid logic rules, ro-
bust logical reasoning remains elusive for conven-
tional LLMs, especially as task complexity scales.
Scaling model parameters yields only limited gains.
Reasoning LLMs, aided by increased test-time
compute, close part of this gap, albeit at signifi-
cant computational costs.

Notably, curriculum learning on SLR-BENCH
significantly boosts both in-domain and down-
stream reasoning. Our SLR-tuned Llama3-8B not

only outperforms all conventional LLMs on SLR-
BENCH, but also surpasses several SOTA reasoning
LLMs at a fraction of their inference costs. Further-
more, we observe improved reasoning capabilities
across a wide range of established benchmarks, un-
derscoring the effectiveness of curriculum-based
logic-tuning for downstream reasoning tasks.
Looking ahead, SLR paves the way for several
promising research directions, including the inte-
gration of reinforcement learning for reasoning
LLMs using SLR, expanding into richer logical
domains, benchmarking neuro-symbolic and in-
teractive reasoning systems, and moving toward
higher-order logic tasks like causal inference. Ul-
timately, SLR provides a flexible and extensible
resource for probing and advancing the frontiers of
logical reasoning in the next generation of LLMs.

7 Limitations

While SLR and SLR-BENCH provide a scalable
testbed for logical reasoning, there remain many
opportunities for further enrichment. Although
SLR-BENCH currently applies SLR to the train
domain with a single rule, the framework is readily
extensible to multiple more complex, multi-rule
reasoning scenarios and to entirely different do-
mains. Our current focus on first-order, function-
free Horn clauses enables systematic benchmark
creation and evaluation; future instantiations could
expand towards higher-order logic or probabilistic
reasoning. While synthetic task generation comes
with many benefits, such as ensuring novelty and
precise control, it makes it difficult to incorporate
real-world diversity and ambiguity. Our symbolic
judge provides deterministic, discrete scoring and
could potentially be enhanced to also recognize par-
tial solutions, syntactically invalid rules, or natural
language formulations. Overall, these points high-
light the flexibility of our framework and outline
promising directions for broadening its reach and
impact.

Acknowledgements

We acknowledge support of the hessian.Al Innova-
tion Lab (funded by the Hessian Ministry for Digi-
tal Strategy and Innovation), the hessian.AISC Ser-
vice Center (funded by the Federal Ministry of Edu-
cation and Research, BMBE, grant No 011S22091),
and the Centre for European Research in Trusted Al
(CERTAIN). Further, this work benefited from the
ICT-48 Network of Al Research Excellence Center

10

“TAILOR” (EU Horizon 2020, GA No 952215),
the Hessian research priority program LOEWE
within the project WhiteBox [GA No LOEWE/
2/13/519/03/06.001(0010)/77], the HMWK clus-
ter projects “Adaptive Mind” and “Third Wave of
AI”, and from the NHR4CES. This work was sup-
ported by the Priority Program (SPP) 2422 in the
subproject “Optimization of active surface design
of high-speed progressive tools using machine and
deep learning algorithms* funded by the German
Research Foundation (DFG). Further, this work
was funded by the European Union (Grant Agree-
ment no. 101120763 - TANGO) as well as the
AlephAlpha Collaboration lab 1141. Views and
opinions expressed are, however, those of the au-
thor(s) only and do not necessarily reflect those of
the European Union or the European Health and
Digital Executive Agency (HaDEA). Neither the
European Union nor the granting authority can be
held responsible for them.

Broader Impact

SLR and SLR-BENCH provide a scalable, repro-
ducible foundation for evaluating and advancing
logical reasoning in Al without relying on human
annotation. By enabling robust measurement and
targeted training, our framework supports progress
in areas such as scientific discovery, program syn-
thesis, and trustworthy Al. However, as LLMs ac-
quire deeper logical competence, the risk of dual-
use knowledge increases, enabling beneficial appli-
cations but also the potential for misuse, such as
generating deceptive arguments or bypassing safety
mechanisms. We urge responsible use and active
consideration of ethical risks as these capabilities
advance.

References

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. 2023. Qwen-vl: A versatile
vision-language model for understanding, localiza-
tion, text reading, and beyond. arXiv preprint
arXiv:2308.12966.

Yoshua Bengio, Jérdbme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th Annual International Confer-
ence on Machine Learning, ICML °09, page 41-48,
New York, NY, USA. Association for Computing
Machinery.

Victor Bursztyn, David Demeter, Doug Downey, and
Larry Birnbaum. 2022. Learning to perform complex

https://doi.org/10.1145/1553374.1553380
https://doi.org/10.18653/v1/2022.findings-emnlp.121

tasks through compositional fine-tuning of language
models. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2022, pages 1676—1686,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. ArXiv,
abs/1803.05457.

Andrew Cropper and Sebastijan Dumanci¢. 2022. In-
ductive logic programming at 30: A new introduction.
J. Artif. Int. Res., 74.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhi-
hong Shao, Zhuoshu Li, Ziyi Gao, and 181 others.
2025. Deepseek-rl: Incentivizing reasoning capa-
bility in llms via reinforcement learning. Preprint,
arXiv:2501.12948.

Quentin Delfosse, Jannis Bliiml, Fabian Tatai, Théo
Vincent, Bjarne Gregori, Elisabeth Dillies, Jan Pe-
ters, Constantin Rothkopf, and Kristian Kersting.
2025. Deep reinforcement learning agents are
not even close to human intelligence. Preprint,
arXiv:2505.21731.

Siqi Fan, Peng Han, Shuo Shang, Yequan Wang, and
Aixin Sun. 2025. Cothink: Token-efficient reason-
ing via instruct models guiding reasoning models.
Preprint, arXiv:2505.22017.

Clémentine Fourrier, Nathan Habib, Alina Lozovskaya,
Konrad Szafer, and Thomas Wolf. 2024. Open llm
leaderboard v2. https://huggingface.co/
spaces/open—1llm-leaderboard/open_
11lm_ leaderboard.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Bider-
man, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h,
Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey
Schoelkopf, Aviya Skowron, Lintang Sutawika, and
5 others. 2024a. The language model evaluation har-
ness.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Bider-
man, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h,
Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey
Schoelkopf, Aviya Skowron, Lintang Sutawika, and
5 others. 2024b. The language model evaluation
harness.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting
Qi, Martin Riddell, Luke Benson, Lucy Sun, Eka-
terina Zubova, Yujie Qiao, Matthew Burtell, David

11

Peng, Jonathan Fan, Yixin Liu, Brian Wong, Mal-
colm Sailor, Ansong Ni, Linyong Nan, Jungo Ka-
sai, Tao Yu, and 7 others. 2022. Folio: Natural lan-
guage reasoning with first-order logic. arXiv preprint
arXiv:2209.00840.

Lukas Helff, Wolfgang Stammer, Hikaru Shindo, De-
vendra Singh Dhami, and Kristian Kersting. 2025.
V-lol: A diagnostic dataset for visual logical learning.
Journal of Data-centric Machine Learning Research.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021. Measuring massive multitask language
understanding. Proceedings of the International Con-
ference on Learning Representations (ICLR).

Mehran Kazemi, Bahare Fatemi, Hritik Bansal, John
Palowitch, Chrysovalantis Anastasiou, Sanket Vaib-
hav Mehta, Lalit K. Jain, Virginia Aglietti, Disha
Jindal, Peter Chen, Nishanth Dikkala, Gladys Tyen,
Xin Liu, Uri Shalit, Silvia Chiappa, Kate Olszewska,
Yi Tay, Vinh Q. Tran, Quoc V. Le, and Orhan
Firat. 2025. Big-bench extra hard. Preprint,
arXiv:2502.19187.

Jiin Kim, Byeongjun Shin, Jinha Chung, and Minsoo
Rhu. 2025. The cost of dynamic reasoning: Demysti-
fying ai agents and test-time scaling from an ai infras-
tructure perspective. Preprint, arXiv:2506.04301.

Aida Kostikova, Zhipin Wang, Deidamea Bajri, Ole
Putz, Benjamin Paassen, and Steffen Eger. 2025.
Lllms: A data-driven survey of evolving research
on limitations of large language models.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Bill Yuchen Lin. 2024. Zeroeval: A unified framework
for evaluating language models.

Bill Yuchen Lin, Ronan Le Bras, Kyle Richardson,
Ashish Sabharwal, Radha Poovendran, Peter Clark,
and Yejin Choi. 2025. Zebralogic: On the scaling
limits of llms for logical reasoning.

Bill Yuchen Lin, Yuntian Deng, Khyathi Chandu, Faeze
Brahman, Abhilasha Ravichander, Valentina Py-
atkin, Nouha Dziri, Ronan Le Bras, and Yejin Choi.
2024. Wildbench: Benchmarking 1lms with chal-
lenging tasks from real users in the wild. Preprint,
arXiv:2406.04770.

Hanmeng Liu, Jian Liu, Leyang Cui, Zhiyang Teng, Nan
Duan, Ming Zhou, and Yue Zhang. 2023. Logiqa
2.0—an improved dataset for logical reasoning in
natural language understanding. IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing,
31:2947-2962.

https://doi.org/10.18653/v1/2022.findings-emnlp.121
https://doi.org/10.18653/v1/2022.findings-emnlp.121
https://api.semanticscholar.org/CorpusID:3922816
https://api.semanticscholar.org/CorpusID:3922816
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2505.21731
https://arxiv.org/abs/2505.21731
https://arxiv.org/abs/2505.22017
https://arxiv.org/abs/2505.22017
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://arxiv.org/abs/2209.00840
https://arxiv.org/abs/2209.00840
https://openreview.net/forum?id=IkbFIPiqFe
https://arxiv.org/abs/2502.19187
https://arxiv.org/abs/2506.04301
https://arxiv.org/abs/2506.04301
https://arxiv.org/abs/2506.04301
https://api.semanticscholar.org/CorpusID:278905232
https://api.semanticscholar.org/CorpusID:278905232
https://github.com/WildEval/ZeroEval
https://github.com/WildEval/ZeroEval
https://arxiv.org/abs/2502.01100
https://arxiv.org/abs/2502.01100
https://arxiv.org/abs/2406.04770
https://arxiv.org/abs/2406.04770
https://doi.org/10.1109/TASLP.2023.3293046
https://doi.org/10.1109/TASLP.2023.3293046
https://doi.org/10.1109/TASLP.2023.3293046

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang,
Yile Wang, and Yue Zhang. 2020. Logiqga: A chal-
lenge dataset for machine reading comprehension
with logical reasoning. In Proceedings of the Twenty-
Ninth International Joint Conference on Artificial
Intelligence, IJCAI-20, pages 3622-3628. Interna-
tional Joint Conferences on Artificial Intelligence
Organization.

Junteng Liu, Yuanxiang Fan, Zhuo Jiang, Han Ding,
Yongyi Hu, Chi Zhang, Yiqi Shi, Shitong Weng,
Aili Chen, Shiqi Chen, Yunan Huang, Mozhi Zhang,
Pengyu Zhao, Junjie Yan, and Junxian He. 2025. Syn-
logic: Synthesizing verifiable reasoning data at scale
for learning logical reasoning and beyond. Preprint,
arXiv:2505.19641.

John W Lloyd. 2012. Foundations of logic program-
ming. Springer Berlin, Heidelberg.

Man Luo, Shrinidhi Kumbhar, Ming shen, Mihir Parmar,
Neeraj Varshney, Pratyay Banerjee, Somak Aditya,
and Chitta Baral. 2024. Towards logiglue: A brief
survey and a benchmark for analyzing logical rea-
soning capabilities of language models. Preprint,
arXiv:2310.00836.

Kaijing Ma, Xinrun Du, Yunran Wang, Haoran Zhang,
Zhoufutu Wen, Xingwei Qu, Jian Yang, Jiaheng
Liu, Minghao Liu, Xiang Yue, Wenhao Huang, and
Ge Zhang. 2024. Kor-bench: Benchmarking lan-
guage models on knowledge-orthogonal reasoning
tasks. Preprint, arXiv:2410.06526.

Meta, Aaron Grattafiori, Abhimanyu Dubey, Abhinav
Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, and 543
others. 2024. The llama 3 herd of models. Preprint,
arXiv:2407.21783.

Ryszard S. Michalski. 1980. Pattern recognition as rule-
guided inductive inference. IEEE Transactions on
Pattern Analysis and Machine Intelligence, PAMI-
2(4):349-361.

Tom Michael Mitchell. 1997. Machine learning, inter-
national edition. In McGraw-Hill Series in Computer
Science.

Philipp Mondorf and Barbara Plank. 2024. Liar, liar,
logical mire: A benchmark for suppositional reason-
ing in large language models. In Proceedings of
the 2024 Conference on Empirical Methods in Natu-
ral Language Processing, pages 7114-7137, Miami,
Florida, USA. Association for Computational Lin-
guistics.

Terufumi Morishita, Gaku Morio, Atsuki Yamaguchi,
and Yasuhiro Sogawa. 2024. Enhancing reasoning
capabilities of 1lms via principled synthetic logic cor-
pus. In Annual Conference on Neural Information
Processing Systems.

12

Stephen Muggleton and Luc de Raedt. 1994. Induc-
tive logic programming: Theory and methods. The
Journal of Logic Programming, 19-20:629—679.

OpenAl. 2025. Openai 03 and o4-mini system
card. https://cdn.openai.com/pdf/

2221c875-02dc-4789-800b-e7758£3722c1/

o3-and-o4-mini-system-card.pdf.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, and
262 others. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Tafjord Oyvind, Dalvi Bhavana, and Clark Peter. 2021.
ProofWriter: Generating implications, proofs, and
abductive statements over natural language. In Find-
ings of the Association for Computational Linguistics:
ACL-1JCNLP 2021, pages 3621-3634. Association
for Computational Linguistics.

Bhrij Patel, Souradip Chakraborty, Wesley A. Sut-
tle, Mengdi Wang, Amrit Singh Bedi, and Dinesh
Manocha. 2024a. Aime: Ai system optimization via
multiple 1lm evaluators. Preprint, arXiv:2410.03131.

Nisarg Patel, Mohith Kulkarni, Mihir Parmar, Aashna
Budhiraja, Mutsumi Nakamura, Neeraj Varshney, and
Chitta Baral. 2024b. Multi-logieval: Towards eval-
uating multi-step logical reasoning ability of large
language models. Preprint, arXiv:2406.17169.

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li,
Josephina Hu, Hugh Zhang, Chen Bo Calvin Zhang,
Mohamed Shaaban, John Ling, Sean Shi, Michael
Choi, Anish Agrawal, Arnav Chopra, Adam Khoja,
Ryan Kim, Richard Ren, Jason Hausenloy, Oliver
Zhang, Mantas Mazeika, and 1090 others. 2025. Hu-
manity’s last exam. Preprint, arXiv:2501.14249.

Shanghaoran Quan, Jiaxi Yang, Bowen Yu, Bo Zheng,
Dayiheng Liu, An Yang, Xuancheng Ren, Bofei
Gao, Yibo Miao, Yunlong Feng, and 1 others. 2025.
Codeelo: Benchmarking competition-level code gen-
eration of llms with human-comparable elo ratings.
arXiv preprint arXiv:2501.01257.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-
lian Michael, and Samuel R. Bowman. 2024. GPQA:
A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling.

Abulhair Saparov and He He. 2023. Language models
are greedy reasoners: A systematic formal analysis
of chain-of-thought. In The Eleventh International
Conference on Learning Representations.

Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh,
Maxwell Horton, Samy Bengio, and Mehrdad Fara-
jtabar. 2025. The illusion of thinking: Understanding
the strengths and limitations of reasoning models via
the lens of problem complexity.

https://doi.org/10.24963/ijcai.2020/501
https://doi.org/10.24963/ijcai.2020/501
https://doi.org/10.24963/ijcai.2020/501
https://arxiv.org/abs/2505.19641
https://arxiv.org/abs/2505.19641
https://arxiv.org/abs/2505.19641
https://arxiv.org/abs/2310.00836
https://arxiv.org/abs/2310.00836
https://arxiv.org/abs/2310.00836
https://arxiv.org/abs/2410.06526
https://arxiv.org/abs/2410.06526
https://arxiv.org/abs/2410.06526
https://arxiv.org/abs/2407.21783
https://doi.org/10.1109/TPAMI.1980.4767034
https://doi.org/10.1109/TPAMI.1980.4767034
https://api.semanticscholar.org/CorpusID:43861320
https://api.semanticscholar.org/CorpusID:43861320
https://doi.org/10.18653/v1/2024.emnlp-main.404
https://doi.org/10.18653/v1/2024.emnlp-main.404
https://doi.org/10.18653/v1/2024.emnlp-main.404
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2021.findings-acl.317
https://doi.org/10.18653/v1/2021.findings-acl.317
https://arxiv.org/abs/2410.03131
https://arxiv.org/abs/2410.03131
https://arxiv.org/abs/2406.17169
https://arxiv.org/abs/2406.17169
https://arxiv.org/abs/2406.17169
https://arxiv.org/abs/2501.14249
https://arxiv.org/abs/2501.14249
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=qFVVBzXxR2V
https://openreview.net/forum?id=qFVVBzXxR2V
https://openreview.net/forum?id=qFVVBzXxR2V
https://ml-site.cdn-apple.com/papers/the-illusion-of-thinking.pdf
https://ml-site.cdn-apple.com/papers/the-illusion-of-thinking.pdf
https://ml-site.cdn-apple.com/papers/the-illusion-of-thinking.pdf

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle
Pineau, and William L. Hamilton. 2019. CLUTRR:
A diagnostic benchmark for inductive reasoning from
text. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4506-4515, Hong Kong, China. Association for Com-
putational Linguistics.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi,
Denny Zhou, and Jason Wei. 2023. Challenging
big-bench tasks and whether chain-of-thought can
solve them. In ACL (Findings), pages 13003—13051.

Jason Weston, Antoine Bordes, Sumit Chopra, and
Tomas Mikolov. 2015. Towards ai-complete question
answering: A set of prerequisite toy tasks. arXiv:
Artificial Intelligence.

Tim Woydt, Moritz Willig, Antonia Wiist, Lukas Helff,
Wolfgang Stammer, Constantin A. Rothkopf, and
Kristian Kersting. 2025. Fodor and pylyshyn’s legacy
— still no human-like systematic compositionality in
neural networks.

Antonia Wiist, Tim Tobiasch, Lukas Helff, Inga
Ibs, Wolfgang Stammer, Devendra S Dhami, Con-
stantin A Rothkopf, and Kristian Kersting. 2025.
Bongard in wonderland: Visual puzzles that still
make ai go mad? In Proceedings of the 42nd Inter-
national Conference on Machine Learning (ICML).

Chulin Xie, Yangsibo Huang, Chiyuan Zhang, Da Yu,
Xinyun Chen, Bill Yuchen Lin, Bo Li, Badih Ghazi,
and Ravi Kumar. 2024. On memorization of large
language models in logical reasoning. Preprint,
arXiv:2410.23123.

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo,
Yugian Hong, Bryan Dai, Joey Zhou, Kai Qiu, Zhi-
rong Wu, and Chong Luo. 2025. Logic-rl: Un-
leashing 1lm reasoning with rule-based reinforcement
learning. Preprint, arXiv:2502.14768.

Nathan Young, Qiming Bao, Joshua Bensemann, and
Michael Witbrock. 2022. AbductionRules: Train-
ing transformers to explain unexpected inputs. In
Findings of the Association for Computational Lin-
guistics: ACL 2022, pages 218-227, Dublin, Ireland.
Association for Computational Linguistics.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma.
2024. Llamafactory: Unified efficient fine-tuning
of 100+ language models. In Proceedings of the

13

62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 3: System Demonstra-
tions), Bangkok, Thailand. Association for Computa-
tional Linguistics.

Yujun Zhou, Jiayi Ye, Zipeng Ling, Yufei Han, Yue
Huang, Haomin Zhuang, Zhenwen Liang, Kehan
Guo, Taicheng Guo, Xiangqi Wang, and Xiangliang
Zhang. 2025. Dissecting logical reasoning in llms:
A fine-grained evaluation and supervision study.
Preprint, arXiv:2506.04810.

https://doi.org/10.18653/v1/D19-1458
https://doi.org/10.18653/v1/D19-1458
https://doi.org/10.18653/v1/D19-1458
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824
https://api.semanticscholar.org/CorpusID:3178759
https://api.semanticscholar.org/CorpusID:3178759
https://api.semanticscholar.org/CorpusID:279120044
https://api.semanticscholar.org/CorpusID:279120044
https://api.semanticscholar.org/CorpusID:279120044
https://arxiv.org/abs/2410.23123
https://arxiv.org/abs/2410.23123
https://arxiv.org/abs/2502.14768
https://arxiv.org/abs/2502.14768
https://arxiv.org/abs/2502.14768
https://doi.org/10.18653/v1/2022.findings-acl.19
https://doi.org/10.18653/v1/2022.findings-acl.19
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
https://arxiv.org/abs/2506.04810
https://arxiv.org/abs/2506.04810

A Task Specification

Each task in SLR-BENCH is precisely governed by
a combination of language features and task config-
uration parameters, enabling fine-grained control
over complexity and diversity. A task specification
comprises two main components: (i) the logical
language, which determines the set of predicates
and argument types available, and (ii) the task con-
figuration, which defines structural aspects of the
task such as problem size, background knowledge
sampling, rule length, sampling strategy, and the
combinatorial space of realizable tasks. Tab. 2
details the curriculum’s level-wise specifications,
showing how both language elements and the task
config to create the individual levels.

A.1 Language

Predicates and Types. SLR defines a flexible,
extensible vocabulary to support the systematic
generation and evaluation of logical reasoning
tasks. The primary predicate signatures and their
argument types used in SLR-BENCH are:

eastbound(TRAIN)
westbound(TRAIN)
has_car(TRAIN, CAR)
car_num(CAR, NUM)
car_color(CAR, COLOR)
car_len(CAR, LEN)
has_wall(CAR, WALL)
has_roof(CAR, ROOF)
has_payload(CAR, LOADS)
load_num(CAR, NPAY')
has_wheel(CAR, WHEELS)
has_window(CAR, WINDOW)
car_type(CAR, CTYPE)

14

Grounding Domains. Each argument type is
grounded in a finite set of discrete constants:

NUM ::= [0-9]+
CAR ::= [0-9]+
COLOR ::= red | blue | green |
vellow | white
LEN ::
WALL ::

short | long

full | railing

ROOF ::=roof_foundation | solid_roof |

braced_roof | peaked_roof | none

WHEELS ::= 2 3
LOADS ::=blue_box | golden_vase |
barrel | diamond | metal_pot |
oval_vase | none
NPAY ==0|1]2]|3
WINDOW ::= full | half | none
CTYPE ::=passenger | freight | mixed
NPAX ::=[0-9]

Grammar Constraints. Predicates are only in-
stantiated with semantically compatible constant
types. For example, car_color(-,-) only takes
car objects and color constants as arguments; ill-
typed facts are excluded during synthesis.

B Logic Rewards Provided by the
Symbolic Judge

The SYMBOLICJUDGE computes verifiable logic
rewards for a candidate hypothesis H against a
given background knowledge base B and sets of
positive (E1) and negative (£) examples. These
rewards are used for both evaluation and model
training, and they include three distinct metrics:

Syntax Validity Score: This binary score (0
or 1) indicates whether the candidate hypothesis
H is a syntactically and semantically valid Prolog
rule. This serves as a prerequisite check for further
evaluation; if H is invalid, other scores are typically
assigned 0.

OVERALLSCORE: This metric provides a bi-
nary indication of perfect task completion. Itis 1 if
and only if the hypothesis H, in conjunction with
the background knowledge B, correctly entails all
positive examples (E) and correctly refutes all

negative examples (£ 7). Otherwise, the score is 0.

OVERALLSCOREp g+ p-(H) = [
Vge EY:(BUH)Eq A
Vge E- : (BUH) i~ q] € {0,1}

Where [-] is the Iverson bracket, evaluating to 1 if
the condition inside is true, and O otherwise.
PARTIALSCORE: This metric reflects the frac-
tion of examples (from both ET and E ™) that are
correctly classified by the candidate hypothesis H
when combined with the background knowledge B.
This provides a continuous signal of progress, even
when the overall task is not perfectly completed.

PARTIALSCOREp g+ - (H) =

Ygep((BUH) = q]+ Y ep-[(BUH) = q] |

|E+ U E~|

Here, the numerator sums the count of correctly
entailed positive examples and correctly refuted
negative examples. The denominator is the total
number of examples, ensuring the score is normal-
ized between 0 and 1.

These metrics provide rich feedback for both
discrete evaluation (e.g., for filtering valid rules)
and continuous optimization (e.g., for guiding re-
inforcement learning agents), allowing for robust
assessment of learned logical hypotheses.

C Compute Costs and Model Pricing

Compute Costs. Compute costs are reported as
the total USD cost to run all prompts, based on
publicly listed API prices as of 01.05.2025. Pricing
ignores server-side token caching, as actual cache
hit counts are unavailable. Table 5 summarizes
per-model cost rates and API sources.

D Example: Task Synthesis Process
E LLM Guided Rule Generation

This section provides the prompt used for LLM-
guided rule generation. The prompt was carefully
designed to be both diverse and comprehensive, in-
cluding a wide range of logical structures and Pro-
log features such as conjunction, disjunction, nega-

tion, recursion, aggregation, and pattern matching. .

By presenting the model with these varied and com-
plex examples, we encourage the generation of
challenging and realistic logic rules. This diversity
is crucial for robust model generation of new rules,

15

as it ensures that the LLM is exposed to representa-
tive samples of possible rule types encountered in
real-world logic programming tasks.

1. Conjunction with Existential Quantification:
There exists a red short car

There is at least one car that is both short and red.

eastbound (Train)

has_car (Train, Car),
car_color (Car, red),
car_len (Car, short).

2. Disjunction: Some car is white or yellow.

At least one car is either white or yellow.

eastbound (Train)
has_car(Train, Car),
(car_color (Car, white) ;
Car, yellow)) .

car_color (

3. Negation: The train does not contain any red
cars

No car on the train is red.

eastbound (Train)
\+ (has_car (Train,
Car, red)).

Car), car_color (

4. Inequality/Distinctness: Two cars must have
different colors

There are at least two cars on the train with different
colors.

CarAd),
CarB),

eastbound (Train)
has_car (Train,
has_car (Train,
CarA \= CarB,
car_color (CarA, Colorl),
car_color (CarB, Color2),
Colorl \= Color2.

5. Aggregation/Counting: There are more
green cars than yellow cars

The train contains more green cars than yellow
cars.

eastbound (Train)
findall (Car,
car_color (Car,
findall (Car,
car_color (Car,
length (Greens,
length (Yellows,
G > Y.

(has_car (Train, Car),
green)), Greens),
(has_car (Train, Car),
yellow)), Yellows),
G),
Y),

Table 5: Model Pricing ($ per 1M tokens). API rates as of 01.05.2025.

Model Model Tag Input Input(Cached) Output API

gpt-4.1 gpt-4.12025-04-14 2.00 0.50 8.00 OpenAl
gpt-4.1-mini gpt-4.1-mini-2025-04-14 0.40 0.10 1.60 OpenAl
gpt-4.1-nano gpl-4.1-nano-2025-04-14 0.10 0.025 0.40 OpenAl
gpt-4.5-preview gpt-4.5-preview-2025-02-27 75.00 37.50 150.00 OpenAl
gpt-4o 2pt-40-2024-08-06 2.50 1.25 10.00 OpenAl
gpt-4o-mini gpt-do-mini-2024-07-18 0.15 0.075 0.60 OpenAl

ol 01-2024-12-17 15.00 7.50 60.00 OpenAl
ol-pro 01-pr0-2025-03-19 150.00 600.00 OpenAl

03 03-2025-04-16 10.00 2.50 40.00 OpenAl
04-mini-low 04-mini-2025-04-16 1.10 0.275 4.40 OpenAl
04-mini 04-mini-2025-04-16 1.10 0.275 4.40 OpenAl
04-mini-high o4-mini-2025-04-16 1.10 0.275 4.40 OpenAl
03-mini 03-mini-2025-01-31 1.10 0.55 4.40 OpenAl
ol-mini o1-mini-2024-09-12 1.10 0.55 4.40 OpenAl
DeepSeek-R1 DeepSeek-R1-Distill-Llama-70B 0.10 0.40 OpenRouter
Internlm2-20b Internm2-20b 0.15 0.20 Estimated
Llama-3.2-3B Llama-3.2-3B-Instruct 0.015 0.025 OpenRouter
Llama-3.1-8B Llama-3.1-8B-Instruct 0.02 0.03 OpenRouter
Llama-3.3-70B Llama-3.3-70B-Instruct 0.10 0.25 OpenRouter
Mixtral-8x7B Mixtral-8x7B-Instruct-v0. 1 0.24 0.24 OpenRouter
Qwen2-57B-A14B Qwen2-57B-A14B-Instruct 0.70 0.70 Estimated
QwQ-32B QWQ-32B-Preview 0.15 0.20 OpenRouter
CodeLlama-34b CodeLlama-34b-Instruct-hf 0.776 0.776 TogetherAl
MetaTuned Llama Liama-3.1-8B-Tuned-FFT 0.02 0.03 OpenRouter
MetaTuned Llama LORA Liama-3.1-85-Tuned-LoRA 0.02 0.03 OpenRouter

6. Mutual Exclusion: Only one car is yellow; all
others are not yellow

There is exactly one yellow car; all others are not
yellow.

eastbound (Train) :-
findall (Car, (has_car(Train, Car),
car_color (Car, yellow)), [YellowCar
1)
forall (
(has_car (Train, Car), Car \=
YellowCar),
(car_color (Car, NotYellow),
NotYellow \= yellow)

7. Uniqueness: No two cars have the same color

All cars have unique colors.

eastbound (Train) :—
findall (Color, (has_car(Train, Car),
car_color (Car, Color)), Colors),
sort (Colors, UniqueColors),
length (Colors, N),
length (UniqueColors, N).

o =

16

8. No-Other/Uniqueness: Only two cars in the
train

Only two cars are present in the train.

eastbound (Train) :-—
findall (Car, has_car (Train,
Cars),
length (Cars, 2).

Car),

9. Universal Quantification: Every full-wall car
is long

All cars with a full wall must be long.

eastbound (Train) :-—
forall(
(has_car (Train,
full)),
car_len (Car,

Car), has_wall (

Car,
long)
) o

10. Conditional Implication: All long cars are
either red or blue
Every long car is either red or blue.

eastbound (Train) :-—
forall (

)

&}

(has_car (Train, Car), car_len(
Car, long)),
(car_color (Car, Color), (Color =
red ; Color = blue))

e

11. Conditional Aggregation: All long cars are
either red or blue

Every long car is either red or blue.

eastbound (Train) :-

forall (

(has_car (Train, Car), car_len(
Car, long)),

(car_color (Car, Color), (Color =
red ; Color = blue))

) o

12. Pattern Matching: All full-wall cars are
white

Every full-wall car is white.

eastbound (Train)

forall (

(has_car (Train, Car), has_wall (Car
, full)),

car_color (Car, white)

) o

13. Symmetry: Two cars are neighbors with
same color

CarA and CarB are neighbors on the train and have
the same color.

eastbound (Train) :-
has_car (Train,
has_car (Train,
CarA \= CarB,
car_num (CarA, N1),
car_num (CarB, N2),
(N2 Nl + 1 ; N2
car_color (CarA, Color),
car_color (CarB, Color).

CarAh),
CarB),

14. Combinatorial Group: Exactly two short
yellow cars

There are exactly two yellow cars, and both are
short.

eastbound (Train) :-
findall (Car, (has_car(Train, Car),
car_color (Car, yellow), car_len(Car,
short)), L),
length (L, 2).

15. Recursion: At least one long car in the train

The train has at least one long car.

eastbound([Car|Cars]) :—
car_len(Car, long)
7
eastbound (Cars) .

&)

S}

>

>

17

16. Existence of a Structure (Sublist Pattern
Matching)

Exists three cars in sequence: Num, Num-+l,

Num-+2, matching pattern.

eastbound (Train)

has_car (Train, Carl), car_num(Carl,
N),

car_len(Carl, short),

N2 is N+1, N3 is N+2,

has_car (Train, Car2), car_num(Car2,
N2), car_len(Car2, long),

has_car (Train, Car3), car_num(Car3,
N3), car_len(Car3, short).

17. Min/Max and Extremal Values

A short car followed by a long car followed by a
short car, anywhere in the train.

eastbound (Train)
findall (N, (has_car (Train,
car_num(Car, N)), Numbers),
max_list (Numbers, Max),
has_car (Train, LastCar),
car_num(LastCar, Max),
car_color (LastCar, white).

Car),

18. Subset/Superset Constraints

All full-wall cars are among the first three cars.

eastbound (Train)

forall (

(has_car (Train, Car), has_wall (Car
, full)),

(car_num(Car, N), N =< 3)

) o

19. Projection/Aggregation Over Multiple
Properties

All pairs of cars have different (color, length) tu-
ples.

CarAd),

eastbound (Train)

has_car (Train, has_car (Train,

CarB), CarA \= CarB,

car_color (CarA, ColA), car_len(CarAa,
LenA),

car_color (CarB, ColB), car_len(CarB,
LenB),

(ColA \= ColB ; LenA \= LenB).

20. All-Different on Multiple Attributes

Enforce all car colors are different, AND all car
numbers are different (car numbers are unique by
assumption, but see structure).

eastbound (Train)
findall (Color, (has_car(Train, Car),
car_color (Car, Color)), Colors),
sort (Colors, UniqueColors),
length (Colors, N), length/(
UniqueColors, N).

F First-Order Logic Details

We revisit essential definitions of first-order logic
that we follow in this paper. An FOL Language L
isatuple (P, A, F,V), where P is a set of predi-
cates, A is a set o constants, F is a set of function
symbols (functors), and V is a set of variables. A
term 1is a constant, a variable, or a term that con-
sists of a functor. A ground term is a term with
no variables. We denote n-ary predicate p by p/n.
An atom is a formula p(t4, ..., ty), where p is an
n-ary predicate symbol and t;, ..., t, are terms.
A ground atom or simply a fact is an atom with no
variables. A literal is an atom or its negation. A
positive literal is just an atom. A negative literal
is the negation of an atom. A clause is a finite dis-
junction (V) of literals. A definite clause is a clause
with exactly one positive literal. If A, By, ..., B,
are atoms, then AV =B V...V =B, is a definite
clause. We write definite clauses in the form of
A :- Bi,...,B,. Atom A is called the head, and
set of negative atoms { By, ..., By} is called the
body. We call definite clauses by rules for simplic-
ity in this paper. An atom is an atomic formula. For
formula F' and G, —=F, FF A G, and F' V G are also
formulas. Interpretation of language L is a tuple
(D,Za,Zr,Zp), where D is the domain, Z 4 is the
assignments of an element in D for each constant
a € A, Tr is the assignments of a function from
D™ to D for each n-ary function symbol £ € F,
and Zp is the assignments of a function from D"
to {T, L} for each n-ary predicate p € P. For
language £ and formula X, an interpretation Z
is a model if the truth value of X w.r.t 7 is true.
Formula X is a logical consequence or logical en-
tailment of a set of formulas #, denoted H = X,
if, Z is a model for H implies that Z is a model for
X for every interpretation Z of L.

G Training and Evaluation Details

G.1 Training Setup

For curriculum learning experiments on SLR-
BENCH, we fine-tune the Llama-3.1-8B-Instruct
model using supervised fine-tuning (SFT) with
LoRA adapters using LLaMA-Factory (Zheng
et al., 2024). Training is performed over two
epochs on approximately 17k examples, which are
presented sequentially, without shuffling, reflect-
ing a curriculum of increasing logical complex-
ity. Training is distributed across 8 GPUs using
DeepSpeed with ZeRO Stage 3 optimization, tak-
ing 4 hours. Both optimizer states and model pa-

18

rameters are offloaded to CPU with pinned mem-
ory to maximize GPU memory efficiency. The
AdamW optimizer is used in conjunction with a
Warmup Cosine learning rate scheduler. Mixed-
precision training is employed, with both bfloat16
and fp16 enabled in automatic mode. Communi-
cation overlap and contiguous gradients are acti-
vated to improve throughput, and model weights
are saved in 16-bit precision at each checkpoint.
Due to memory limitations, input sequences are
truncated to a maximum length of 6k tokens us-
ing the Llama3 template, restricting training to
slr_basic_train, slr_easy_train, and
slr_medium_train splits. Optimization is per-
formed using cross-entropy loss over the ground
truth rule R*, with a per-device batch size of 5
and gradient accumulation over 2 steps, resulting
in an effective batch size of 80 samples per step
across 8 GPUs. The learning rate is set to 2 X 1074,
scheduled with a cosine scheduler and a warmup
ratio of 0.03. All relevant hyperparameters and
training scripts are included in the codebase for full
reproducibility.

G.2 Evaluation Setup

For downstream evaluation, we use the Language
Model Evaluation Harness (Gao et al., 2024b) with
default settings for each benchmark, enabling few-
shot as multiturn prompting to support multi-turn
contexts where applicable, including the official
pass rate (typically pass@1) and whether evalua-
tion is performed in zero-shot or few-shot mode.
All evaluations are conducted on 8 GPUs using
vLLM (Kwon et al., 2023) for efficient batch in-
ference. Reported scores reflect accuracy for each
model and benchmark, and all results are based
on the official evaluation splits and standardized
prompt formatting consistent with the SLR curricu-
lum.

H Code and Licenses

This work introduces and publicly releases sev-
eral scientific artifacts, including the SLR frame-
work for scalable logical reasoning with large lan-
guage models, the SLR-BENCH dataset compris-
ing 19,000 tasks across 20 curriculum levels, and
associated training, evaluation, and logic validation
scripts. All code and data with the logic reward
interface will be made publicly available after pub-
lication.

All original software developed as part of this re-

search is distributed under the MIT License, while
the datasets are released under the Creative Com-
mons Attribution 4.0 International License (CC BY
4.0), unless specified otherwise in the respective
repositories. These licenses permit broad academic
and research use, as well as modification and re-
distribution, provided appropriate credit is given to
the original authors.

In addition to the artifacts created in this project,
several external resources were utilized, including
pretrained language models (e.g., Llama, OpenAl,
DeepSeek, Gemini) and open-source Python li-
braries such as HuggingFace Transformers and Py-
Torch. All third-party resources were used strictly
in accordance with their respective licenses and
intended research purposes, and are appropriately
cited in this paper and in the code repositories.

We further note that Al-based tools were used
during the preparation of this work. Specifically,
Al-guided writing assistants (such as ChatGPT)
were employed to refine scientific text, and GitHub
Copilot was used to support code development and
debugging. The use of these tools was limited
to improving clarity and efficiency; all research
design, results interpretation, and final manuscript
decisions were made by the authors.

The intended use of all released code and data is
for research, academic, and educational purposes.
Commercial use or deployment in production envi-
ronments is not permitted without explicit permis-
sion or legal review. Any derivatives or extensions
of the dataset must comply with the original li-
cense terms and the conditions of any incorporated
sources. Users are encouraged to consult the indi-
vidual license files provided in each repository for
further details.

I Potential Risks

While this work is primarily intended to advance
research in logical reasoning with language models,
we recognize several potential risks associated with
its development and open release. Enhanced rea-
soning capabilities in LLMs may be misused, for
example, in generating persuasive but misleading
arguments, automating manipulation, or circum-
venting safety mechanisms. The resources and
benchmarks we provide, although synthetic and
research-focused, could be repurposed for unin-
tended or dual-use applications.

Additionally, while our work does not directly
contribute to artificial general intelligence (AGI),

19

we acknowledge broader discussions in the Al com-
munity regarding the long-term risks of increas-
ingly capable Al systems. We believe the immedi-
ate risks of our work relate to dual-use and misuse
as described above, and we encourage responsible
use and ongoing monitoring of downstream appli-
cations as Al capabilities continue to evolve.

Synthesis Process and Outputs

Task Specification:
(i) Language £ = (V,G):
* Vocabulary V: Predicates P = {is_red_train/l, has_car/2, car_color/2,
car_len/2};Constants C = {t1l, t2, cl, c2, red, blue, short, long}
e Grammar G: Restricts predicates to apply to compatible constant types.
(i) Configuration ©: Rule length Rje, = 2; Problem size £ = (Kpos = 1, Fneg = 1)

Synthesis Steps:
1. Rule Synthesis: The RULEGENERATOR produces a latent ground-truth rule R*:

is_red_train(T) :- has_car (T, C), car_color(C, red).

2. Background Synthesis (Loop):

Iteration 1 (finds a positive example):
» Sample Background (b;): ‘has_car(tl, c1). car_color(cl, red).*
* Assign Label: Query g = is_red_train(tl). Entailment b; U R* |= ¢; holds. Result: (1, q;).
* Accept/Reject: |ET| < Kpos, sample is accepted. B < by, ET < {q:}.

Iteration 2 (finds a negative example):
» Sample Background (b2): ‘has_car(t2, c2). car_color(c2, blue).*
* Assign Label: Query go = is_red_train(t2). Entailment bs U R* |= g fails. Result: (0, g2).
* Accept/Reject: |[E~| < Kneg, sample is accepted. B <— B U by, E~ < {¢2}.

The loop terminates as both target sizes are met. The final task isZ = (B, E*T, E7).

Final Synthesizer Outputs:
1. Latent Ground-Truth Rule (R*):

is_red_train(T) :- has_car (T, C), car_color(C, red).
2. Validation Program (B, E™, E7):

has_car(tl, cl).
car_color(cl, red).
has_car(t2, c2).
car_color (c2, blue).
is_red_train(tl).

3. Instruction Prompt (example formats):
(a) Prolog-style Prompt:

% Given the following background knowledge:
has_car(tl, cl).

car_color(cl, red).

has_car(t2, c2).

car_color (c2, blue).

is_red_train(tl).

[

% Your task is to find a rule "is_red_train(T) :-" that solves

(b) Natural Language Prompt:

o)

% Given the following background knowledge:

Train tl has a car cl. The car cl is red.

Train t2 has a car c2. The car c2 is blue.

% Your task is to find a rule "is_red_train(T) :-" that solves

Figure 6: Step-by-step example of the automatic ILP task synthesis process in SLR. Given a task specification,
comprising a language and a task config, the synthesizer generates a ground-truth rule, samples background
knowledge, assigns positive and negative example labels, and produces symbolic (Prolog-style) or natural-language
prompts. The figure illustrates all intermediate steps and the final output of the synthesizer.

20

the bk.

the Dbk.

	Introduction
	Related Work
	SLR: Automatic Benchmark Synthesis
	Task Specification (Input)
	Task Synthesis (Generation)
	Training and Evaluation

	SLR-Bench: Instantiating SLR
	LLMs Can’t Do Induction at Scale
	Analysis and Key Findings

	Conclusion and Future Direction
	Limitations
	Task Specification
	Language

	Logic Rewards Provided by the Symbolic Judge
	Compute Costs and Model Pricing
	Example: Task Synthesis Process
	LLM Guided Rule Generation
	First-Order Logic Details
	Training and Evaluation Details
	Training Setup
	Evaluation Setup

	Code and Licenses
	Potential Risks

