
OCALM: Object-Centric Assessment
with Language Models

Timo Kaufmann∗,1,2, Jannis Blüml∗,3,4, Antonia Wüst∗,3, Quentin Delfosse∗,3,5,
Kristian Kersting3,4,6,7 & Eyke Hüllermeier1,2

timo.kaufmann@ifi.lmu.de, quentin.delfosse@cs.tu-darmstadt.de, blueml@cs.tu-darmstadt.de

1LMU Munich, Germany
2Munich Center of Machine Learning (MCML)
3AI and ML Group, Technical University of Darmstadt, Germany
4Hessian Center for Artificial Intelligence (hessian.AI)
5National Research Center for Applied Cybersecurity (Athene)
6Centre for Cognitive Science of Darmstadt
7German Research Center for Artificial Intelligence (DFKI)

Abstract

Properly defining a reward signal to efficiently train a reinforcement learning (RL)
agent is a challenging task. Designing balanced objective functions from which a
desired behavior can emerge requires expert knowledge, especially for complex en-
vironments. Learning rewards from human feedback or using large language models
(LLMs) to directly provide rewards are promising alternatives, allowing non-experts
to specify goals for the agent. However, black-box reward models make it difficult to
debug the reward. In this work, we propose Object-Centric Assessment with Lan-
guage Models (OCALM) to derive inherently interpretable reward functions for RL
agents from natural language task descriptions. OCALM uses the extensive world-
knowledge of LLMs while leveraging the object-centric nature common to many
environments to derive reward functions focused on relational concepts, providing
RL agents with the ability to derive policies from task descriptions.

1 Introduction

Defining reward functions for reinforcement learning (RL) agents is a notoriously challenging task
(Amodei et al., 2016; Knox et al., 2023; Delfosse et al., 2024; Kohler et al., 2024). Consequently,
reward functions are often unavailable or sub-optimal, suffering from issues such as reward sparsity
(Andrychowicz et al., 2017) or difficult credit assignment (Raposo et al., 2021; Wu et al., 2023).
While standard RL benchmark are equipped with predefined reward functions, real-world tasks
typically lack explicit reward signals. Existing approaches, such as reinforcement learning from
human feedback (RLHF) (Christiano et al., 2017; Ouyang et al., 2022; Kaufmann et al., 2023),
circumvent the reward specification problem by learning a reward model from human feedback.
However, it generally requires learning reward models from scratch, which can be slow and inefficient.
Further, their black box nature complicates the understanding and adjustment of the signal.

In contrast to RL agents, humans can learn to solve tasks without clear external rewards, deriving
their own objectives from task context (Deci & Ryan, 2013) (cf. Figure 1). Given such context,
humans formulate their own goals and generate a corresponding reward signal autonomously (Spence,
1947; Oudeyer & Kaplan, 2008). This capability stems from our rich understanding of the world,

∗Equal contribution

1

ar
X

iv
:2

40
6.

16
74

8v
1

 [
cs

.L
G

]
 2

4
Ju

n
20

24

mailto:timo.kaufmann@ifi.lmu.de
mailto:quentin.delfosse@cs.tu-darmstadt.de
mailto:blueml@cs.tu-darmstadt.de

Reward

State
Action

Context

State
Action

Reward

Figure 1: Contrary to RL agents, humans infer objectives from context. The RL setting
assumes the existence of an external reward function, wheres humans are able to infer rewards from
information about the environment and task context.

enabling us to derive specific goals from potentially vague task descriptions. Conversely, RL agents
typically lack common sense and are trained tabula rasa, devoid of any world knowledge. In this
paper, we demonstrate that large language models (LLMs) are capable of a similar feat, using their
acquired world knowledge to derive goals from task descriptions that can be used by RL agents.

While previous works have demonstrated that LLMs can provide RL agents with a reward signal
derived from context (Ma et al., 2024; Xie et al., 2024), these approaches do not capitalize on the
object-centric and relational nature prevalent in environments that incorporate relational reasoning
challenges. Assuming object-centricity offers a powerful inductive bias, enabling agents to reason
about the world in terms of objects and their interactions rather than through raw pixels or other low-
level features (Delfosse et al., 2023b; Luo et al., 2024). We demonstrate that by directing the LLM
to concentrate on the relationships between objects we can significantly enhance the effectiveness of
the generated reward functions and, consequently, improve the final agent’s performance.

We introduce Object-Centric Assessment with Language Models (OCALM, cf. Figure 2) as an
approach to derive inherently interpretable reward functions for RL agents from the natural-language
context of tasks. OCALM leverages both the extensive world-knowledge of LLMs and the object-
centric nature of many environments to equip RL agents with a rich understanding of the world and
the ability to derive goals from task descriptions. We leverage the powerful inductive bias of object-
centric reasoning, directing the LLM to focus on the relationships between objects in the environment
using a multi-turn interaction. OCALM comprises two main components: (1) a language model that
generates a symbolic reward function from text-based task context, and (2) an RL agent that trains
based on this derived reward function.

In our evaluations on the iconic Atari Learning Environment (ALE) (Mnih et al., 2013), we provide
experimental evidence of OCALM’s performance, particularly its capability to learn policies compa-
rable to those of agents trained with ground-truth reward functions. We demonstrate the benefits
of object-centric reasoning through the relational inductive bias, which significantly enhances the
quality of the learned reward functions. Additionally, we highlight the interpretability of the learned
reward functions and OCALM’s applicability to environments lacking ground-truth rewards.

In summary, our specific contributions are:

(i) We introduce OCALM, an approach for inferring relational (object-centric) reward functions
from text-based task descriptions for RL agents.

(ii) We show that OCALM produces learnable reward functions, that lead to RL agents performing
on par with agents trained on the original reward.

(iii) We empirically demonstrate the importance of object-centric reasoning for enhancing the per-
formance of OCALM.

(iv) We establish that OCALM provides inherently interpretable reward functions.

In the remainder of the paper, we provide a detailed description of OCALM and its components
(Section 2), followed by experimental evaluations and analysis (Section 3). We address related work
(Section 5) before concluding (Section 6).

2

def reward(ball, enemy, player):
 if ball.x > player.x:
 return -1
 if ball.x < enemy.x:
 return 1
 return 0

ball:{x,y, }
player:{x,y, }
enemy:{x,y, }

Figure 2: Object-Centric Assessment with Language Models. OCALM extracts a neurosym-
bolic abstraction from the raw state, provided to a language model together with the game’s context,
to generate a symbolic reward function (in python). The language model first generates relational
utility functions, that are then used in the reward function. This transparent reward can be in-
spected and used to train the policy.

2 Object-Centric Assessment with Language Models

OCALM provides RL agents with inherently interpretable reward functions derived from text-based
task descriptions. We follow a multistep approach, as depicted in Figure 2, to achieve this goal.

(1) Context definition. We start by gathering a natural-language task description and extracting
an object-centric state abstraction from the raw input state. The task descriptions (listed in Ap-
pendix A.4) are based on the short descriptions of each Atari environment (Towers et al., 2023),
slightly modified to add missing information. The object-centric state abstractions include the prop-
erties of each object, such as their class, position, size, and color. It is given by the classes provided
by the OCAtari framework (Delfosse et al., 2023a), i.e., the parent game object class and the game-
specific objects (examples are provided in Appendix A.3.2). Game objects related to the score were
omitted, since we assume a reward-free environment. The task description and the object-centric
state abstraction form the task context, which is provided to the language model.

(2) LLM-driven reward generation. The large language model (LLM) processes the task con-
text to generate a symbolic reward function in the form of Python source code. We use a guided
multi-turn approach to direct the LLM to focus on the relationships between objects in the envi-
ronment, similar to chain-of-thought reasoning (Wei et al., 2022).

(2.1) Relational concept extraction. The LLM is tasked with generating relational functions
that describe the relationships between objects in the environment (cf. Listing 4, Appendix A.3),
which are important to understand the game states.

(2.2) Reward generation. Given the task context and the created utility functions, the LLM
generates a symbolic reward function (cf. Listing 5, Appendix A.3).

(2.3) Reward scaling. As a last step, we prompt the LLM (Listing 6, Appendix A.3) to adjust
the created reward function in such a way that the rewards are on a scale from −1 to 1.

The resulting reward function is a Python function mapping the object-centric state abstraction to
a scalar reward with semantic descriptions. This code is interpretable, allowing experts to inspect
and verify it before proceeding. We also present an ablated version, OCALM (no relations), where
the LLM generates the reward function directly, skipping the relational and reward scaling steps.
While the no relations version may still use relational concepts, we do not prompt it to do so. We
use a modified prompt (Listing 3 in Appendix A.3) in that case. We provide a shortened example
of a generated reward function in Listing 9 and the full reward functions in Appendix A.4.

(3) Policy training. The derived reward function is used to train an RL agent, which learns a
policy that maximizes the reward. The agent can be trained using any conventional RL algorithm,
Proximal Policy Optimization (PPO, Schulman et al., 2017) in our experiments.

3

def detect_collision(chicken, car): [...]
def has_reached_top(chicken, screen_height): [...]
def progress_made(chicken, screen_height): [...]

def reward_function(game_objects) -> float:
Initialize reward
reward = 0.0

Constants
SCREEN_HEIGHT = 160
COLLISION_PENALTY = -1.0 # Scaled down to fit within [-1, 1]
PROGRESS_REWARD = 0.1 # Scaled down to incrementally increase reward
SUCCESS_REWARD = 1.0 # Maximum reward for reaching the top

Filter out chickens and cars from game_objects
chickens = [obj for obj in game_objects if isinstance(obj, Chicken)]
cars = [obj for obj in game_objects if isinstance(obj, Car)]

Assume control of the leftmost chicken (player's chicken)
if chickens:

player_chicken = min(chickens, key=lambda c: c.x)

Check if the chicken has reached the top
if has_reached_top(player_chicken, SCREEN_HEIGHT):

reward += SUCCESS_REWARD

Reward based on progress towards the top
reward += progress_made(player_chicken, SCREEN_HEIGHT) * PROGRESS_REWARD

Check for collisions with any car
for car in cars:

if detect_collision(player_chicken, car):
reward += COLLISION_PENALTY
break # Only penalize once per time step

Ensure reward stays within the range [-1, 1]
reward = max(min(reward, 1.0), -1.0)

return reward

Listing 1: An example reward function generated by OCALM (full). Implementation of relational
utility function elided and unused utilities removed. The full version is in Listing 9.

3 Experimental Evaluation

Experimental setup: We evaluate OCALM on four Atari games (Pong, Freeway, Skiing, and
Seaquest) from the ALE (Bellemare et al., 2013). All results are averaged over three seeds for
each agent configuration, with standard deviation indicated. We use Proximal Policy Optimization
(PPO, Schulman et al., 2017) as the base architecture due to its success in Atari games. The
input representation is a stack of four gray-scaled 84 × 84 images, introduced by Mnih et al. (2015).
All agents are trained using 10M frames with the implementation by Huang et al. (2022) and
default hyperparameters (cf. Appendix A.1). We compare our OCALM agents trained with the
’true’ reward functions given by the ALE environment, typically based on game score. Both types
of agents are evaluated against the true game score. All evaluations use the latest v5 version
of the ALE environments, following best-practices to prevent overfitting (Machado et al., 2018).
The results are presented as figures, refer to Appendix A.2 for numerical results. To generate
our reward function, we assume access to object-centric state descriptions of the game state. To
focus on description-based reward derivation, we use representations from the Object-Centric Atari
(OCAtari) framework (Delfosse et al., 2023a). While a learned object detector could extract objects
from raw input (Redmon et al., 2016; Lin et al., 2020), we use OCAtari for simplicity.

4

(a) Contrasting OCALM (full) rewards with environment rewards.

(b) Contrasting OCALM rewards (no relations) with environment rewards.

Figure 3: OCALM generates meaningful reward functions that correlate with the in-
tended game rewards. These figures show the performance of agents trained on OCALM-
derived rewards, measured on both the OCALM-derived reward and the environment reward. The
scales of rewards differ, therefore the axes are scaled to better visualize the correlation. Both plot
for the same game share the same axis range for better comparability. The results indicate that
(1) the reward functions generated by OCALM correspond to objectives learnable by an RL agent,
and (2) the OCALM-derived rewards correlate with the environment rewards. All experiments were
averaged over 3 seeds, with standard deviations shown as shaded areas.

We evaluate the OCALM approach to answer the following research questions:

(Q1) Does OCALM generate rewards that correspond to learnable tasks?
(Q2) Can OCALM agents master Atari environments without access to the true game score?
(Q3) How does relation-focused reward derivation influence performance and interpretability?
(Q4) How interpretable are the reward functions generated by OCALM agents?

OCALM generates reward signals allowing to master the game (Q1). We first test whether
OCALM generates rewards that correspond to learnable tasks. For this purpose, we track the
learning curves of agents trained on OCALM-derived rewards and verify that agents improve over
time, e.g., learn to maximize the reward. Figure 3 shows that this is generally the case, with an
exception for Freeway when using the ablated variant of OCALM (no relations) (see Figure 3b). For
all other games, and for all games when using the full OCALM pipeline, the agents improve over time
when measured on the OCALM-derived reward. Without the relational inductive bias, OCALM fails
to generate learnable rewards for Freeway. This is due to a bug in the generated reward function
(see Appendix A.4.1, Listing 10), which fails to identify the player-controlled chicken. Although
it is quite possible that the relational inductive bias helps to avoid such bugs through mechanisms
similar to chain-of-thought reasoning, they cannot entirely be prevented. More research is necessary
to understand the impact of the relational inductive bias on the failure rate of generated reward
functions. Iterative refinement could help further alleviate this issue, but generating successful
reward functions in a single shot remains a significant computational advantage.

5

Figure 4: OCALM agents can master different Atari environments. Comparing the perfor-
mance of agents trained on OCALM-derived rewards to agents trained on the true game score. All
experiments were averaged over 3 seeds, with standard deviations shown as shaded areas.

OCALM-based agents can master different Atari environments without access to the
true game score (Q2). Figure 4 shows the performance of agents trained on OCALM-derived
rewards compared to those trained on the true game score. Performance is measured on the true
game score in both cases, which OCALM agents cannot access during training. Our goal is not to
exceed the baseline agents’ performance, but to show that OCALM agents can master environments
without access to true rewards. Even though the OCALM-derived reward functions differ from the
environment reward, we observe that OCALM agents, when using relational prompting, reliably
improve their performance over the course of training when measured on the true game score. This
further confirms that the reward functions generated by OCALM are correlated with the true game
score, as discussed in the previous paragrpah. For Freeway and Seaquest in particular, OCALM
agents were able to reach competitive performance compared to the baseline agents, without requir-
ing access to the true game score. Although OCALM agents do not match the baseline’s performance
in Pong, they still show significant learning progress, again indicating the reward function generated
by OCALM correlates with the environment reward.

Relational prompting of OCALM agents improves reward quality (Q3). Figure 4 shows
that agents trained on OCALM-derived rewards with the relational inductive bias (denoted OCALM
(full)) generally outperform those without it (denoted OCALM (no relations)). This is particularly
evident in Freeway and Seaquest, where OCALM (full) agents reach performance competitive with
the baseline, while OCALM (no relations) agents fail to learn the task. In Pong and Skiing, OCALM
(full) agents perform equivalently to OCALM (no relations) agents, indicating the relational induc-
tive bias is not beneficial in all cases, but also does not harm performance. Note that the OCALM
(no relations) variant also skips the reward scaling step, which could be another contributing fac-
tor to the performance difference. Qualitatively, when inspecting the reward functions generated
by OCALM (Appendix A.4), we observe that the relational inductive bias helps to capture more
complex concepts, such as the distance to the nearest obstacle in Skiing Appendix A.4.4, which in
turn can lead to better-shaped reward functions.

OCALM generates interpretable reward functions (Q4). The reward functions generated by
OCALM (cf. Appendix A.4) are based on high-level objects and relations, documented with com-
ments, making them easy to interpret and understand. Relational prompting further aids in gen-
erating interpretable reward functions by introducing easy-to-understand relational concepts, which
add an abstraction layer to the reward function. Examples include collision detection, a relation gen-
erated for all games, and easily understandable concepts such as has_reached_top in Freeway (Ap-
pendix A.4.1), and more complex relations including multiple objects such as detect_score_event
in Pong (Appendix A.4.2) or check_gate_passage in Skiing (Appendix A.4.4).

6

Table 1: Relating OCALM to the most closely related work, EUREKA (Ma et al., 2024) and
Text2Reward (Xie et al., 2024). In contrast to our work, EUREKA and Text2Reward use mulitple
iterations to refine the reward function. All three approaches provide the LLM with additional
information about the environment and the task. While EUREKA and Text2Reward evaluate on
joint control tasks (locomotion and manipulation), we evaluate on relational tasks (Atari games).

Approach 1-Shot Add. Context Relational Evaluation
EUREKA No Source code No Joint control
Text2Reward No Symb. state abstr. No Joint control
OCALM (ours) Yes Symb. state abstr. Yes Relational tasks

4 Limitations

In our evaluations, we use the integrated object extractor of OCAtari which provides ground truth
data. Such extractors can also be optimized using supervised (Redmon et al., 2016) or self-supervised
(Lin et al., 2020; Delfosse et al., 2023c) object detection methods. We additionally rely on the
language models ability to generate a reward function in a single shot. While our relational inductive
bias helps, the LLM may miss crucial information such as the frequency of certain events, which is
important to tune the relative scales of different reward components. Related works (Ma et al., 2024;
Xie et al., 2024) rely on iterative refinement of the reward function, which could further enhance
OCALM’s performance. Nonetheless, the relational inductive bias enables OCALM to frequently
learn successful reward functions in a single shot, a significant computational efficiency advantage.

5 Related Work

OCALM lies at the intersection of several research areas, including reinforcement learning from
human feedback (RLHF), language-guided RL, explainable RL and relation extraction.

Reward learning has been studied in various forms and based on different sources, such as demon-
strations (Arora & Doshi, 2021) and human preferences (Kaufmann et al., 2023). While these
approaches can be very effective, they often require a large amount of human supervision, which
can be costly and time-consuming. Our method, by combining human guidance given through the
task description with the extensive world knowledge of LLMs, helps to alleviate this issue. Partic-
ularly closely related to ours, RL-VLM-F (Wang et al., 2024) is a notable approach that learns a
reward model from pairwise comparisons judged by a vision-language model based on a natural lan-
guage task description. Similar to OCALM, this leverages the prior knowledge of the vision-language
model. In contrast to our work, however, Wang et al. (2024) and most other reward learning methods
learn black-box reward models in the form of neural networks, which are not interpretable.

LLM-written reward functions have been studied by Ma et al. (2024), who propose EUREKA,
and Xie et al. (2024), who propose Text2Reward. These are the most closely related works to
ours. Table 1 highlights the most relevant differences between our method and theirs. Like our
approach, EUREKA and Text2Reward use LLMs to generate reward functions for RL agents. They
assume access to a natural language task and environment descriptions, specifying the observations’
structure. EUREKA assumes descriptions are given in the form of incomplete source code, while
Text2Reward requires class definitions that define the components of the state. Both approaches
evaluate the generated reward functions on robotic manipulation and locomotion tasks.
EUREKA and Text2Reward work iteratively, i.e. the reward function is refined based on feedback
from the environment or a human expert. This can help further improve the reward function, but also
requires more computational resources, time and supervision (either from a human expert or a success
signal). Since the focus of our study is on the benefits of object-centric reward specifications, we leave
the iterative refinement for future work and instead focus on improving single-shot performance.

7

In contrast to these prior works, we focus on relational reasoning environments, which require the
agent to reason about multiple objects and their interactions. We leverage a relational inductive
bias for improved one-shot performance, reducing the need for iterative refinement and human
supervision. We further evaluate on the prominent Atari Learning Environment (Bellemare et al.,
2013), the most used benchmark for reinforcement learning Delfosse et al. (2023a), and show the
importance of object-centric inductive biases for learning reward functions in this setting.

RL from natural language task descriptions is extensively studied (Nair et al., 2021; Zhou &
Small, 2021; Pang et al., 2023; Karalus, 2024). While these approaches are similar to ours in that
they use natural language to specify the task, they typically do not leverage the world knowledge of
LLMs, do not learn interpretable reward functions, and do not use relational inductive biases.

Explainable RL (XRL) is a subfield of explainable AI (XAI) (Milani et al., 2023; Dazeley et al.,
2023; Krajna et al., 2022). XRL aims to offer insights into the behavior of RL agents, aiding in
realigning agents. OCALM helps in this endeavor by providing inherently interpretable reward
functions, which can be inspected and verified by experts. This can be used to align the reward
functions with certain societal values, such as more pacific gameplays in e.g. shooting games.

Relation extraction has been studied in many forms, including prior task-knowledge integra-
tion (Reid et al., 2022), or human intervention (Steinmann et al., 2023; Wüst et al., 2024; Stammer
et al., 2024) and neural guidance from a pretrained fully deep agent (Delfosse et al., 2023b), based on
first order logic, notably from (Shindo et al., 2021; 2023), relying on human predicate or automated
predicate invention (Sha et al., 2023; 2024). In contrast to these works, we use an LLM to extract
relations between objects in the environment, which are then used to derive reward functions. Par-
ticularly relevant is the work by Wu et al. (2023), who extract relevant relations using LLMs with
access to an instruction manual. This differs from our work in that they use the extracted relations
to supplement existing rewards instead of entirely replacing the environment reward function.

6 Conclusion

We have presented OCALM, a novel approach for deriving inherently interpretable reward functions
for RL agents from natural language task descriptions. Our method leverages the extensive world
knowledge of LLMs and the object-centric, relational nature of the environment to generate symbolic
reward functions that can be inspected and verified by experts. We have shown that OCALM can be
used to train RL agents on Atari games, demonstrating that the derived reward functions are effective
in guiding the agent to learn the desired behavior. OCALM agents utilize the abstracted knowledge
of LLMs alongside explicit relational concepts to derive effective and inherently interpretable reward
functions for complex RL environments.

Broader Impact Statement

We here develop RL agents with transparent, human-defined objectives, improving RL accessibility
to non-experts. We thus reduce the barrier to entry for non-experts, helping to ensure that the
objectives of the agents are aligned with the user’s intentions. A malicious user can, however, utilize
such approaches for developing agents with harmful objectives, thereby potentially leading to a
negative impact on further users or society as a whole. Even so, the inspectable nature of transparent
approaches will allow to identify such potentially harmful misuses, or hidden misalignment.

Acknowledgments

This work is supported by LMUexcellent, funded by the Federal Ministry of Education and Research
(BMBF) and the Free State of Bavaria under the Excellence Strategy of the Federal Government and
the Länder and by the Hightech Agenda Bavaria. Additionally, we thank the following organizations
for funding this research project. The German Federal Ministry of Education and Research, the
Hessian Ministry of Higher Education, Research, Science and the Arts (HMWK) within their joint
support of the National Research Center for Applied Cybersecurity ATHENE, via the “SenPai:

8

XReLeaS” project as well as their cluster project within the Hessian Center for AI (hessian.AI)
“The Third Wave of Artificial Intelligence - 3AI”. Further was it supported by the Priority Program
(SPP) 2422 in the subproject “Optimization of active surface design of high-speed progressive tools
using machine and deep learning algorithms“ funded by the German Research Foundation (DFG).

References
Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.

Concrete Problems in AI Safety, 2016.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight Experience
Replay. In Advances in Neural Information Processing Systems (NIPS), 2017.

Saurabh Arora and Prashant Doshi. A Survey of Inverse Reinforcement Learning: Challenges,
Methods and Progress. Artificial Intelligence, 2021. doi: 10.1016/j.artint.2021.103500.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The Arcade Learning Environment: An
Evaluation Platform for General Agents. Journal of Artificial Intelligence Research, 2013. doi:
10.1613/jair.3912.

Paul Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
Reinforcement Learning from Human Preferences. In Advances in Neural Information Processing
Systems (NIPS), 2017.

Richard Dazeley, Peter Vamplew, and Francisco Cruz. Explainable reinforcement learning for
broad-XAI: A conceptual framework and survey. Neural Computing and Applications, 2023. doi:
10.1007/s00521-023-08423-1.

Edward L. Deci and Richard M. Ryan. Intrinsic Motivation and Self-Determination in Human
Behavior. Springer Science & Business Media, 2013.

Quentin Delfosse, Jannis Blüml, Bjarne Gregori, Sebastian Sztwiertnia, and Kristian Kersting.
OCAtari: Object-Centric Atari 2600 Reinforcement Learning Environments, 2023a.

Quentin Delfosse, Hikaru Shindo, Devendra Dhami, and Kristian Kersting. Interpretable and Ex-
plainable Logical Policies via Neurally Guided Symbolic Abstraction. In Advances in Neural
Information Processing Systems (NeurIPS), 2023b.

Quentin Delfosse, Wolfgang Stammer, Thomas Rothenbächer, Dwarak Vittal, and Kristian Kersting.
Boosting Object Representation Learning via Motion and Object Continuity. In Machine Learning
and Knowledge Discovery in Databases: Research Track, 2023c. doi: 10.1007/978-3-031-43421-
1_36.

Quentin Delfosse, Sebastian Sztwiertnia, Mark Rothermel, Wolfgang Stammer, and Kristian Kerst-
ing. Interpretable Concept Bottlenecks to Align Reinforcement Learning Agents, 2024.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Ki-
nal Mehta, and João G. M. Araújo. CleanRL: High-quality Single-file Implementations of Deep
Reinforcement Learning Algorithms. Journal of Machine Learning Research, 2022.

Jakob Karalus. Tell my why: Training preferences-based rl with human preferences and step-level
explanations. arXiv, 2024.

Timo Kaufmann, Paul Weng, Viktor Bengs, and Eyke Hüllermeier. A Survey of Reinforcement
Learning from Human Feedback, 2023.

W. Bradley Knox, Alessandro Allievi, Holger Banzhaf, Felix Schmitt, and Peter Stone.
Reward (Mis)design for autonomous driving. Artificial Intelligence, 2023. doi:
10.1016/j.artint.2022.103829.

9

https://doi.org/10.1016/j.artint.2021.103500
https://doi.org/10.1613/jair.3912
https://doi.org/10.1007/s00521-023-08423-1
https://doi.org/10.1007/978-3-031-43421-1_36
https://doi.org/10.1007/978-3-031-43421-1_36
https://doi.org/10.1016/j.artint.2022.103829

Hector Kohler, Quentin Delfosse, Riad Akrour, Kristian Kersting, and Philippe Preux. Interpretable
and editable programmatic tree policies for reinforcement learning. In Workshop on Interpretable
Policies in Reinforcement Learning@ RLC-2024, 2024.

Agneza Krajna, Mario Brcic, Tomislav Lipic, and Juraj Doncevic. Explainability in reinforcement
learning: Perspective and position, 2022.

Zhixuan Lin, Yi-Fu Wu, Skand Vishwanath Peri, Weihao Sun, Gautam Singh, Fei Deng, Jindong
Jiang, and Sungjin Ahn. SPACE: Unsupervised Object-Oriented Scene Representation via Spa-
tial Attention and Decomposition. In Proceedings of the International Conference on Learning
Representations (ICLR), 2020.

Lirui Luo, Guoxi Zhang, Hongming Xu, Yaodong Yang, Cong Fang, and Qing Li. INSIGHT: End-
to-End Neuro-Symbolic Visual Reinforcement Learning with Language Explanations, 2024.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-
man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-Level Reward Design
via Coding Large Language Models. In Proceedings of the International Conference on Learning
Representations (ICLR), 2024.

Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and
Michael Bowling. Revisiting the Arcade Learning Environment: Evaluation Protocols and
Open Problems for General Agents. Journal of Artificial Intelligence Research, 2018. doi:
10.1613/jair.5699.

Stephanie Milani, Nicholay Topin, Manuela Veloso, and Fei Fang. Explainable Reinforcement Learn-
ing: A Survey and Comparative Review. ACM Computing Surveys, 2023. doi: 10.1145/3616864.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing Atari with Deep Reinforcement Learning, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 2015. doi: 10.1038/nature14236.

Suraj Nair, Eric Mitchell, Kevin Chen, Brian Ichter, Silvio Savarese, and Chelsea Finn. Learning
Language-Conditioned Robot Behavior from Offline Data and Crowd-Sourced Annotation. In
Proceedings of the Conference on Robot Learning (CoRL), 2021.

Pierre-Yves Oudeyer and Frederic Kaplan. How can we define intrinsic motivation? In Proceedings
of the Eight International Conference on Epigenetic Robotics: Modeling Cognitive Development
in Robotic Systems, 2008.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback. In Ad-
vances in Neural Information Processing Systems (NeurIPS), 2022.

Jing-Cheng Pang, Xin-Yu Yang, Si-Hang Yang, and Yang Yu. Natural language-conditioned rein-
forcement learning with inside-out task language development and translation. arXiv, 2023.

David Raposo, Sam Ritter, Adam Santoro, Greg Wayne, Theophane Weber, Matt Botvinick, Hado
van Hasselt, and Francis Song. Synthetic Returns for Long-Term Credit Assignment, 2021.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You Only Look Once: Unified,
Real-Time Object Detection. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016. doi: 10.1109/CVPR.2016.91.

10

https://doi.org/10.1613/jair.5699
https://doi.org/10.1145/3616864
https://doi.org/10.1038/nature14236
https://doi.org/10.1109/CVPR.2016.91

Machel Reid, Yutaro Yamada, and Shixiang Shane Gu. Can Wikipedia Help Offline Reinforcement
Learning?, 2022.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy
Optimization Algorithms, 2017.

Jingyuan Sha, Hikaru Shindo, Kristian Kersting, and Devendra Singh Dhami. Neural-symbolic
predicate invention: Learning relational concepts from visual scenes. Neurosymbolic Artificial
Intelligence, 2023.

Jingyuan Sha, Hikaru Shindo, Quentin Delfosse, Kristian Kersting, and Devendra Singh Dhami.
Expil: Explanatory predicate invention for learning in games. arXiv, 2024.

Hikaru Shindo, Masaaki Nishino, and Akihiro Yamamoto. Differentiable inductive logic program-
ming for structured examples. In Proceedings of the AAAI Conference on Artificial Intelligence,
2021.

Hikaru Shindo, Viktor Pfanschilling, Devendra Singh Dhami, and Kristian Kersting. α ilp: thinking
visual scenes as differentiable logic programs. Machine Learning, 2023.

K. W. Spence. The role of secondary reinforcement in delayed reward learning. Psychological Review,
1947. doi: 10.1037/h0056533.

Wolfgang Stammer, Antonia Wüst, David Steinmann, and Kristian Kersting. Neural concept binder.
arXiv, 2024.

David Steinmann, Wolfgang Stammer, Felix Friedrich, and Kristian Kersting. Learning to intervene
on concept bottlenecks. arXiv, 2023.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, Andrea
Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymnasium,
2023.

Hado van Hasselt, Arthur Guez, and David Silver. Deep Reinforcement Learning with Dou-
ble Q-Learning. In Proceedings of the AAAI Conference on Artificial Intelligence, 2016. doi:
10.1609/aaai.v30i1.10295.

Yufei Wang, Zhanyi Sun, Jesse Zhang, Zhou Xian, Erdem Biyik, David Held, and Zackory Erickson.
RL-VLM-F: Reinforcement Learning from Vision Language Foundation Model Feedback, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc V.
Le, and Denny Zhou. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models.
In Advances in Neural Information Processing Systems (NeurIPS), 2022.

Yue Wu, Yewen Fan, Paul Pu Liang, Amos Azaria, Yuanzhi Li, and Tom M. Mitchell. Read and
Reap the Rewards: Learning to Play Atari with the Help of Instruction Manuals. In Advances in
Neural Information Processing Systems (NeurIPS), 2023.

Antonia Wüst, Wolfgang Stammer, Quentin Delfosse, Devendra Singh Dhami, and Kristian Kersting.
Pix2code: Learning to compose neural visual concepts as programs. arXiv, 2024.

Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, Qian Luo, Victor Zhong, Yanchao Yang,
and Tao Yu. Text2Reward: Reward Shaping with Language Models for Reinforcement Learning.
In Proceedings of the International Conference on Learning Representations (ICLR), 2024.

Li Zhou and Kevin Small. Inverse reinforcement learning with natural language goals. In Proceedings
of the AAAI Conference on Artificial Intelligence, 2021.

11

https://doi.org/10.1037/h0056533
https://doi.org/10.1609/aaai.v30i1.10295

A Appendix

As mentioned in the main body, the appendix contains additional materials and supporting informa-
tion for the following aspects: the hyperparameters used in this work (Appendix A.1), details on the
prompts used for the LLM (Appendix A.3) as well as the generated reward functions (Appendix A.4),
and numerical results (Appendix A.2).

A.1 Hyperparameters and Experimental Details

In this section, we list the hyperparameters used during the training and optimization of our models.
For our experiments, we adopted the parameter set proposed by Huang et al. (2022) for our PPO
agents, as detailed in Table 2.

Table 2: Hyperparameter Configuration for Training Settings (PPO). This table provides
a comprehensive overview of the essential hyperparameters utilized in our experimental section.

Hyperparameter Value Hyperparameter Value
batch size 1024 Clipping Coef. 0.1
γ 0.99 KL target None
minibatch size 256 GAE λ 0.95
seeds 42,73,91 input representation 4x84x84
total timesteps 10M gym version 0.28.1
learning rate 0.00025 pytorch version 1.12.1
optimizer Adam
more information https://docs.cleanrl.dev/rl-algorithms/ppo/

OCALM-based agents use the same PPO hyperparameter values as agents trained on ALE rewards.
All agents use ConvNets (Mnih et al., 2015) with ReLU activation functions for policy and value
networks. We utilized a decreasing learning rate of 2.5 × 10−4 over 10 million steps. We use the
Atari environments in version v5 provided by Gymnasium Towers et al. (2023), following best-
practices recommended by Machado et al. (2018). To accelerate training, we used 8 parallel game
environments.

To mitigate noise and fluctuations, we use exponential moving average (EMA) smoothing in Figure 3
and Figure 4. We use an effective window size of 50, resulting in a smoothing factor α = 2/(1+50) ≈
0.039 used in the following formula:

EMAt = (1 − α) · EMAt−1 + α · yt . (1)

To manage irregular training intervals due to rewards are not always being reported in the same
timestep, we ignore missing values when computing the average, relying on the EMA smoothing to
provide a continuous curve. For the error bands, we used the standard deviation of your data within
a rolling window.

A.2 Numerical Results

In this section, we provide additional numerical results for the experiments conducted in this work.

12

https://docs.cleanrl.dev/rl-algorithms/ppo/

Table 3: Numerical results for the experiments we conducted, including random and human baselines
from van Hasselt et al. (2016) for comparison. Standard deviations are provided where available.
Our agents use PPO and ALE v5 and have been trained using 10 million frames. The results
reported are the in-game rewards from the ALE/emulator, not from OCALM. Note, van Hasselt
et al. (2016) predate the v5 version of the ALE environments used by us, which is based on the best
practices outlined by Machado et al. (2018). However, this should not change the values much since
these changes have less influence on humans or the random agent.

Game PPO
ALE Reward (Baseline)

PPO
OCALM (full) (Ours)

PPO
OCALM (no relations)

Random
van Hasselt et al.

Human
van Hasselt et al.

Freeway 33.8 ± 0.2 32.35 ± 0.25 0.00 0.00 29.6
Pong 17.5 ± 0.5 16.4 ± 1.4 −15.8 ± 3.5 −20.7 14.6
Seaquest 1132.4 ± 271.4 672.2 ± 28.3 243 ± 86.3 68.4 20182
Skiing −23921.3 ± 10528.6 −28577.7 ± 2842.3 −30000 −17098 −4336

A.3 LLM Prompting Details

In our experiments we used the LLM gpt-4-turbo1 with seed 42 and top_k = 0. We further defined
a system prompt that was used for both, direct and relational multi-turn prompting (Listing 2).

1 You are a helpful assistant that creates reward functions for reinforcement learning researchers.

Listing 2: System prompt provided to the LLM.

For direct prompting, we asked the LLM to create a reward function directly, given a game instruction
and the game object classes. The game instructions are a few sentences that describe the objective
of the game (based on the documentation of the Gymnasium environment collection (Towers et al.,
2023)) and the game objects are Python classes provided by the OCAtari framework (Delfosse et al.,
2023a), further described in Appendix A.3.2.

For relational multi-turn prompting, we first ask the LLM to provide functions that might be relevant
for understanding the state and events of the game Listing 4. Based on these functions, the model
is then asked to create a reward function with Listing 5. As a last step, the model is asked to adjust
the rewards so that they are on a scale from −1 to 1 Listing 6.

A.3.1 The Object Properties used for OCALM

In this paper, we used different object properties as the inputs to the LLM-written reward functions.
The object-centric environment context is given by the classes provided by the OCAtari framework
(Delfosse et al., 2023a), i.e., the parent game object class2 and the game-specific objects 3. The
game objects related to the score were omitted (since we are assuming a reward-free environment).
An overview of the object properties used by OCALM is provided in Table 4 and concrete imple-
mentation details can be found in Appendix A.3.2.

A.3.2 Example of Game Objects

As described in the previous section, the game objects are Python classes provided by the (MIT
licensed) OCAtari framework (Delfosse et al., 2023a). We provide the parent class for game objects
and an example of game objects for Pong here for illustration purposes. Note that we have elided
parts of the parent class in the listing for brevity, indicated by #elided#. Refer to https://github.

1https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
2https://github.com/k4ntz/OC_Atari/blob/master/ocatari/ram/game_objects.py
3e.g., https://github.com/k4ntz/OC_Atari/blob/master/ocatari/ram/pong.py

13

https://github.com/k4ntz/OC_Atari/blob/v0.1.0/ocatari/ram/game_objects.py
https://github.com/k4ntz/OC_Atari/blob/v0.1.0/ocatari/ram/game_objects.py
https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
https://github.com/k4ntz/OC_Atari/blob/v0.1.0/ocatari/ram/game_objects.py
https://github.com/k4ntz/OC_Atari/blob/master/ocatari/ram/game_objects.py
https://github.com/k4ntz/OC_Atari/blob/v0.1.0/ocatari/ram/game_objects.py
https://github.com/k4ntz/OC_Atari/blob/master/ocatari/ram/pong.py
https://github.com/k4ntz/OC_Atari/blob/v0.1.0/ocatari/ram/game_objects.py
https://github.com/k4ntz/OC_Atari/blob/v0.1.0/ocatari/ram/game_objects.py

1 We want to create a object centric reward function to train a reinforcement learning agent to play the
game <GAME>. Here is a description of the game and its objects:

2

3 <PARENT GAME OBJECT CLASS>
4

5 <GAME OBJECT CLASSES>
6

7 The game instructions are the following:
8 <INSTRUCTIONS>
9

10 Please provide a Python file with a reward function that uses a list of objects of type GameObject as
input that will help the agent to play the game, i.e.:

11 ```python
12 def reward_function(game_objects) -> float:
13 ...
14 return reward
15 ```
16

17 Do not use undefined variables or functions. Do not give any textual explanations, just generate the
python code. If you give an explanation, please provide it in the form of a comment in the code.

Listing 3: Prompt for reward function based on game instructions and game objects provided to the
LLM.

1 We want to create a reward function for playing the Atari game <GAME>. As a first step we want to
collect functions that are helpful for understanding events that are happening in the game that could
be relevant for the reward, i.e., items colliding. In the following there will be existing game
objects given, please generate functions that can be used to understand the game state. Please don't
use undefined variables or functions.

2

3 Here is a description of the game and its objects:
4

5 <PARENT GAME OBJECT CLASS>
6

7 <GAME OBJECT CLASSES>
8

9 The game instructions are the following:
10 <INSTRUCTIONS>

Listing 4: Prompt for helpful functions based on game instructions and game objects.

Name Definition Description
class NAME object class (e.g. "Agent", "Ball", "Ghost")
position x, y position on the screen
position history xt, yt, xt−1, yt−1 position and past position on the screen
orientation o object’s orientation if available
RGB R, G, B RGB values

Table 4: Descriptions of object properties used by OCALM.

com/k4ntz/OC_Atari/blob/v0.1.0/ocatari/ram/game_objects.py for the full parent class and
https://github.com/k4ntz/OC_Atari/blob/v0.1.0/ocatari/ram/pong.py for the source of the
Pong example.

14

https://github.com/k4ntz/OC_Atari/blob/v0.1.0/ocatari/ram/game_objects.py
https://github.com/k4ntz/OC_Atari/blob/v0.1.0/ocatari/ram/game_objects.py
https://github.com/k4ntz/OC_Atari/blob/v0.1.0/ocatari/ram/game_objects.py
https://github.com/k4ntz/OC_Atari/blob/v0.1.0/ocatari/ram/game_objects.py
https://github.com/k4ntz/OC_Atari/blob/v0.1.0/ocatari/ram/pong.py

1 Now please create a object centric reward function to train a reinforcement learning agent to play the
game <GAME>. The reward function uses a list of objects of type GameObject as input, i.e.:

2 ```python
3 def reward_function(game_objects) -> float:
4 ...
5 return reward
6 ```
7 You can use the identified functions from before. Please don't use other undefined variables or

functions.
8 <INSTRUCTIONS>

Listing 5: Prompt for reward function based on identified functions from before.

1 "Thank you. Now please adjust the rewards so that the rewards are in the range [-1, 1]."

Listing 6: Prompt for rescaling reward values.

1 class GameObject:
2 """
3 The Parent Class of every detected object in the Atari games (RAM Extraction mode)
4

5 #elided#
6 """
7

8 GET_COLOR = False
9 GET_WH = False

10

11 def __init__(self):
12 self.rgb = (0, 0, 0)
13 self._xy = (0, 0)
14 self.wh = (0, 0)
15 self._prev_xy = None
16 self._orientation = None
17 self.hud = False
18

19 def __repr__(self):
20 return f"{self.__class__.__name__} at ({self._xy[0]}, {self._xy[1]}), {self.wh}"
21

22 @property
23 def category(self):
24 return self.__class__.__name__
25

26 @property
27 def x(self):
28 return self._xy[0]
29

30 @property
31 def y(self):
32 return self._xy[1]
33

34 #elided
35

36 def _save_prev(self):
37 self._prev_xy = self._xy
38

39 # @x.setter
40 # def x(self, x):
41

42 # self._xy = x, self.xy[1]

15

43

44 # @y.setter
45 # def y(self, y):
46 # self._xy = self.xy[0], y
47

48 @property
49 def orientation(self):
50 return self._orientation
51

52 @orientation.setter
53 def orientation(self, o):
54 self._orientation = o
55

56 @property
57 def center(self):
58 return self._xy[0] + self.wh[0]/2, self._xy[1] + self.wh[1]/2
59

60 def is_on_top(self, other):
61 """
62 Returns ``True`` if this and another gameobject overlap.
63

64 :return: True if objects overlap
65 :rtype: bool
66 """
67 return (other.x <= self.x <= other.x + other.w) and \
68 (other.y <= self.y <= other.y + other.h)
69

70 def manathan_distance(self, other):
71 """
72 Returns the manathan distance between the center of both objects.
73

74 :return: True if objects overlap
75 :rtype: bool
76 """
77 c0, c1 = self.center, other.center
78 return abs(c0[0] - c1[0]) + abs(c0[1]- c1[1])
79

80 def closest_object(self, others):
81 """
82 Returns the closest object from others, based on manathan distance between the center of both

objects.↪→

83

84 :return: (Index, Object) from others
85 :rtype: int
86 """
87 if len(others) == 0:
88 return None
89 return min(enumerate(others), key=lambda item: self.manathan_distance(item[1]))
90

91

92 class ValueObject(GameObject):
93 """
94 This class represents a game object that incorporates any notion of a value.
95 For example:
96 * the score of the player (or sometimes Enemy).
97 * the level of useable/deployable resources (oxygen bars, ammunition bars, power gauges, etc.)
98 * the clock/timer
99

100 :ivar value: The value of the score.
101 :vartype value: int
102 """
103

104 def __init__(self):
105 super().__init__()
106 self._value = 0
107 self._prev_value = None
108

109 @property

16

110 def value(self):
111 return self._value
112

113 @value.setter
114 def value(self, value):
115 self._value = None if value is None else int(value)
116

117 @property
118 def prev_value(self):
119 if self._prev_value is not None:
120 return self._prev_value
121 else:
122 return self._value
123

124 def _save_prev(self):
125 super()._save_prev()
126 self._prev_value = self._value
127

128 @property
129 def value_diff(self):
130 return self.value - self.prev_value

1 class Player(GameObject):
2 """
3 The player figure i.e., the movable bar at the side.
4 """
5

6 def __init__(self):
7 super().__init__()
8 self._xy = 0, 0
9 self.wh = 4, 15

10 self.rgb = 92, 186, 92
11

12

13 class Enemy(GameObject):
14 """
15 The enemy bar on the opposite side.
16 """
17

18 def __init__(self):
19 super().__init__()
20 self._xy = 0, 0
21 self.wh = 4, 15
22 self.rgb = 213, 130, 74
23

24

25 class Ball(GameObject):
26 """
27 The game ball.
28 """
29

30 def __init__(self):
31 super().__init__()
32 self._xy = 0, 0
33 self.wh = 2, 4
34 self.rgb = 236, 236, 236

Listing 7: The parent classes for game objects.

A.4 Game Descriptions and Rewards

In the following, we provide the used game descriptions, our OCALM (full) reward functions and
OCALM (no relations) reward functions for the games Pong, Freeway, Seaquest and Skiing.

17

A.4.1 Freeway

1 You control a chicken that has to cross ten horizontal lanes of a freeway traffic.
2 There exist two chickens in the game, you control the left chicken, that starts at the bottom of the

road and should go to the top.
3 Cars are traveling along the horizontal lanes and you should cross without getting run over by a car.
4 The screen height is 160.

Listing 8: Game description of Freeway.

1 from ocatari.ram.freeway import *
2

3

4 def detect_collision(chicken, car):
5 """
6 Determines if a collision occurs between a chicken and a car.
7

8 :param chicken: An instance of the Chicken class.
9 :param car: An instance of the Car class.

10 :return: True if there is a collision, False otherwise.
11 """
12 chicken_x1, chicken_y1 = chicken.x, chicken.y
13 chicken_x2, chicken_y2 = chicken.x + chicken.w, chicken.y + chicken.h
14 car_x1, car_y1 = car.x, car.y
15 car_x2, car_y2 = car.x + car.w, car.y + car.h
16

17 # Check if any corner of the chicken is within the car's boundaries
18 if (car_x1 <= chicken_x1 <= car_x2 or car_x1 <= chicken_x2 <= car_x2) and (
19 car_y1 <= chicken_y1 <= car_y2 or car_y1 <= chicken_y2 <= car_y2
20):
21 return True
22 return False
23

24

25 def has_reached_top(chicken, screen_height):
26 """
27 Checks if the chicken has reached the top of the screen.
28

29 :param chicken: An instance of the Chicken class.
30 :param screen_height: The height of the screen (int).
31 :return: True if the chicken has reached the top, False otherwise.
32 """
33 return chicken.y <= 0
34

35

36 def progress_made(chicken, screen_height):
37 """
38 Measures the progress made by the chicken towards the top of the screen.
39

40 :param chicken: An instance of the Chicken class.
41 :param screen_height: The height of the screen (int).
42 :return: A float representing the percentage of the screen crossed.
43 """
44 return (screen_height - chicken.y) / screen_height
45

46

47 def check_if_reset(chicken, initial_position):
48 """
49 Checks if the chicken has been reset to the initial position (usually after a collision).
50

51 :param chicken: An instance of the Chicken class.
52 :param initial_position: The starting position of the chicken (tuple of int).
53 :return: True if the chicken is at the initial position, False otherwise.

18

54 """
55 return chicken.xy == initial_position
56

57

58 def find_closest_car(chicken, cars):
59 """
60 Finds the closest car to the chicken based on the Manhattan distance.
61

62 :param chicken: An instance of the Chicken class.
63 :param cars: A list of Car instances.
64 :return: The closest car instance.
65 """
66 if not cars:
67 return None
68 return min(cars, key=lambda car: chicken.manathan_distance(car))
69

70

71 def reward_function(game_objects) -> float:
72 # Initialize reward
73 reward = 0.0
74

75 # Constants
76 SCREEN_HEIGHT = 160
77 COLLISION_PENALTY = -1.0 # Scaled down to fit within [-1, 1]
78 PROGRESS_REWARD = 0.1 # Scaled down to incrementally increase reward
79 SUCCESS_REWARD = 1.0 # Maximum reward for reaching the top
80

81 # Filter out chickens and cars from game_objects
82 chickens = [obj for obj in game_objects if isinstance(obj, Chicken)]
83 cars = [obj for obj in game_objects if isinstance(obj, Car)]
84

85 # Assume control of the leftmost chicken (player's chicken)
86 if chickens:
87 player_chicken = min(chickens, key=lambda c: c.x)
88

89 # Check if the chicken has reached the top
90 if has_reached_top(player_chicken, SCREEN_HEIGHT):
91 reward += SUCCESS_REWARD
92

93 # Reward based on progress towards the top
94 reward += progress_made(player_chicken, SCREEN_HEIGHT) * PROGRESS_REWARD
95

96 # Check for collisions with any car
97 for car in cars:
98 if detect_collision(player_chicken, car):
99 reward += COLLISION_PENALTY

100 break # Only penalize once per time step
101

102 # Ensure reward stays within the range [-1, 1]
103 reward = max(min(reward, 1.0), -1.0)
104

105 return reward

Listing 9: OCALM (full) reward function of the game Freeway.

19

1 from ocatari.ram.freeway import *
2

3 def reward_function(game_objects) -> float:
4 # Initialize reward
5 reward = 0.0
6

7 # Define constants for screen dimensions
8 SCREEN_HEIGHT = 160
9

10 # Find the player's chicken and cars in the game objects
11 player_chicken = None
12 cars = []
13

14 for obj in game_objects:
15 if obj.category == "Chicken" and obj.x < SCREEN_HEIGHT // 2: # Assuming player chicken starts

on the left↪→

16 player_chicken = obj
17 elif obj.category == "Car":
18 cars.append(obj)
19

20 # If the player's chicken is not found, return a neutral reward
21 if player_chicken is None:
22 return reward
23

24 # Reward for moving upwards, normalized by screen height
25 reward += (player_chicken.dy / SCREEN_HEIGHT)
26

27 # Penalty for moving downwards, normalized and increased in impact
28 if player_chicken.dy < 0:
29 reward -= 2 * (abs(player_chicken.dy) / SCREEN_HEIGHT)
30

31 # Check for collisions with cars
32 for car in cars:
33 if player_chicken.is_on_top(car):
34 # Large penalty for collisions, ensuring it stays within the range
35 reward -= 0.5
36

37 # Bonus for reaching the top of the screen, ensuring it stays within the range
38 if player_chicken.y <= 0:
39 reward += 0.5
40

41 # Ensure the reward is clamped between -1 and 1
42 reward = max(min(reward, 1), -1)
43

44 return reward

Listing 10: Direct reward function of the game Freeway.

20

A.4.2 Pong

1 In this game the agent has to knock the ball past the enemy's paddle, situated on the left (good), and
avoid letting the ball go past its paddle, on the right (bad). If the ball passes the paddle of
the enemy, the agent gets a point. If the ball passes past the agents paddle, the enemy gets a
point. After a scored point the ball continues moving behind the paddle for multiple frames before
it respawns for a new round.

↪→

↪→

↪→

↪→

Listing 11: Game description of Pong.

1 from ocatari.ram.pong import *
2

3

4 def check_collision(obj1, obj2):
5 """
6 Check if two GameObjects are colliding.
7

8 :param obj1: First game object.
9 :param obj2: Second game object.

10 :return: True if objects are colliding, False otherwise.
11 """
12 return (
13 obj1.x < obj2.x + obj2.w
14 and obj1.x + obj1.w > obj2.x
15 and obj1.y < obj2.y + obj2.h
16 and obj1.y + obj1.h > obj2.y
17)
18

19

20 def ball_passed_paddle(ball, paddle, playing_field_width):
21 """
22 Check if the ball has passed the given paddle.
23

24 :param ball: The ball object.
25 :param paddle: The paddle object (player or enemy).
26 :param playing_field_width: The width of the playing field.
27 :return: True if the ball has passed the paddle, False otherwise.
28 """
29 if paddle.category == "Player":
30 # Check if the ball has passed the player's paddle on the right
31 return ball.x > playing_field_width
32 elif paddle.category == "Enemy":
33 # Check if the ball has passed the enemy's paddle on the left
34 return ball.x + ball.w < 0
35 return False
36

37

38 def update_game_state(objects):
39 """
40 Update the game state by saving the previous positions of the objects.
41

42 :param objects: List of all game objects.
43 """
44 for obj in objects:
45 obj._save_prev()
46

47

48 def detect_score_event(ball, player_paddle, enemy_paddle, playing_field_width):
49 """
50 Detect if a scoring event has occurred.
51

52 :param ball: The ball object.
53 :param player_paddle: The player's paddle object.

21

54 :param enemy_paddle: The enemy's paddle object.
55 :param playing_field_width: The width of the playing field.
56 :return: 'player' if player scores, 'enemy' if enemy scores, None otherwise.
57 """
58 if ball_passed_paddle(ball, enemy_paddle, playing_field_width):
59 return "player"
60 elif ball_passed_paddle(ball, player_paddle, playing_field_width):
61 return "enemy"
62 return None
63

64

65 def reward_function(game_objects) -> float:
66 # Initialize reward
67 reward = 0.0
68

69 # Identify the ball, player paddle, and enemy paddle from game_objects
70 ball = None
71 player_paddle = None
72 enemy_paddle = None
73 playing_field_width = 160 # Assuming a standard Atari Pong width
74

75 for obj in game_objects:
76 if isinstance(obj, Ball):
77 ball = obj
78 elif isinstance(obj, Player):
79 player_paddle = obj
80 elif isinstance(obj, Enemy):
81 enemy_paddle = obj
82

83 # Check if the ball and paddles are identified correctly
84 if ball is None or player_paddle is None or enemy_paddle is None:
85 return reward # No change in reward if essential objects are missing
86

87 # Check for scoring events
88 score_event = detect_score_event(
89 ball, player_paddle, enemy_paddle, playing_field_width
90)
91 if score_event == "player":
92 reward += 1.0 # Reward for scoring against the enemy
93 elif score_event == "enemy":
94 reward -= 1.0 # Penalty for the enemy scoring
95

96 # Check for collisions with paddles to encourage hitting the ball
97 if check_collision(ball, player_paddle) or check_collision(ball, enemy_paddle):
98 reward += 0.1 # Small reward for hitting the ball with either paddle
99

100 # Normalize the reward to be within [-1, 1]
101 reward = max(min(reward, 1), -1)
102

103 return reward

Listing 12: OCALM (full) reward function of the game Pong.

22

1 from ocatari.ram.pong import *
2

3 def reward_function(game_objects) -> float:
4 # Initialize reward
5 reward = 0.0
6

7 # Define identifiers for game objects
8 player_id = None
9 enemy_id = None

10 ball_id = None
11

12 # Find indices for player, enemy, and ball
13 for i, obj in enumerate(game_objects):
14 if obj.category == "Player":
15 player_id = i
16 elif obj.category == "Enemy":
17 enemy_id = i
18 elif obj.category == "Ball":
19 ball_id = i
20

21 # Get the game objects
22 player = game_objects[player_id]
23 enemy = game_objects[enemy_id]
24 ball = game_objects[ball_id]
25

26 # Check if the ball has passed the enemy paddle
27 if ball.x < enemy.x:
28 reward += 1 # Reward for scoring a point
29

30 # Check if the ball has passed the player paddle
31 if ball.x > player.x + player.w:
32 reward -= 1 # Penalty for letting the enemy score
33

34 # Normalize reward to be within the range [-1, 1]
35 reward = max(min(reward, 1), -1)
36

37 return reward

Listing 13: Direct reward function of the game Pong.

23

A.4.3 Seaquest

1 You a sub (Player) able to move in all directions and fire torpedoes.
2 The goal is to retrieve as many divers as you can, while dodging and blasting enemy subs and killer

sharks.↪→

3 The game begins with one sub and three waiting on the horizon. Each time you increase your score by
10,000 points, an extra sub will be delivered to your base.↪→

4 Your sub will explode if it collides with anything except your divers.The sub has a limited amount of
oxygen that decreases at a constant rate during the game. When the oxygen tank is almost empty,
you need to surface and if you don't do it in time, your sub will blow up and you'll lose one
diver.

↪→

↪→

↪→

5 Each time you're forced to surface, with less than six divers, you lose one diver as well.

Listing 14: Game description of Seaquest.

1 from ocatari.ram.seaquest import *
2

3 def check_collision(obj1, obj2):
4 """
5 Check if two GameObjects collide based on their bounding boxes.
6 """
7 return (obj1.x < obj2.x + obj2.w and
8 obj1.x + obj1.w > obj2.x and
9 obj1.y < obj2.y + obj2.h and

10 obj1.y + obj1.h > obj2.y)
11

12 def update_game_state(objects):
13 """
14 Update positions of all game objects and check for collisions.
15 """
16 collisions = []
17 for obj in objects:
18 # Update position based on velocity
19 obj.xy = (obj.x + obj.dx, obj.y + obj.dy)
20

21 # Check for collisions with other objects
22 for other in objects:
23 if obj != other and check_collision(obj, other):
24 collisions.append((obj, other))
25 return collisions
26

27 def manage_oxygen_and_lives(player, oxygen_bar, lives):
28 """
29 Decrease oxygen levels and manage lives based on oxygen and collisions.
30 """
31 # Decrease oxygen
32 oxygen_bar.value -= 1
33 if oxygen_bar.value <= 0:
34 player.lives -= 1
35 oxygen_bar.value = 100 # Reset oxygen after surfacing or losing a life
36

37 # Check if lives are depleted
38 if lives.value <= 0:
39 print("Game Over")
40

41 def update_score_and_divers(player, divers_collected, score):
42 """
43 Update score based on collected divers and manage divers.
44 """
45 for diver in divers_collected:
46 if check_collision(player, diver):
47 score.value += 1000 # Increment score for each diver collected
48 divers_collected.remove(diver) # Remove diver from the game
49

24

50 def fire_torpedo(player, torpedoes):
51 """
52 Create a new torpedo at the player's location and add it to the torpedoes list.
53 """
54 new_torpedo = PlayerMissile()
55 new_torpedo.xy = player.xy
56 torpedoes.append(new_torpedo)
57

58

59 def reward_function(game_objects) -> float:
60 reward = 0.0
61

62 # Define categories for easy identification
63 player = None
64 divers = []
65 enemies = []
66 player_missiles = []
67 enemy_missiles = []
68 oxygen_bar = None
69

70 # Classify objects
71 for obj in game_objects:
72 if isinstance(obj, Player):
73 player = obj
74 elif isinstance(obj, Diver):
75 divers.append(obj)
76 elif isinstance(obj, Shark) or isinstance(obj, Submarine):
77 enemies.append(obj)
78 elif isinstance(obj, PlayerMissile):
79 player_missiles.append(obj)
80 elif isinstance(obj, EnemyMissile):
81 enemy_missiles.append(obj)
82 elif isinstance(obj, OxygenBar):
83 oxygen_bar = obj
84

85 # Check for collisions and manage interactions
86 if player:
87 for diver in divers:
88 if check_collision(player, diver):
89 reward += 0.1 # Scaled down reward for collecting a diver
90 divers.remove(diver) # Assume diver is collected and removed from the game
91 for enemy in enemies:
92 if check_collision(player, enemy):
93 reward -= 0.1 # Scaled down penalty for colliding with an enemy
94 for missile in enemy_missiles:
95 if check_collision(player, missile):
96 reward -= 0.05 # Scaled down penalty for getting hit by an enemy missile
97 # Reward for hitting enemies with missiles
98 for missile in player_missiles:
99 for enemy in enemies:

100 if check_collision(missile, enemy):
101 reward += 0.05 # Scaled down reward for destroying an enemy
102 enemies.remove(enemy) # Assume enemy is destroyed and removed from the game
103 player_missiles.remove(missile) # Remove missile after hitting
104

105 # Manage oxygen levels
106 if oxygen_bar and oxygen_bar.value <= 20:
107 reward -= 0.05 # Scaled down penalty for low oxygen levels
108

109 # Encourage surfacing if oxygen is too low
110 if oxygen_bar and oxygen_bar.value <= 10:
111 reward -= 0.1 # Scaled down higher penalty for critically low oxygen
112

113 return reward

Listing 15: OCALM (full) reward function of the game Seaquest.

25

1 from ocatari.ram.seaquest import *
2

3 def reward_function(game_objects) -> float:
4 # Initialize reward
5 reward = 0.0
6

7 # Define constants for reward values, adjusted to be within the range [-1, 1]
8 REWARD_FOR_COLLECTING_DIVER = 0.1
9 PENALTY_FOR_COLLISION = -0.1

10 PENALTY_FOR_LOW_OXYGEN = -0.05
11 REWARD_FOR_BLASTING_ENEMY = 0.05
12 PENALTY_FOR_LOSING_DIVER_WHEN_SURFACING = -0.025
13

14 # Helper function to find an object by its class name
15 def find_objects_by_type(type_name):
16 return [obj for obj in game_objects if obj.category == type_name]
17

18 # Get specific game objects
19 player = find_objects_by_type('Player')[0] if find_objects_by_type('Player') else None
20 divers = find_objects_by_type('Diver')
21 sharks = find_objects_by_type('Shark')
22 enemy_subs = find_objects_by_type('Submarine')
23 enemy_missiles = find_objects_by_type('EnemyMissile')
24 player_missiles = find_objects_by_type('PlayerMissile')
25 oxygen_bar = find_objects_by_type('OxygenBar')[0] if find_objects_by_type('OxygenBar') else None
26

27 # Reward for collecting divers
28 for diver in divers:
29 if player and player.is_on_top(diver):
30 reward += REWARD_FOR_COLLECTING_DIVER
31

32 # Penalty for collisions with sharks or enemy submarines
33 for shark in sharks:
34 if player and player.is_on_top(shark):
35 reward += PENALTY_FOR_COLLISION
36

37 for enemy_sub in enemy_subs:
38 if player and player.is_on_top(enemy_sub):
39 reward += PENALTY_FOR_COLLISION
40

41 # Check for low oxygen
42 if oxygen_bar and oxygen_bar.value < 20:
43 reward += PENALTY_FOR_LOW_OXYGEN
44

45 # Reward for blasting enemy submarines with missiles
46 for missile in player_missiles:
47 for enemy_sub in enemy_subs:
48 if missile.is_on_top(enemy_sub):
49 reward += REWARD_FOR_BLASTING_ENEMY
50

51 # Penalty for enemy missiles hitting the player
52 for missile in enemy_missiles:
53 if player and missile.is_on_top(player):
54 reward += PENALTY_FOR_COLLISION
55

56 # Penalty for surfacing with less than six divers
57 collected_divers = find_objects_by_type('CollectedDiver')
58 if len(collected_divers) < 6 and player and player.y == 0: # Assuming y=0 is the surface
59 reward += PENALTY_FOR_LOSING_DIVER_WHEN_SURFACING
60

61 return reward

Listing 16: Direct reward function of the game Seaquest.

26

A.4.4 Skiing

1 You control a skier (Player), going down a slope who can move sideways.
2 The Player is at the top of the screen, staying at the same y position but the other objects of the

environments are moving up towards him.↪→

3 The goal is to ski in between the horizontal pairs of flags.
4 There can be up to two pairs of poles on the screen.
5 Do not hit a tree or a flag or you'll fall and lose time.

Listing 17: Game description of Skiing.

1 from ocatari.ram.skiing import *
2

3 def check_collision(player, objects):
4 """
5 Check if the player has collided with any of the given objects (flags or trees).
6

7 :param player: The player object.
8 :param objects: A list of game objects (flags or trees).
9 :return: True if a collision is detected, False otherwise.

10 """
11 for obj in objects:
12 if (player.x < obj.x + obj.w and
13 player.x + player.w > obj.x and
14 player.y < obj.y + obj.h and
15 player.y + player.h > obj.y):
16 return True
17 return False
18

19 def check_gate_passage(player, flag1, flag2):
20 """
21 Check if the player has passed between two flags.
22

23 :param player: The player object.
24 :param flag1: The first flag object.
25 :param flag2: The second flag object.
26 :return: True if the player has passed between the flags, False otherwise.
27 """
28 if flag1.y == flag2.y: # Ensure flags are aligned horizontally
29 gate_left = min(flag1.x, flag2.x)
30 gate_right = max(flag1.x + flag1.w, flag2.x + flag2.w)
31 player_center_x = player.x + player.w / 2
32 return gate_left <= player_center_x <= gate_right
33 return False
34

35 def distance_to_nearest_obstacle(player, obstacles):
36 """
37 Calculate the Manhattan distance from the player to the nearest obstacle.
38

39 :param player: The player object.
40 :param obstacles: A list of obstacle objects (trees or moguls).
41 :return: The Manhattan distance to the closest obstacle.
42 """
43 closest_distance = float('inf')
44 for obstacle in obstacles:
45 distance = player.manathan_distance(obstacle)
46 if distance < closest_distance:
47 closest_distance = distance
48 return closest_distance
49

50 def update_game_state(objects, dy):
51 """
52 Update the positions of all game objects to simulate the player moving down the slope.
53

27

54 :param objects: A list of all movable game objects.
55 :param dy: The change in y-coordinate to apply to each object.
56 """
57 for obj in objects:
58 if not obj.hud:
59 obj.y += dy
60

61

62 def reward_function(objects):
63 """
64 Calculate the reward for the current game state based on the player's interactions with game

objects,↪→

65 with rewards scaled to be within the range [-1, 1].
66

67 :param objects: A list of all game objects currently in the game.
68 :return: A numerical reward value.
69 """
70 # Initialize reward
71 reward = 0
72

73 # Define penalty and reward values, scaled to ensure the total reward remains within [-1, 1]
74 collision_penalty = -1
75 gate_pass_reward = 0.5
76 close_to_obstacle_penalty = -0.01
77

78 # Filter objects by type
79 player = next(obj for obj in objects if isinstance(obj, Player))
80 flags = [obj for obj in objects if isinstance(obj, Flag)]
81 trees = [obj for obj in objects if isinstance(obj, Tree)]
82 moguls = [obj for obj in objects if isinstance(obj, Mogul)]
83

84 # Check for collisions with trees or flags
85 if check_collision(player, trees + flags):
86 reward += collision_penalty
87

88 # Check for successful gate passage
89 # Assuming flags come in pairs, sorted by y and then x
90 flags_sorted = sorted(flags, key=lambda f: (f.y, f.x))
91 for i in range(0, len(flags_sorted), 2):
92 if i+1 < len(flags_sorted) and check_gate_passage(player, flags_sorted[i], flags_sorted[i+1]):
93 reward += gate_pass_reward
94

95 # Penalize being too close to the nearest obstacle
96 nearest_obstacle_distance = distance_to_nearest_obstacle(player, trees + moguls)
97 # Assuming a threshold below which the player is considered too close to an obstacle
98 if nearest_obstacle_distance < 20:
99 reward += close_to_obstacle_penalty * (20 - nearest_obstacle_distance)

100

101 # Ensure the reward is within the range [-1, 1]
102 reward = max(min(reward, 1), -1)
103

104 return reward

Listing 18: OCALM (full) reward function of the game Skiing.

28

1 from ocatari.ram.skiing import *
2

3 def reward_function(game_objects) -> float:
4 # Initialize reward
5 reward = 0.0
6

7 # Define constants for reward/penalty values
8 FLAG_PASS_REWARD = 0.1
9 TREE_COLLISION_PENALTY = -0.3

10 FLAG_COLLISION_PENALTY = -0.2
11 MOGUL_COLLISION_PENALTY = -0.05
12

13 # Helper function to check if the player collides with any object
14 def check_collision(player, obj):
15 return (obj.x <= player.x <= obj.x + obj.w or obj.x <= player.x + player.w <= obj.x + obj.w)

and \↪→

16 (obj.y <= player.y <= obj.y + obj.h or obj.y <= player.y + player.h <= obj.y + obj.h)
17

18 # Extract player and other objects
19 player = None
20 flags = []
21 trees = []
22 moguls = []
23

24 for obj in game_objects:
25 if isinstance(obj, Player):
26 player = obj
27 elif isinstance(obj, Flag):
28 flags.append(obj)
29 elif isinstance(obj, Tree):
30 trees.append(obj)
31 elif isinstance(obj, Mogul):
32 moguls.append(obj)
33

34 # Check for collisions and successful flag passes
35 if player:
36 # Check for collisions with trees
37 for tree in trees:
38 if check_collision(player, tree):
39 reward += TREE_COLLISION_PENALTY
40 # Check for collisions with flags
41 for flag in flags:
42 if check_collision(player, flag):
43 reward += FLAG_COLLISION_PENALTY
44 # Check for collisions with moguls
45 for mogul in moguls:
46 if check_collision(player, mogul):
47 reward += MOGUL_COLLISION_PENALTY
48 # Check if player passes between flags (assuming flags come in pairs)
49 if len(flags) >= 2:
50 # Sort flags by x to pair them
51 sorted_flags = sorted(flags, key=lambda f: f.x)
52 for i in range(0, len(sorted_flags) - 1, 2):
53 flag1 = sorted_flags[i]
54 flag2 = sorted_flags[i+1]
55 # Check if player is between the flags
56 if flag1.x < player.x < flag2.x:
57 reward += FLAG_PASS_REWARD
58

59 return reward

Listing 19: Direct reward function of the game Skiing.

29

