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Abstract

Smart manufacturing applications increasingly rely on time-series data from Industrial IoT
sensors, yet these data streams often contain Data Quality Issues (DQIs) that affect analysis
and disrupt production. While traditional Machine Learning methods are difficult to apply
due to the small amount of data available, the knowledge-based approach of Case-Based
Reasoning (CBR) offers a way to reuse previously gained experience. We introduce the first
end-to-end Case-Based Reasoning (CBR) framework that both detects and remedies DQIs
in near real time, even when only a handful of annotated fault instances are available. Our
solution encodes expert experience in the four CBR knowledge containers: (i) a vocabulary
that represents sensor streams and their context in the DataStream format; (ii) a case base
populated with fault-annotated event logs; (iii) tailored similarity measures—including a
weighted Dynamic Time Warping variant and structure-aware list mapping—that isolate
the signatures of missing-value, missing-sensor, and time-shift errors; and (iv) lightweight
check for adaptation rules that recommend concrete repair actions or, where appropriate, invoke
updates automated imputation and alignment routines. A case study is used to examine and present
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support transparent evaluation and future research by publishing (1) a prototype of the
Case-Based Reasoning (CBR) system and (2) a publicly accessible, meticulously annotated

sensor-log benchmark. Together, these resources provide a reproducible baseline and a
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are equipping their production processes with sensors and actuators, thus realizing the
Smart Manufacturing paradigm [2]. This enables benefits such as more precise control of the
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of process improvements (e.g., for the use case of Predictive Maintenance (PredM) [3,4]).
Since the accuracy of advanced control and optimization algorithms is directly proportional
to data quality, these benefits are highly dependent on the analysis of sensor data, which is
known to suffer from many Data Quality Issues (DQIs), such as missing data due to faulty
sensors or noise due to difficult environmental conditions [5-7]. Failing to detect issues in
the process due to, e.g., missing data can lead to process execution errors (such as defects
or disasters) and incorrect process analysis (leading to inefficiencies and delays). For this
reason, DQIs must be identified and resolved before data analysis can be performed. This
has to be carried out before higher-level events are abstracted from the sensor data, which
form the basis for Artificial Intelligence (Al) analysis and Process Mining (PM) [8-10].

Previous research [11] identifies various challenges for DQIs that can be investigated
using Al methods. Conventional approaches typically focus either on the detection of
sensor DQIs, i.e., by using anomaly and outlier detection with isolation forests [12], local
outlier factor [13], or Artificial Neural Networks (ANNs) [14]), or on handling and solving
them, i.e., imputation methods such as spline fitting, association rule mining [15], or data
smoothing to remove noise. In addition, Teh et al. [6] mention methods to detect and
solve DQIs simultaneously, such as principal component analysis [16] and ANNss [17].
However, such techniques are data-intensive, and for the domains where DQIs usually
occur, few error data are available, as these have to be recognized and processed mostly
manually [18]. It is often not possible to train suitable Machine Learning (ML) models [19]
on such small databases. Therefore, instead of a data-driven Al method, the usage of
a knowledge-driven approach is suitable that does not attempt generalization based on
limited data but instead directly reuses experience [20]. An established Al method for
reusing the collected experience is Case-Based Reasoning (CBR) [21,22].

To bridge this gap, we propose an end-to-end framework for the detection and han-
dling of DQIs in sensors based on CBR in this paper. This framework enables the automa-
tion of these two steps by reusing the already accumulated experience knowledge. The
retrieved cases encapsulate prior experience, explicitly describing the fault source, thus
containing a certain explanation in themselves [23]. Another advantage of using CBR is its
interactive nature, which keeps human experts in the loop [24], who therefore remain re-
sponsible for the decision based on the results of the CBR application. In DQI management,
this human role is particularly important for solving and evaluating. The applicability of
this framework is evaluated based on a case study. In this paper, we refer to a case study as
a small-scale, preliminary evaluation that checks whether the proposed CBR approach can
be applied in practice and reveals potential issues before a full study is conducted.

The remainder of this paper is structured as follows. First, Section 2 presents relevant
background for this work, focusing on IoT-enhanced Business Process Management (BPM),
DQIs, and CBR. Then, in Section 3, related work is introduced. Section 4 outlines the
design of a CBR solution for DQI detection and resolution in IoT. The overall approach is
presented and then introduced in more detail following the CBR knowledge containers [25].
Building upon this, Section 5 validates the approach in a feasibility test based on a Smart
Manufacturing scenario. Finally, Section 6 concludes the paper and outlines future work.

2. Foundations

This section presents the background required for this work. In Section 2.1, the Indus-
trial IoT is introduced and positioned within process management and BPM. Subsequently,
DQIs that occur in IoT data from such environments are presented in Section 2.2. The
patterns and methods for recognizing these DQIs are presented in Section 2.3. Finally, CBR
is introduced in Section 2.4 and the particularly relevant subfield of Temporal Case-Based
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Reasoning (TCBR) in Section 2.5 as the preferred solution method in this paper, and its use
for this area of application is justified.

2.1. Industrial IoT for Business Process Management

The IoT can be defined as a “[g]roup of infrastructures interconnecting connected objects
and allowing their management, data mining and the access to the data they generate” [26].
Building on this interconnected infrastructure, Smart Manufacturing, realized through
the Industrial Internet of Things (IloT), leverages this connectivity to integrate shop floor
data with enterprise-level decision-making [2]. In this context, the concept of a smart
factory acts as a manufacturing solution that provides flexible and adaptive production
processes that will solve problems arising in a production facility with dynamic and rapidly
changing boundary conditions [27]. Typical hardware components of smart factories
comprise sensors and actuators that are composed of more complex devices, machines, and
stations of a production line [28]. These components represent key sources of sensor data,
which are fundamental to IIoT applications. Importantly, the data generated often take the
form of time series, capturing continuous measurements that reflect the dynamic state of
production processes within smart factories.

Besides the application domain, the following characteristics of the IloT can be deter-
mined following Boyes et al. [29] in comparison with consumer-oriented IoT setups:

(1) The IIoT typically focuses on large, complex assets such as machines or produc-
tion lines.

(2) IIoT systems can perform autonomous adaptation of system behavior without hu-
man intervention.

(3) IIoT systems enable real-time monitoring of the operational processes they support.

(4) The IloT enables the explicit pursuit of economic value, e.g., higher productivity or
lower energy consumption.

These properties make high-quality sensor data indispensable because autonomous
control loops and real-time optimization leave little room for manual cleaning. Such
requirements for data quality are particularly relevant for several application goals of the
IIoT, including real-time condition monitoring, PredM, quality management, and worker
safety [30].

In this context, many of the benefits of the IoT are realized by supporting and analyzing
production processes using loT-enhanced BPM. IoT-enhanced BPM is the field of research
that investigates the integration of IoT technologies with traditional BPM and process
control systems, with the aim of enhancing process automation, flexibility, and overall
performance [31]. Research in the field spans dedicated modeling languages (see, e.g.,
Schultheis et al. [32] for an overview and analysis of requirements), middleware linking
shop floor signals with manufacturing-execution systems, and analytics techniques that
exploit sensor streams during and after process execution. Recent examples that illustrate
the momentum of IoT-aware process analytics are, e.g., Scheibel and Rinderle-Ma [33],
Rodriguez-Fernandez et al. [34], Ehrendorfer et al. [35].

In a manufacturing context, Scheibel and Rinderle-Ma [33] outline an approach to
derive decision rule patterns from time series sensor data by automatically featuring
the sensor data and training a decision tree to learn the rules. A different problem is
addressed by Rodriguez-Ferndndez et al. [34], who present an approach for IoT-enhanced
deviation detection. They argue that traditional conformance checking cannot consider
data that change over time independently of the events of the process (i.e., time series data).
Subsequently, they proposed a method to detect patterns in the time-series data directly.
Finally, a first contribution toward IoT-enhanced process outcome prediction is presented
by Ehrendorfer et al. [35]. They propose a classification of context data types and their
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integration with process models to enable runtime assessment of context data’s impact on
process outcomes through stage-based segmentation and gradual refinement.

2.2. Data Quality Issues in the Industrial IoT

The field of data quality in IoT systems encompasses a wide range of aspects, including
the identification of issues related to data quality in IoT systems and the implementation
of cleansing methods [5,6,36]. In IoT applications, sensors are often exposed to extreme
environmental conditions, constrained computational and energy resources, intermittent
connectivity, and mechanical wear, all of which may induce errors such as calibration drift,
packet loss, or complete device failure [6]. As a consequence, IoT sensors may experience
reduced accuracy, calibration loss, sensor failures, improper device placement, range limi-
tations, and data packet loss, leading to various types of errors in the generated data and
complicating further analysis. As a result, these sensor-related faults contribute to the
occurrence of various types of failures in the generated data, thereby complicating subse-
quent analysis. Moreover, although previous research has focused a lot on manufacturing
settings, Figure 1 shows that data quality is a concern in all types of IoT environments.

Healthcare 8%
Agriculture 5%

Environment 5%

Manufacturing 55%

Logistics 5%

Building 3%
Chemistry 3%
Oil & Gas 3%

Space 3%

Wind Turbines 3%
Smart Grid 2%
Others / Various 5% Automotive 10%

Additive 3% \

Semiconductor 3%

Other Manufacturing 39%

Figure 1. Application domains of data quality in cyber-physical systems and IoT environments
(based on Goknil et al. [7]).

In their study, Teh et al. [6] conducted a comprehensive review of the sensor data
quality literature, identifying a range of failure types in descending order of occurrence:
outliers, missing data, bias, drift, noise, constant value, uncertainty, and stuck-at-zero.
If these errors remain unaddressed, they can lead to the generation of inaccurate data,
rendering subsequent analyses unreliable and ultimately leading to erroneous decision-
making. Complementary taxonomies further delineate DQIs into categories such as missing,
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incorrect, imprecise, and irrelevant data, as proposed by Bose et al. [37]. Verhulst [38]
explores additional aspects of DQIs within a taxonomy, including the completeness and
accuracy of time series in event logs. Neglecting these errors results in flawed data,
which can lead to unreliable analyses and ultimately erroneous decisions [36]. To prevent
misguided decision-making, it is important to assess the underlying data quality. To
quantify these dimensions, Kuemper et al. [39] introduced measures for sensor data quality:
completeness, timeliness, plausibility, artificiality, and concordance.

2.3. Patterns of Data Quality Issues in Business Process Management

In BPM, so-called PM relies on an event log that records all events occurring within
the process under analysis over a specific time period [40]. To perform PM, each recorded
event must contain at a minimum the following elements: a label describing the activity
that was carried out, a case ID to identify the process instance each event is associated
with, and a timestamp marking when the event occurred. DQIs in PM primarily concern
errors, inconsistencies, and missing information within event logs. Bose et al. [37] suggest
categorizing these issues along two dimensions: the type of problem (such as incorrect,
irrelevant, imprecise, or missing data) and the specific event log entity affected (including
cases, events, event—case relationships, case attributes, positions, activity names, times-
tamps, resources, and event attributes). The authors argue that issues related to events,
timestamps, and activity names are particularly critical and thus warrant a more detailed
examination. Suriadi et al. [41] expanded on this framework by identifying eleven event
log quality issues, presented as imperfection patterns. For each pattern, they outline a
typical cause, provide an example, and establish a connection to a corresponding quality
issue described by Bose et al. [37] to address the issue.

Although virtually all previous research applying BPM with IoT data had to tackle
DQIs, the existing body of literature specifically addressing IoT DQIs in BPM is still scarce.
Bertrand et al. [36] reviewed the IoT-BPM literature to describe the IoT DQIs and the
event log DQIs encountered by previous research. The results indicate that the most often
reported DQISs, i.e., noise, outliers, and missing data, correspond to the most often reported
issues in IoT in general by Teh et al. [6]. Based on this state of affairs, patterns relating IoT
DQIs with the resulting event log DQIs are derived. More specifically, these patterns are of
the shape:

Sensor Fault = Sensor DQI = Event Log DQI(s).

For example, one of the patterns describes the following:
Unstable Environment = Noisy Sensor Data = Incorrect Case ID.

One concrete example of the occurrence of this pattern in the literature is in Brzychczy
and Trzcionkowska [42], which derived event logs from sensors attached to a drilling
machine in a mine. Unfortunately, the sensors produced noisy data, making it difficult to
recognize the start and end activities of the mining process and resulting in some incorrect
case IDs in the log derived from the sensor data.

2.4. Case-Based Reasoning

CBR [21] is an Al methodology [43] for problem-solving, assuming that similar prob-
lems have similar solutions and, thus, that solutions from previous experienced situations
(also called cases) can be reused in current ones [21,44]. The core concept here is so-called
similarity, which describes how suitable a stored problem is for a new problem. The knowl-
edge required to apply CBR is managed in four different containers [25]. The cases are
stored and organized in the case base. Their structure is defined by the vocabulary as a
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separate container. Methods for determining similarities are specified using the similarity
measures container, as well as methods for adapting cases to new problems as the adapta-
tion knowledge container. The CBR methodology follows the sequential steps described
in the CBR cycle [21], illustrated and connected to the knowledge containers in Figure 2.
At the beginning, a retrieval (1) is performed, in which the knowledge stored in the case
base is retrieved using similarity measures to determine suitable cases for a new problem.
Based on the most similar cases, their solutions are reused in the reuse phase (2) and, if
necessary, adapted to the new problem. On this basis, a new solution is suggested, which is
evaluated for its suitability for the new problem in the revise phase (3) and, if necessary,
returned to the previous phases. A suitable solution is combined with the problem to form
anew case and added to the case base in the retain phase (4). In this way, a CBR system
learns continuously.

Query /
New Unsolved Case|

A (7)

| R "

[ ,7eb

[ e
Learned Case T

|

Y
T (@ D
Vocabulary — — — >»{Case Base a .
i uery

(4) Retain . lﬁ New Unsolved Case

Knowledge
Containers

-

T |

Tested / Repaired
Case

Adaptation
Knowledge

Similarity
Measures

=

Solved Case \

Figure 2. Illustration of the CBR cycle with the corresponding knowledge containers (based on
Aamodt and Plaza [21]).

&0

Real World

In contrast to Al techniques that are based on data-driven ML methods, such as
Deep Neural Networks, CBR can also be used if only small amounts of data are available.
Utilizing the CBR methodology leads to a self-learning approach without requiring explicit
retraining, as needed for neural networks. For this purpose, the CBR methodology is
especially suitable for application scenarios in which only a few data or, more precisely,
experienced situations are available, such as for DQIs in BPM. In IoT environments, it
is typically the case that the data produced by sensors is in good condition and only a
few experienced situations with patterns of DQIs are available, making the sole use of
data-driven techniques less advantageous. In addition, finding DQIs in IoT sensor data or
during process execution in BPM is a laborious task, mostly performed manually. This in
turn requires in-depth knowledge by experts, whose knowledge can then be captured and
stored in the form of cases representing this experiential knowledge in CBR.
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2.5. Temporal Case-Based Reasoning

TCBR [45,46] deals with the representation of temporal relationships in cases and their
management within the CBR methodology. Cases in TCBR are based on sequences of cer-
tain attributes related to the time dimension and consist of several attributes representing
the measured sensor values and a corresponding solution, for example, a classification or a
recommendation. Various forms of case representation are used to populate the vocabulary
and, based on this, to fill the case base [47]. TCBR is used in various applications such
as classification and error detection, prediction, or medicine [47]. In each use case, the
underlying data is complex, resulting in challenges in filling the knowledge containers [25].
The application of TCBR requires the definition of a suitable vocabulary to model sen-
sor data and the selection of suitable similarity measures to enable the correct reuse of
experiential knowledge.

Although there are methods such as episodes, graphs, or event sequences, time series
are the most widely used form of representation in TCBR [47]. In addition, the IoT data
generated during production can be processed directly. In most CBR applications, time
series data are represented symbolically and summarized as feature vectors. Simplified
forms of representation, such as temporal abstraction [48], can be used to reduce the volume
of the data. These methods abstract time series to a higher level by aggregating data points,
thus reducing computational complexity. However, this abstraction results in a loss of
information, which may be inappropriate for certain applications, especially DQI [49].
Typically, a case representing IoT sensor data contains one or more time series [47], which
are local attributes aggregated into a higher-level case.

To identify similar time series, appropriate similarity measures must be defined based
on the chosen vocabulary [47]. Table 1 provides a classification of similarity measures,
focusing on syntactic comparison of time series. These measures do not incorporate domain
knowledge, making them knowledge-poor [50]. In contrast, there are also knowledge-
intensive similarity measures that consider not only the syntax but also the semantics
of the time series (e.g., as shown by Nakanishi et al. [51]). However, such semantic
similarity measures for time series have not yet been utilized in TCBR. The categorization
of similarity measures follows the local-global principle [22] (pp. 106-107), where the
similarities of individual attribute values are computed and then aggregated into a global
similarity score. At the local level, similarity measures focus on the specific point in
time and its corresponding value. These measures can be either knowledge-poor or -
intensive, like the global measures, depending on the particular use case. Since multiple
time series may be available for most sensor data cases, the similarity scores between these
time series can be combined at a global level, yielding a single overall similarity value.
Additionally, the concept of a knowledge container for adaptation is explored within the
TCBR framework [52]. However, since no complex adaptation algorithms are required for
the approach in this paper, it will not be further discussed here. The relevant approach
is the null adaptation, which simply transfers the attribute or attributes proposed as the
solution in the CBR without any modification. If the adaptation is not to be based solely
on the most similar case, it can be extended through methods such as voting. One such
method is Majority Voting, where the solution is determined by the absolute majority of
the most similar cases selected.
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Table 1. The Three Categories of Knowledge-Poor Similarity Measures for Time Series, With Example
Algorithm for Each Category (according to Malburg et al. [47]).

Category 1 Category 2 Category 3
Similarity measures that Similarity measures that
can only be applied to time can be applied to time Similarity measures, like
series of the same length. series of different lengths  those in Cat. 2, but that can
These compare only the and consider not only the  detect stretching and
values at the values, but the time compression in addition.
corresponding times. points themselves.

Smith—Waterman Algorithm — Dynamic Time Warping

List Mapping [47] (SWA) [53] (DTW) [54]

3. Related Work

This chapter presents related work, focusing on approaches for data quality man-
agement. Here, Section 3.1 starts with an overview of more generic approaches to data
quality management found in the IoT data processing literature, before going more in
depth in Section 3.2 over a limited number of recent approaches dedicated to data quality
management in the context of IoT BPs.

3.1. Data Quality Management for IoT Systems

Although IoT data quality is acknowledged as a problem in IoT-enhanced
BPM [11,31,36], there is little literature proposing methods to address data quality in
this context. However, the broader IoT data processing literature has paid much attention
to data quality. Zhang et al. [55] reviewed approaches to data quality management applied
to the IoT. In their paper [55], first cover general-purpose data quality management frame-
works that can be applied to IoT use cases, most of them being derived from two seminal
approaches. First is the Total Data Quality Management (TDQM) cycle, which comprises
four main steps: defining, measuring, analyzing, and enhancing data [56,57]. Second is the
related Total Information Quality Management (TIQM) cycle, which focuses on three main
steps: evaluation, improvement, and improvement management and monitoring [58].

Next to these general-purpose data quality management frameworks, some dedicated
approaches for IoT data quality management have been proposed. They are typically
less self-contained than the general-purpose approaches, possibly due to the relative
recency of the IoT research domain and the complexity and versatility of IoT use cases,
making it difficult to devise comprehensive frameworks. Among them, Geisler et al. [59]
developed an IoT data quality management framework based on TDQM, which utilizes an
ontology of DQIs to evaluate and monitor the data quality of data streams. Then, Perez-
Castillo et al. [60] proposed a data quality management framework for sensor networks,
structured along the steps of the plan-do—check-act cycle [61]. The same authors also
present a set of best practices for IoT data quality in [62]. Next to these, Chakraborty et
al. [63] introduces a privacy-preserving, automated framework to assess the quality of
time series IoT sensor data in smart city contexts, using six objective metrics based on
standard data quality dimensions. Operating within a zero-trust architecture and secure
enclaves, the system identifies common data issues without human input, though it lacks
error explanations and corrective strategies and may struggle with sparse anomalies in
long time series. Finally, Kim et al. [64] proposed adapting the Data Quality Management
Process Reference Model to the specificities of IoT scenarios in five steps:

(1) Identify target profiles to manage sensor data faults;
(2) Monitor the conditions of connected products and detect abnormal conditions;
(3) Identify sensor data faults;
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(4) Determine the causes of the identified sensor data faults; and

(5) Remove the determined causes.

For a recent, in-depth discussion of these approaches, we redirect the reader to

Zhang et al. [55]. However, these frameworks typically only take in limited input from the

users and, as mentioned earlier, the IoT-specific frameworks are usually ad hoc and focus

on particular tasks of data quality management.

3.2. Approaches for Data Quality Management in IoT Business Process Management

A newer, more abstract cycle view—the Data Quality Management Cycle (DQMC)—was

introduced by Bertrand et al. [11]. They identified a framework for data quality man-

agement comprising four steps, depicted in Figure 3: detection, handling, solving, and

evaluation. In the remainder of this section, we discuss each of these steps in more detail.

loT Sensor

Data Streams K—) Detection ﬁ

Evaluation < Handling
>
A
loT Environment
e~ i
: S ﬁﬂ % T |« R Solving
—) ...... S S R L ke )
Intended Cycle Flow Skipping or Back- Inputs of and Outputs
for DQIs wards Steps from Cycle to Environment

Figure 3. The data quality management cycle according to Bertrand et al. [11].

1.

The Detection phase involves monitoring incoming sensor data to identify and classify
potential DQIs. This step can use techniques for DQI detection mentioned earlier,
such as local outlier factor [13] or isolation forests [12]. When issues are detected, the
data is forwarded to the handling phase for further processing.

In the Handling phase, action recommendations are developed based on the previ-
ously classified DQIs. These recommendations aim to address both the underlying
hardware components causing the issues and the necessary event log cleaning proce-
dures, such as smoothing for denoising.

The Solving phase prioritizes and schedules the recommended actions through a
process that identifies duplications and interdependencies [65]. Implementation may
occur automatically, semi-automatically, or manually. If an action proves unfeasible,
the issue is redirected to the handling task.

Finally, the Evaluation phase verifies whether the implemented solutions have suc-
cessfully resolved the DQIs and thoroughly cleaned the log. This stage also examines
whether new DQIs have emerged due to the applied data cleaning techniques. If
quality remains insufficient, the process evaluates whether the initial detection and
classification were accurate and whether the executed actions effectively addressed
the problems. When necessary, the detection and handling tasks may be reinitiated.
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This framework represents a systematic approach to identifying, addressing, and
validating solutions for data quality management in IoT environments.

Furthermore, Seiger et al. [66] used TCBR with activity signatures to classify IoT sensor
data in a smart factory, enabling analysts to assess signature quality and address DQIs from
fine-grained IoT data variations [66]. The method is lightweight, efficient, and outperforms
complex ML models on data variation, making it suitable for processing high volumes
and velocities of data [11]. However, it requires intensive manual knowledge management
and only indicates that DQIs might occur. Furthermore, it would struggle with issues like
missing values or time shifts because such patterns would be ignored by the signatures.
Finally, Corrales et al. [67] proposed a CBR approach for data cleaning. More specifically,
they developed a framework that takes as input the metadata of a dataset to recommend
data cleaning techniques for a specific data analysis task (classification or regression). The
main contribution of the approach lies in the detection of potential DQIs through case
retrieval. However, here, the analysis is only carried out at the metadata level, and CBR is
used to identify the cleaning algorithms.

4. Case-Based Detection of Data Quality Issues

This section presents the TCBR framework for the automated identification, handling,
and solving of DQIs in event logs. To this end, we propose a case-based approach tailored
to the demands of IoT-driven Smart Manufacturing environments, aiming to enable near-
real-time processing and evaluation of sensor data. The approach continuously monitors
data streams to detect potential DQIs and draws on previously encountered similar cases
to recommend appropriate handling strategies. By design, the method addresses key chal-
lenges in data quality management: it excels in dealing with rare DQIs, where conventional
ML techniques often falter due to insufficient training data. Through the reuse of historical
cases and solution strategies, it promotes effective knowledge transfer across heterogeneous
machines or operational settings. The case base evolves by incorporating user feedback,
enabling continuous refinement of the underlying knowledge. Moreover, the approach
supports flexible reasoning in scenarios where the root cause of a DQI is ambiguous or
multiple plausible solutions exist, thereby facilitating transparent and experience-driven
decision-making. First, we present the overarching approach illustrated in Figure 4 in
Section 4.1. Subsequently, this section follows the structure of the procedure model for
creating a CBR system according to Malburg et al. [47]: In Section 4.2, the vocabulary for
the DQI domain based on the data stream format [68] is introduced, on which also the case
the base can be filled. Section 4.3 describes how the similarity measures were derived and
presents these methods for the three most common DQI types. Building on this, Section 4.4
presents how these retrieval results can be used for the detection of DQIs and reused to
solve identified DQIs.

4.1. Procedure of Using Case-Based Reasoning for DQI Detection

Figure 4 presents the case-based approach for identifying DQIs in IoT sensor data.
This data originates from a smart factory (see Section 2.1) and is collected automatically.
Domain experts must be involved to identify failures in an initial data set, as well as the
syntactic similarity measures for the DQI types to identify. If a DQI is present, it is classified,
and a procedure to fix the causing reason as well as repair the data is stored. Using any
converter, these are transferred to the vocabulary of a CBR system (see Section 4.2) and
stored in the case base there. After this is once initialized, new event data is transferred
to the CBR system, categorized according to the 4R cycle by Aamodt and Plaza [21] (see
Section 2.4), as a converted query directly. This determines the most similar cases in the
retrieval phase, using suitable similarity measures (see Section 4.3). In the reuse phase
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(see Section 4.4), the current event data is first classified based on these retrieval results
to determine whether a DQI is present or not. The retrieval and this first adaptation step
address the detection phase according to the DQMC [11] (see Section 3.1). If there is no
DQJ, no adaptation is necessary. If a DQI type is available, the remediation approach from
the retrieved cases can be used or adapted to the present DQI type. This step corresponds
to the handling phase of the DQMC.

Smart Factory

A AT -
A°g~ A

produces

Classification and Solution of

loT Sensor
Data Streams

A4 < Knowledge About!
Converter Syntactic DQI 1 | (1) Detection
Vocabulary _Cf@ra_cte_risﬁcs_ |

L Query _

= 7

Retain —I> Retrieve

Evaluation of Proposed Solution and Execution

."A aptation
—> No Apply Adapt
— —| > Revise Adaptation Solution Solution
/ CBR Application Adapted Case A—‘ '
________________________________________________________
(3) Solving (2) Handling

(4) Evaluation

Figure 4. Procedure of using CBR for detection of DQIs, with references to DOMC: (1)—(4).

In the revise phase, the categorization and the possible solution procedure can be
presented to a domain expert who reviews this decision and tries to apply the suggested
method, which corresponds to the DQMC solving phase. Furthermore, the DQMC evalua-
tion phase is also covered by the revise phase, as this expert directly assesses whether the
approach works or not. Depending on the number of DQI cases stored, these first three
steps of the CBR cycle are run several times before the retain phase is reached. This is
because specific similarity measures for a DQI type are triggered in the retrieve phase. If,
for example, data is examined for three DQI types, retrieval, reusage, and revision take
place three times in succession. It is possible that no DQI or various DQIs are available for
a case at the same time. In the retain phase, either the error-free case without the failure
label is saved or the DQI case with the failure classification and the correction is made. If
the domain expert has found the solution to be unusable in the DOMC evaluation, the
new case is forgotten, and adjustments can be made to the similarity measures in order to
re-initiate the CBR approach and optimize the results.
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4.2. Vocabulary for Case Description

As described in the procedure model for creating a CBR system [47], a suitable vo-
cabulary must be defined after pre-processing the time series data. The next knowledge
container of the case base is filled with the IoT data based on the structure specified by
the knowledge container of the vocabulary. To draft a vocabulary that is as generic as
possible, it must be compatible with common formats from the IoT sector. The DataStream
format [68] offers a flexible, structured solution for integrating IoT sensor data with pro-
cess events across different contexts (single activity, group of activities, or trace), enabling
joint analysis of process and IoT data. This extension of the eXtensible Event Stream (XES)
standard [69,70] is developed to link IoT data with process events while simultaneously
integrating the semantic context [68]. It enables the standardized representation of IoT-
enriched event logs by storing extensive sensor data in events or traces, making the data
suitable for subsequent analysis processes. As demonstrated in manufacturing and public
transportation case studies, the DataStream format permits direct embedding of IoT data in
event logs, establishing a uniform foundation for future data-oriented analysis tools while
reducing data extraction and transformation efforts. Therefore, this CBR approach is based
on this format. Other formats for representation of IoT sensor data can also be used, as this
approach is generic, but then they require a transformation to the following vocabulary or
an adapted case representation.

To build the vocabulary, the attributes from the DataStream format are matched to
an object-oriented case representation. The specified vocabulary is illustrated in Figure 5.
This is an extended version, the predecessor of which we have already presented in
previous work for the DQI context [49]. Each recorded event log is represented as a case,
which consists of meta information regarding this event and the actual data streams. The
information contains various attributes such as the name, the available resource, the initial
timestamp when the event started, and a failure description if a DQI has occurred. This
is a subclass that is instantiated in subclasses for the respective DQI types. In addition
to the description of the failure, the applied solution and the resulting adapted case are
also stored, which in turn is another object of the case class. The solution can be stored
in various forms, e.g., a reference to an algorithm to be applied or a description of the
domain expert. In addition to this information about the event, the data streams are also
contained at the top level. This is a list of individual stream points, each of which represents
a sensor. This sensor contains information about the IoT asset on which it is located, as
well as the actual time series of a sensor stream. This can take various forms, such as
coordinates, e.g., of a workpiece or a machine asset, measured as numerical values or the
states of machines, like, e.g., light barriers or switches, as Boolean values. The time series
each contains a timestamp, which refers to a specific time point. These timestamps are not
well suited for calculating similarity, as the sensors generally do not wear out within short
time intervals (e.g., in a few weeks) and the time of process execution should not matter
in a factory in closed areas. What is much more relevant is how much time has passed
since the start of the process. This information is therefore stored in the case instead of the
timestamp, so time series recorded at different time points can be compared with each other
based on this distance. The time series are stored unchanged and are not pre-processed,
such as abstraction [48] or the removal of irrelevant data points [47]. Such pre-processing
would make it impossible to recognize DQI-specific patterns, such as missing values [49].
Additional semantic information that is not included in this vocabulary is not considered
initially. For example, dependencies e.g., between different, mutually influencing stream
points, are not modeled but are left out for this state of research.
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At this stage, precise annotation by a domain expert is essential to ensure accurate
identification of a DQI its specific type. This manual annotation constitutes the initial filling
of the case base and forms the foundation for applying the CBR approach. As the CBR cycle
progresses, the case base is incrementally expanded during the retain phase by adding new
cases if appropriate. The data utilized remain unaltered, real-world datasets, as clearly
identifiable signatures of DQI failures (e.g., those discussed by Seiger et al. [66]) are often
unavailable or lack generalizability. These steps constitute the initial establishment of the
two knowledge containers, namely the vocabulary and the case base.

4.3. Similarity Measures for Data Quality Issues

According to the procedure model [47], the next knowledge container to be specified
is the similarity measures, which must be aligned with the previously defined vocabulary.
These measures are investigated to assess the degree of similarity between a new problem
and previously solved problems represented as cases within the case base. The similarity
assessment constitutes the core mechanism of CBR, as it serves as a proxy for utility and
thus addresses the central challenge of experience management—namely, the effective
reuse of relevant experiences to solve new problems [22] (pp. 93-100). The quality of
the similarity measures is therefore of critical importance: only well-designed similarity
measures ensure that the case with the highest expected utility is selected for a given
problem. Consequently, accurately modeled similarity measures are essential to ensure that
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case selection reflects the current understanding of the underlying utility function. This is
particularly significant in the context of the DQI application, where the appropriateness
and precision of similarity evaluation directly impact the effectiveness of the system.

The conceptualization of the similarity measures for identifying DQIs in time series
data was guided by two core considerations: the availability of expert-derived experience
knowledge and the limited amount of labeled failure data available in real-world industrial
settings. First, the design leverages experience-based knowledge accumulated through
prior domain-specific observations and manual DQI resolution. Instead of relying on
purely statistical or opaque ML-based similarity models, we aimed to capture this expert
understanding in the form of interpretable, modular similarity functions. Second, we delib-
erately selected and adapted established, domain-independent similarity measures, such
as weighted variants of Dynamic Time Warping (DTW), because they are well-understood,
widely supported, and capable of capturing temporal distortions, which are characteristic
of several DQI types. This approach promotes generalizability across domains and allows
transparent integration with the case vocabulary. Importantly, we deliberately avoided
training ML models for this task. The reason for this is the scarcity of labeled fault data,
especially for specific DQI patterns in industrial IoT environments. To train accurate, gen-
eralizable models, a much larger corpus of annotated fault cases would be required than is
currently possible. In addition, the interpretability of machine-learned similarity measures
is limited, which can affect user confidence and human diagnosis.

In this case study, we therefore relied on the knowledge of domain experts to explore
appropriate similarity measures. To this end, we conducted research from the IoT Lab
Trier (https:/ /iot.uni-trier.de/ (accessed on 11 September 2025)) and from the Research
Centre for Information Systems Engineering (LIRIS) at the KU Leuven (https:/ /feb.kuleuven.
be/research/decision-sciences-and-information-management/liris/liris (accessed on 11
September 2025)). Furthermore, we obtained ongoing feedback from the Internet of Processes
and Things (IoPT) initiative (https://zenodo.org/communities /iopt/about (accessed on 11
September 2025)). The experts consulted have extensive experience with the characteristics
of DQIs, acquired through many years of work within the domain of data quality manage-
ment. Given that each DQI type exhibits distinct characteristics and focal points, the CBR
approach is explicitly applied separately for each DQI type (as already stated in Section 4.1).
Accordingly, the similarity measure is tailored in each iteration, such that the CBR applica-
tion serves solely to determine whether a specific DQI type is present and how it might be
addressed. Due to the unique nature of the DQI types under investigation, representative
DQIs are identified for detailed analysis, which is also suggested by the literature:

1. Missing Data, which are widely regarded as the most prevalent issue in sensor
data—excluding outliers, which are frequent but represent intrinsically valid ob-
servations [6,7]. This general problem is captured by two specific DQIs: Missing
Sensor Values and Missing Sensors.

2. Noise, which is another topmost issue affecting sensor data [6,7]. This issue is rep-
resented with the DQI type of Time Shifts, which consists of measurements whose
timestamp was tampered with.

The characteristics of the identified types of DQIs were discussed in detail with domain
experts. These issues represent failures that cannot be detected solely through syntactic
analysis but require the incorporation of semantic information available within the case.
Accordingly, similarity measures were developed that are primarily based on syntactic
features and—where necessary—enhanced with semantic components. These measures
are specifically tailored to address the unique challenges associated with each type of
DQI. The designed measures were iteratively presented to the experts and their suitability
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for the domain was discussed. The measures were only finalized after approval by the
domain experts.

In the following, the local similarity measures designed for all three identified DQI
types are presented. Since the DataStream sensor data are structured as object-oriented
cases comprising multiple hierarchical levels, the applied similarity measures follow the
local-global aggregation principle (see Section 2.5). For the case representation presented in
Figure 5, this is performed iteratively from the lowest to the highest level. The aggregation
is based on weights that are defined by domain experts. Similarity measures of different
knowledge intensities are to be used for the individual attributes according to their char-
acteristics. For example, knowledge about attributes such as System Type or Procedure
Type (for Stream Point) and Resource (for Event Information)comes from a taxonomy
for the respective Smart Manufacturing environment. Other attributes, particularly Boolean
values, are evaluated through direct equality comparisons. Numerical values are based
on a distance-based similarity. The failure description is not considered in the similarity
calculation, as this is usually empty in a query and represents the solution part for the
case. A significant proportion of the weight is assigned to the sensor streams within the
stream points, as the occurrence of DQIs can be observed in the time series available there.
Therefore, the global similarity between the cases must be sufficiently influenced by this
local similarity to ensure the distinction between error-free and DQI progression.

As all other similarity measures depend on the different DQI types, these special
versions can be found in the following chapters. An overview of the challenges of each of
the three types of DQI and the proposed solution can be found in Table 2.

Table 2. Overview of the specified DQI types with categorization, issue type, key challenge, and
solution approach.

Missing Sensor Values ~ Missing Sensors Time Shift
(Section 4.3.1) (Section 4.3.2) (Section 4.3.3)

Categorization Missing Data Missing Data Noise

(Goknil et al. [7])

Issue Type Completeness Completeness Correctness

(Verhulst [38])

Key Challenge Individual values are Unclear whether sensor ~ Time shifts are not
missing, but values are time series are reliably detected by
not always logged intentionally excluded or common measures like
continuously, making it ~ unintentionally missing. =~ DTW.
difficult to determine
whether a failure has
occurred.

Solution Approach  Use of a weighted Comparison on stream Increased weighting of
DTW-based similarity level, with strong the timestamp to

measure that selectively
identifies deviations in

penalties for missing
mappings when

explicitly penalize
time-based deviations.

time series. metadata matches.

4.3.1. Missing Sensor Values

The DQI failure of missing sensor values is present if one or more values that should
have been observed are not contained in the time series [49]. Therefore, it is classified as a
missing data failure [37] and addresses a completeness issue [38]. The origin of this DQI can
be the sensor itself or a loss in data transmission. Depending on the cause, the failure must
be addressed in different ways, such as manual recalibration or data imputation [71,72].
The failure can manifest in the time series in two ways. The first is when the time series
logs data at fixed intervals, and one or more values are missing. The secod is when only
value changes are logged, so missing values are noticeable only if a state transition or value
change has not been recorded. Therefore, pattern-based approaches for identifying this
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DQI cannot be used exclusively or only under the assumption that data is always recorded
at regular intervals.

To identify a suitable, similar DQI case, similarities to the currently available sensor
time series must be calculated. A syntactic similarity of the time series is sufficient, and
semantic information can be taken from the attribute values of the case (see Figure 5).
Figure 6 shows two time series for which a similarity is calculated. In the query, a sensor
value is missing, but not in the case. Using a traditional similarity measure, this undesired
mapping would occur, and the missing value would not be identified because of a still high
similarity value for both time series. In previous work [49], a weighted version of the DTW
algorithm is introduced as a suitable similarity measure for this assumption. Therefore, we
use the following measure for the time series.

STMSensorStream (4,€) = Simweighted (q,¢) with DTW as sty

1| 00 | T 0.2 T 04 fRT .|
Query V false V false V true -“ true V

Figure 6. The undesired mapping in the DQI of a missing sensor value (based on Schultheis
etal. [49]).

This is based on the DTW algorithm [54], which can identify stretching and compres-
sion in time series without a negative influence on the resulting similarity values. For this
type of DQI, this provides the advantage that cases in which values are recorded at different
intervals are recognized as similar [49]. However, because of this property, individual
missing values within long time series are hardly significant. If there is a missing constant
value, this failure cannot be identified with the similarity measure. However, the negative
consequences of a DQI do not occur, as the analysis and subsequent steps are not affected.
If one or more different values are missing, the weights integrated in DTW should ensure
that there is sufficient selectivity in the similarity values. To ensure the influence of this
measure on the overall similarity value, this similarity should be sufficiently weighted in
relation to the other meta attributes regarding the stream point. Therefore, the resulting
mapping shown in Figure 7 is desired.

Tl 00 [T 0.1 [T 0.2 | T 04 [T .|
Query V false V false V true -“ true V

Figure 7. The desired mapping in the DQI of a missing sensor value.

4.3.2. Missing Sensors

The DQI of missing sensors occurs when a complete sensor is missing in a problem
or case description. This means that either the time series itself is unavailable or the
entire stream point is absent (see Figure 5). Hence, this type of DQI can explicitly be
classified as a missing data failure [37], directly addressing a completeness issue [38].
Within the DataStream format, metadata typically stores information regarding the number
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of available stream points. However, it cannot be assumed that this is necessarily correct
or always available. For example, there are logs in which irrelevant data streams are
deliberately omitted (e.g., in the context of PredM [4]), as these only cause unnecessary data
volumes and increased computing effort for the analysis. Moreover, to enhance applicability,
the similarity approach must remain sufficiently generic to function effectively even in data
formats lacking explicit metadata regarding the number of available stream points.

Therefore, a similarity measure was investigated that aims at this type of DQI, illus-
trated in Figure 8. Considering the time series solely at the local level is insufficient, as
the absence of an entire sensor stream (including its time series) can only be effectively
identified at the global level. For this reason, a similarity calculation (sim(q, ¢) patastream Log)
is performed, half of which results from the similarity of the event information at the top
level (sim(q, ¢) EventInformation) and the other half from the similarity of the list of sensor
streams (sim(q, ¢) patastreams)- For the list, this similarity (sim(q, ¢) patastreams) 1S estimated
based on a list mapping, the aim of which is to find a suitable mapping partner for each
list entry. To calculate the similarities between the time series at the lowest level, a simple
comparison (sim (g, ¢)sensorstream) i used to determine whether the same data types are
present there, and the similarity of the individual stream points is determined solely based
on the attributes. Ensuring the assignment of only appropriate mappings is crucial here.
A penalty is used for the list mapping, analogous to the missing sensor values [49] (see
Section 4.3.1), so that those mappings are omitted rather than those with low similarity. This
significantly reduces the global similarity, so that a high similarity can only be achieved
if the number of time series matches the attributes of the entire event conclusively. This
means that DQI cases with missing sensors are similar to each other but not to cases that
do not contain this error.

\ Sim(qv c) DataStreamLog = \
Query \ 0.5 % sim(q, C)Eventlnfo’rmation ( Case \

Data Stream Log +0.5% szm(q, C) DataStreams Data Stream Log

stm(q, ¢ ion = Dgieq.eicc($tm(gi, ¢;
Event Information (q; ) EventIn formation gi€q,ci€c ( (Ql ) G ) Erenin e
: Calibratin

Name: Calibrating Motor

Failure Description

Sim(qV C) DataStreams = Sim(% c)weighted

Ep— with List Mapping as simyrqq(q, )
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Figure 8. The proposed hierarchical similarity measures for the DQI type of missing sensors.
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4.3.3. Time Shifts

The DQI error of time shifts occurs when the starting point of logging is shifted for
one or more time series. It is classified as an incorrect data failure [37] and addresses the
correctness of event logs [38]. When recording time series values, the timestamp itself is
normally logged, which refers to a specific time point. As described in Section 4.2, it is not
the specific time point that is saved but the distance to the start of the event. Consequently,
this DQI type can only be detected when temporal shifts affect individual sensors rather
than uniformly shifting the entire event log. Such situations commonly arise, for instance,
from incorrect calibration of individual sensors, for example, [36]. Figure 9 shows the effect
of such a failure in a traditional similarity calculation. Minor temporal shifts generally
receive minimal penalties at the local similarity level so that approaches such as DTW
usually map these to the identical entries in other time series, and the time shift is hardly
reflected in the similarity value.

e e
V false V false V true V true V true A2

Figure 9. The undesired mapping in the DQI of a time shift.

To address this issue, only the weights at the global level of the individual values
within the time series are adjusted. Thus, the traditional DTW measure is recommended to
deal with compression and stretching. At the level of the individual attributes, the weights
for timestamp and the actual value can be set as desired. A numerical distance measure is
recommended for the timestamp, e.g., based on the Euclidean distance. A generic measure,
such as an equality check or a measure suitable for the data type, e.g., Levenshtein distance
for strings [73] or numerical functions for numerical values, can be used for the value. For
a weighting where the value occupies 50 percent or more of the weight, a mapping as in
Figure 9 is preferred, as this maximizes the similarity for the individual entries. However,
if the weights are shifted in favor of the timestamp, a mapping that is suitable for the
respective time points tends to be used. Therefore, the following measure should be used
for calculation:

sim(q, €) Timepoint = X * sim(q, C)Timestamp +y *sim(q, ¢)vae Withx +y =1Ax >y

The weight for the timestamp should be significantly higher than the one for the value.
For example, 0.8 could be set for the timestamp and 0.2 for the value. The desired mapping
effect is shown in Figure 10.

Query

Figure 10. The desired mapping in the DQI of a time shift.
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4.4. Detection and Case-Based Solving of Data Quality Issues

After defining the three knowledge containers, the final container to populate is the
adaptation knowledge [47]. This container serves to generate a solution to the identified
problem based on the retrieval results. The approach presented in Section 4.1 involves a
two-stage retrieval process: (1) the classification to determine whether a DQI is present,
and if so, which type it belongs to, and (2) and then, in the case of a DQI type, adaptation
of an appropriate solution to resolve the identified DQI. These steps are outlined in detail
in the following subsections.

4.4.1. Classification of Data Quality Issues

The current query must be categorized based on the retrieval results. Due to the
potential similarity between event logs containing DQIs and those without, relying solely
on the most similar case may result in misclassification. To mitigate this risk, a set of the
most similar cases should be used. The number of cases selected depends on the size of
the underlying case base and should be proportional to it. As the amount of DQI data is
usually small, accordingly, only a few suitable DQI cases can be expected, causing this
number to be very small. Classification of the respective DQI type is determined through
majority voting within this selected set. Additionally, a threshold may be established to
exclude cases that are insufficient similar from this procedure. This similarity threshold is
typically domain-specific. For instance, a set size of five retrieval results and a similarity
threshold value of 0.9 can be employed. Classification is based on the absolute majority.
That is, if more than half of the cases considered indicate the presence of a DQ], the query is
classified as containing that DQI type. In this scenario, no further adaptation to the solution
is required (null adaptation).

4.4.2. Solution Adaptation

Once a DQI has been classified, the corresponding solution must be adapted accord-
ingly. Depending on the type of DQI identified, this adaptation can often be performed
automatically. Therefore, corresponding knowledge must be available in the case, e.g.,
stating which time series is afflicted. For example, in cases involving missing sensor values,
the adaptation can be accomplished by either adopting a corresponding value directly from
the most similar case(s) or computing the mean value from several similar case values. Sim-
ilarly, if an entire sensor reading is missing, the complete time series can be reconstructed
using analogous methods. In the case of a time shift, a dedicated adaptation algorithm
stored as part of a case can be invoked to adapt the time points. The resulting adapted cases
are saved alongside their corresponding DQI classification. However, some adjustments
cannot be fully automated and thus require verification and modification by a domain
expert. This step cannot be automated. At this point, the adaptation naturally transitions
into the revision phase, where the domain expert concurrently verifies the accuracy of both
retrieval and adaptation processes.

5. Case Study

The approach presented for addressing DQIs using CBR is subjected to a case study to
examine its suitability for this application area. The basic assumption to be investigated
is that the use of the CBR methodology makes it possible to identify DQIs. The setup for
this case study is presented in Section 5.1. In Section 5.2, the results are presented, and in
Section 5.3, the results are discussed. Based on these findings, lessons learned from this
case study are presented in Section 5.4 and methodical implications for future research
are provided.
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5.1. Setup

The approach presented in Section 4 was implemented in the CBR framework Pro-
CAKE [74] (The implementation is available at https:/ /gitlab.rlp.net/procake /publications /
procake-data-quality-issues (accessed on 11 September 2025)), which is an open-source Java
software prototype available under GPL. This supports the processing of time series data
and contains various similarity measures for this purpose [47], including the weighted time
series measures [49]. The data used for the study comes from an extended Fischertechnik
Smart Factory in the IoT Lab Trier (https:/ /iot.uni-trier.de/ (accessed on 11 September
2025)),where it was physically recorded. The error-free data used is publicly available
and is represented in the DataStream format [68] (see Section 4.2). As the data has been
verified to be error-free, data with DQIs was generated on this basis. This was carried out
by a domain expert from the IoT Lab Trier, who created DQI-injected event logs using
algorithms written specifically for this data set and documented the respective failure cases
in separate files (Available at https://doi.org/10.5281/zenodo.15487019). Examples of
the three different DQI types of missing sensor values, missing sensors, and time shifts,
presented in Section 4.3, were generated.Using a converter, the error-free sensor stream
data and the DQI-contaminated sensor stream data were transferred to a ProCAKE case
base. This converter also reads the files with the failure information and inserts them if
available into the case information.

For the case study, a reduced, randomly chosen data set of 500 cases was used, con-
taining 25 cases of each of the three respective DQIs. This distribution has been selected
because it corresponds to a realistic distribution in industrial production. In these cases,
error data is available much less frequently, as production often runs smoothly and with-
out any errors. The reduced data set should correspond as closely as possible to the real
industrial circumstances, in which DQISs are only rarely available in documented form and
can therefore be reused. Based on this case base, a 10-fold cross-validation using the CBR
approach presented was carried out until the DQI types were identified in the reuse phase.
The case study therefore relates to the retrieval and the subsequent classification carried out
using majority voting. For majority voting, the five most similar cases are used, provided
they have a similarity greater than the threshold value 0.9. The further steps of the CBR
approach are omitted in this case study.

5.2. Results

The evaluation was conducted on a server with 34 processors, each operating at a clock
frequency of 2850 MHz and with 400 gigabytes of Random-Access Memory (RAM). Despite
the high-performance setup, several adjustments were necessary during the implementa-
tion and execution of the evaluation. In particular, a RAM overload was observed during
certain similarity calculations for missing sensor values and time shifts, which rapidly filled
the available 400 gigabytes of memory. Consequently, the parallelized retrieval process,
which runs across 34 cores, was initiated with a time delay for these two DQI types. Specifi-
cally, one thread is started on each core, and a delay is introduced before the subsequent
thread begins, ensuring that all other threads pause if excessive RAM usage occurs. If a
thread runs for longer than 30 min, it is terminated to free up memory for the other threads.
Additionally, the retrieval process is capped at 90 min in total. The classification is then
performed based on the similarities calculated up until this point, under the aforemen-
tioned conditions. If no suitable cases are identified, the query is deemed unclassifiable
and recorded separately in the evaluation results.

To evaluate the case study, confusion matrices are created for the CBR runs for each
DQI type based on the classifications made. The results for the DQI type of missing sensor
values can be found in Table 3. Forty-one queries were aborted due to the excessive runtime.
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The average calculation time per query for this DQI type was 21 min and 46 s. The setup of
this evaluation can already be found in a previous work [49], where queries were already
aborted after a runtime of 10 min. However, the results do not differ significantly from
the previous evaluation, which, despite the shorter runtime, also identified five correctly
detected failures with two false positives.

Table 3. Confusion matrix for the identification of missing sensor value failure.

Actual Positive Actual Negative
Predicted Positive 5 3
Predicted Negative 431 3

For the DQI type of missing sensors, the corresponding confusion matrix in Table 4
shows that none of the actual DQI cases were recognized. The retrieval time of 1 h, 41 min,
and 6 s was significantly shorter than for the other DQI types. The average calculation time
per query for this DQI type was notably more efficient at just 12 s.

Table 4. Confusion matrix for the identification of missing sensor failure.

Actual Positive Actual Negative
Predicted Positive 0 0
Predicted Negative 25 475

For the detection of time shift failures with the corresponding confusion matrix shown
in Table 5, no positive cases were correctly identified. With 116 aborted queries and a
retrieval time of over 10 days, this DQI type shows similar efficiency problems as the DQI
type of missing sensor values. The average calculation time per query was 29 min and 21 s,
making it the most computationally intensive DQI type. During processing, the available
working memory of almost 400 GB was at times fully utilized.

Table 5. Confusion matrix for the identification of time shift failure.

Actual Positive Actual Negative
Predicted Positive 0 1
Predicted Negative 15 368

The 10 most similar cases, including the presence of DQIs, were also retrieved and
randomly evaluated. This indicated that the classification did not significantly affect
classification performance if a smaller number of cases or only the most similar case was
used for classification instead of the 10 most similar cases. If cases with errors were included
in the most similar cases, these were often not listed as the most similar case, regardless of
the DQI type.

Table 6 summarizes the key metrics—precision, recall, F1-Score, accuracy, specificity,
and error rates—computed from the confusion matrices of the three DQI types. It is evident
that for the Missing Sensor and Time Shift scenarios, the precision, recall, and F1-Score each
equal 0.00, which corresponds directly to the confusion matrices where no true positives
were detected. This clearly indicates that the similarity-based classification for these DQI
types was ineffective. The False Negative Rate reaches 100%, whereas False Positive Rates
stay near 0%. At the same time, specificity values are exceptionally high in these cases,
confirming that true negatives are almost always recognized.
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Table 6. Performance measures calculated based on the confusion matrices.

Average Value

Performance Missin Missin . . for Overall
Measure Sensor Va%ue Sensof Time Shift CBR
Approach
Accuracy 0.0181 0.9500 0.9583 0.6421
Precision 0.6250 0.0000 0.0000 0.2083
Recall 0.0115 0.0000 0.0000 0.0038
Specificity 0.5000 1.0000 0.9973 0.8324
F1-Score 0.0225 0.0000 0.0000 0.0075
False Positive Rate 0.5000 0.0000 0.0027 0.1676
False Negative Rate 0.9885 1.0000 1.0000 0.9962

For the Missing Sensor Value failure, the results are more nuanced: An accuracy
of 1.81% suggests poor overall classification performance, though a precision of 62.50%
indicates that when the system predicts a positive case, it is correct more than half the
time. However, with a recall of only 1.15%, the system fails to detect the vast majority
of actual positive cases. The Fl-score of 2.25% reflects this significant imbalance between
precision and recall. Particularly notable is the specificity of 50.00% and the high false
positive rate of 50.00%, which indicates that the classification system struggles to identify
negative cases correctly for this DQI type. Across all three DQI types, the overall accuracy
is 64.21%, primarily due to the high specificity across all types. However, with an average
recall of only 0.38% and an Fl-score of 0.75%, the results indicate that while the system
is generally robust in recognizing failure-free sensor data, it performs poorly in detecting
various DQI-related failures in sensor data.

5.3. Discussion

The results of the case study highlight three key shortcomings of the proposed case-
based approach for DQI detection in time series data. Yet, and to the best of our knowledge,
this study is the first to demonstrate a complete CBR pipeline for DQI detection and
handling in Industrial-IoT event logs, thereby establishing an empirical baseline for the
field. Although the method was designed to support the reuse of prior knowledge, the
empirical results contradict this objective. The performance measures demonstrate that the
CBR system largely fails to identify faulty cases correctly. In particular, the Missing Sensor
and Time Shift DQI types yielded zero values for recall and Fl-score, indicating that no
actual DQI instances were recognized, while specificity remained high. Only the Missing
Sensor Value category performs slightly better, but the overall F1-Score remains under 3%.

Analyzing the classification behavior of the ten most similar retrieved cases suggests
that the current similarity measures are fundamentally unsuitable for capturing the charac-
teristics of DQIs. Even when failure cases appear among the most similar, they almost never
rank first. Reducing the number of retrieved cases for majority voting, or even considering
only the most similar case, did not lead to noticeable differences. A key reason is data
imbalance: only 5 % of the 500 cases are labeled with a DQ), yielding a 19:1 skew toward
“healthy” examples. Moreover, the faulty records themselves exhibit highly heterogeneous
sensor patterns, so the already low prior probability of retrieving a positive case means
that—even with a perfect similarity metric, a fault query is overwhelmingly likely to find
its nearest neighbors among "healthy" cases. Although the small number of faulty cases per
DQI type (25 each) may contribute to this outcome, it can be excluded as the sole reason for
the poor performance. Instead, this points to a more fundamental problem: the individual
DQI cases may be too heterogeneous to allow meaningful generalization using current
similarity definitions. It should therefore be examined whether the case base contains truly
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suitable queries and comparable cases for each DQI type or whether the failure types are
too diverse in their manifestation. In this context, approaches such as the use of failure
signatures as proposed by Seiger et al. [66] (see Section 3.2) may offer a possible solution.
However, this approach may not be applicable to DQI types such as Missing Sensor Values,
where failure manifestations are defined primarily by the absence of data and, thus, are
difficult to characterize.

Beyond conceptual issues, the approach faces severe technical limitations. Despite a
reduced case base of only 500 entries, similarity computations for Missing Sensor Value and
Time Shift DQIs led to extreme memory consumption, exceeding 400 GB RAM and requir-
ing the implementation of throttling mechanisms in the retrieval process. When scaling the
case base to 1000 entries, these issues intensified, rendering the system unusable even in con-
trolled environments—except for the missing sensor DQI type that was not working. This
shows the limited scalability of the approach we implemented and rules out edge devices
or real-world use, where lean memory and fast runtimes are mandatory. Optimizing query
and case content per DQI type—for example, by removing unchanged sensor values that
contribute little to distinguishing features (see e.g., Malburg et al. [47])—could reduce the
computational burden and make the approach better suited to handle large datasets com-
prising multiple sensors sampling data at a high frequency. Moreover, the current similarity
measures must be fundamentally revised, ideally by incorporating semantic, temporal, or
structural information more effectively. The vocabulary and case base developed in this
work may serve as a valuable foundation for future research and development, particularly
in the testing of alternative similarity strategies or in the integration of hybrid architec-
tures. To facilitate such follow-up studies, we openly publish (1) the error-free (available at
https://doi.org/10.6084/m9.figshare.20130794.v6) and DQI-injectedloT event logs (avail-
able at https:/ /doi.org/10.5281/zenodo.15487019), (2) the created case base consisting of
500 cases in ProCAKE (available at https:/ /gitlab.rlp.net/procake/publications/procake-
data-quality-issues/-/tree/main/src/main/resources/de/uni_trier/wi2/procake_dqi (ac-
cessed on 11 September 2025)), and (3) all extensions made to ProCAKE to enable the
TCBR approach presented in Section 4 under the GNU GPL (available at https://gitlab.rlp.
net/procake/publications/procake-data-quality-issues/ (accessed on 11 September 2025)).
Although the system demonstrates robustness in identifying non-faulty cases, it does not
fulfill the core requirement of reliably detecting faulty sensor data under realistic conditions.

A critical examination of the results raises fundamental questions regarding the suit-
ability of the implemented similarity measures for different DQI types. The substantial
variance in computation times indicates significant differences in the computational com-
plexity of the similarity calculations. Through only 25 failures per DQI out of 500 cases, it
is indicated that there are not enough examples to learn reliable patterns. These findings
imply that DQISs in time series data manifest as localized, context-dependent anomalies that
fixed similarity metrics fail to capture, suggesting that unsupervised or anomaly-detection
methods could perform better. Tailoring similarity metrics to each DQI type could improve
detection rates.

These shortcomings align with known data quality management challenges identified
in Bertrand et al. [11] (see Section 2.2). In particular, data complexity introduces systemic
problems that affect all components of the proposed solution. The approach is clearly not
suited to handle the high data volume, as evidenced by extreme memory usage even for
relatively small case bases. The diversity of sensor types and data formats also complicates
meaningful similarity computation, since fixed similarity metrics fail to generalize across
heterogeneous input. Moreover, high-frequency time series data requires rapid and scalable
classification, which the current implementation cannot provide. Finally, the level of
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granularity at which similarity is calculated must be reconsidered, as abstraction may
suppress essential features while raw data is too complex for real-time processing.

In summary, the findings necessitate not only a technical optimization, but also a
critical reassessment of the fundamental assumption that the selected similarity measures
are equally appropriate for all DQI types. The results indicate that the manifestation
of various DQI types in the data may be too diverse to be effectively detected using a
uniform similarity approach. The extreme variation in computational time requirements
despite consistent data representation suggests that the complexity of different failure types
imposes varying demands on similarity calculations. Future research should therefore aim
not only to optimize existing methodologies but also to explore alternative, failure-specific
similarity metrics better aligned with the characteristics of each DQI type.

5.4. Lessons Learned and Methodological Implications

The initial case study provides three central insights that are relevant not only for our
own continuation of work, but also for researchers and practitioners who intend to apply
CBR to DQIs in Smart Manufacturing environments.

LL1—Expert-only Similarity Measures are Fragile. Our retrieval pipeline achieved only
1.2% recall at 0.6% false-positives when the similarity assessment is based on the weights
obtained in the expert workshops. Manual heuristics did not capture cross-sensor depen-
dencies (e.g., pressure—temperature drift) or temporal motifs (intermittent spikes).
Implication: Future CBR systems should combine semantic weights from experts with
data-driven components (e.g., learned Mahalanobis metrics [75], or Siamese networks [76])
and continuously reconfigure them using closed-loop feedback.

LL2—Naive Retrieval Does Not Scale. Similarity computations for two DQI types ex-
hausted 400 GB of RAM and averaged 29 min per query, forcing 157 of 500 retrievals to
abort. This makes real-time or edge deployment impracticable.

Implication: More efficient similarity-based retrieval techniques (e.g., MAC/FAC re-
trieval [77], index-based case base structures [78], and GPU-accelerated retrieval [79]) and
leaner case representations (temporal abstraction [48,80] and constant-value pruning [47])
are mandatory before the approach can be used in practice.

LL3—One-Size-Fits-All Similarity Measure Fails Across DQI Types. For Missing Sensors
and Time Shift failures, the system produced 0% recall—despite identical case representation
and training effort. This indicates that each DQI type manifests a distinct failure signature
that the current uniform similarity function cannot generalize over.

Implication: Adopt failure-specific similarity measures or a cascading architecture in which a
lightweight detector first routes the query to a tailored preprocessing step in which cases
are enriched with structural and temporal context (e.g., sensor topology, or process phase)
to boost discriminative power.

Together, these lessons indicate that future iterations should adopt a hybrid similarity-
learning strategy, treating the knowledge containers as continuously changing knowledge
representations, and institutionalize maintenance procedures (periodic replay and auto-
mated unit tests for new similarity rules). We believe that implementing these recommen-
dations will raise the practical ceiling of CBR-based DQI detection and close the observed
performance gap.
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6. Conclusions and Future Work

This paper introduced a domain-customized framework that populates the four CBR
knowledge containers for three representative DQIs in IIoT time-series logs. This method
executes the first three phases of the CBR cycle—retrieve, reuse, and revise—for each DQI
type to be examined, classifies their occurrence, and adapts the solutions. By releasing
both the prototype code and an openly annotated benchmark dataset, we establish the first
reproducible baseline for knowledge-intensive DQI management. A case study confirmed
that several DQIs can be identified correctly, and, although overall recall is still limited,
it delivers the first empirical baseline for CBR-based data quality control in IIoT. This
baseline, together with the openly released prototype and dataset, constitutes a valuable
contribution for subsequent research and optimization. The case study indicates that,
especially for complex DQI types like Time Shift and Missing Sensor, the approach failed to
detect any true positives. This is due not only to the limited number of cases but also to
unsuitable similarity measures and the heterogeneity of DQI manifestations. Consequently,
the current system fails to generalize beyond these few exemplar cases, leaving more
nuanced or previously unseen DQI patterns undetected. Moreover, the system proved
technically inefficient with excessive memory use, and challenges such as data volume and
format variety further aggravated these issues. The reference implementation is conceived
as an open blueprint for industrial deployment; the entire code base is released under the
GNU license, allowing practitioners to fork, adapt, and embed the CBR components in
their own monitoring or analytics stacks.

These results have already been observed for the partial approach to address the
missing sensor values [49]. Therefore, future research must continue to investigate how
the identification of DQIs can be optimized using CBR. One possibility for this would be
to design a hybrid CBR system that integrates Deep Learning (DL) methods as similarity
measures, for example. As a possibility, embeddings could be trained to explicitly identify
these DQIs (see, e.g., [81,82]). In addition, similarity functions can be derived automatically
by performing exploratory data analysis on openly available manufacturing time series
datasets (e.g., the industrial screw driving dataset collection [83], or the IMAD-DS [84]),
thereby reducing the reliance on handcrafted expert knowledge. The resulting data-driven
measures are expected to enhance generalization to previously unseen DQI patterns and
to facilitate transfer of the framework to new industrial settings. Furthermore, CBR could
also be combined with other approaches, each of which evaluates the presence of a DQI
separately and then combines the results. To additionally increase confidence in the results
of the CBR approach, an explanatory power component is to be investigated.

As in previous research, runtime issues have been identified as a major problem with
the CBR approach. The previously described possibility of embeddings can be used to
address these. In addition, alternative retrieval methods such as MAC/FAC [77] can be
examined for their suitability. So far, there are few approaches for MAC processing of
time series in CBR, but methods such as clustering can be adapted for this purpose [85]. It
can also be investigated to what extent abstraction methods of time series representation
are suitable [47,48,86]. These must be examined individually for each DQI type, as, e.g.,
missing sensor values require the representation of all time points, which is not the case
for missing sensors or time shifts. This would result in an upstream step, e.g., an MAC
phase. Another possibility is distributed CBR approaches [87], for which architectures such
as edge—cloud continuums [88,89] can be used. GPU retrieval methods that already exist
for other case representations can also be considered [79]. Alternatively, the case base can
also be reduced in size to make retrieval more efficient. For example, approaches in the
field of Case-Based Maintenance [90], e.g., Remembering to Forget [91], can be investigated.
Alternatively, methods that preprocess the data, such as the omission of constant values in
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time series [47], can also be considered. For the DQI of the missing sensor values, irrelevant
data streams can be omitted, as they cannot be recognized anyway. In addition, methods
from the DL area [92] can also be examined, which allow the similarity calculation to focus
only on the most relevant attributes [4].

In addition to these optimization aspects, for future work, an approach for detect-
ing DQIs can also be examined to see how it can be combined with existing PredM ap-
proaches [4]. An analysis of the sensor data also provides information about existing or
pending machine faults and failures. It should be noted that such possible errors must
be identified and passed on when cleaning up DQIs. In addition, a trade-off can arise if,
for example, a sensor has to be replaced to prevent DQIs, but a PredM approach would
retain this sensor for a certain period of time. Such a combined approach dealing with the
mentioned trade-offs offers some starting points for future research.
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