
MultiMedia Instruction
in Safe and Secure Systems�

Bernd Krieg-Brückner1, Dieter Hutter2, Arne Lindow1, Christoph Lüth1,
Achim Mahnke1, Erica Melis3, Philipp Meier6, Arnd Poetzsch-Heffter4,

Markus Roggenbach1, George Russell1,
Jan-Georg Smaus5, and Martin Wirsing6

1 Bremen Institute for Safe and Secure Systems, Universität Bremen
2 DFKI Saarbrücken

3 Universität des Saarlandes
4 Universität Kaiserslautern

5 Universität Freiburg
6 Ludwig-Maximilians-Universität München

Abstract. The aim of the MMiSS project is the construction of a multi-
media Internet-based adaptive educational system. Its content will ini-
tially cover a curriculum in the area of Safe and Secure Systems. Tra-
ditional teaching materials (slides, handouts, annotated course material,
assignments, and so on) are to be converted into a new hypermedia
format, integrated with tool interactions for formally developing cor-
rect software; they will be suitable for learning on campus and distance
learning, as well as interactive, supervised, or co-operative self-study.
To ensure “sustainable development”, i.e. continuous long-term usabil-
ity of the contents, coherence and consistency are especially emphasised,
through extensive semantic linking of teaching elements and a particular
version and configuration management, based on experience in formal
software development and associated support tools.

1 Introduction and Overview

In the last few years the area of safe and secure systems has become more and
more important. Software is increasingly used to control safety-critical embed-
ded systems, in aeroplanes, spaceships, trains and cars. Albeit its associated
security risks, electronic commerce over the internet is rapidly expanding. This
requires a better training of computer scientists in the foundations and prac-
tical application of formal methods used to develop these systems. The aim of
the MMiSS-project (MultiMedia instruction in Safe and Secure Systems) is to
set up a multimedia internet-based adaptive educational system, covering the
area of Safe and Secure Systems. With a consistent integration of hypermedia
course materials and formal programming tools, teaching in this area will at-
tain a level hitherto impossible in this form. The system will be as suitable for
� The MMiSS project has been supported by the German Ministry for Research and

Education, bmb+f, in its programme “New Media in Education”.

M. Wirsing, D. Pattinson, and R. Hennicker (Eds.): WADT 2002, LNCS 2755, pp. 82–117, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

MultiMedia Instruction in Safe and Secure Systems 83

learning on campus and for distance-learning with its associated management of
assignments, as it is for interactive, supervised, or co-operative self-study.

At the core of the system is the hypermedial adaptation of a series of courses
or lectures on the development of reliable systems. The teachers should be able
to store various sorts of course material, such as overhead slides, annotations,
lecture notes, exercises, animations, bibliographies, and so on, and retrieve them
again for use in teaching, notably also re-using material of other authors. The
system provides a formal framework for the integration of teaching materials
based on a semantic structure (ontology) and enables fast directed access to
individual teaching elements.

An initial collection of courses is already available and should be further
hypermedially developed as part of the project in an Open Source Forum (cf.
Sect. 8). It covers the use of formal methods in the development of (provably)
correct software. Highlights include data modelling using algebraic specifica-
tions; modelling of distributed reactive systems; handling of real-time with dis-
crete events; and the development of hybrid systems with continuous technical
processes, so-called safety-critical systems. The curriculum also covers informal
aspects of modelling, and introduces into the management of complex develop-
ments and into the basics of security.

The teaching material should, where possible, be available in several different
variants. It should be left to the teachers, or the students, to choose between
variants, according to the educational or application context. For example reac-
tive systems could be modelled with either process algebras or Petri-nets; the
material could be avaliable in English or other natural languages. The system
also contains meta-data, representing ontological, methodological and pedagog-
ical knowledge about the contents.

An important educational aspect is to teach about the possibilities and limits
of formal tools. Tools for formal software development should be integrated in
the system, to illustrate and intensify the contents to be taught. Thus students
doing assignments can use the system to test their own solutions, while gathering
experience with non-trivial formal tools. The integration of didactic aspects with
formal methods constitutes a new quality of teaching. It will become possible
both to present a variety of formal tools as a subject for teaching, and to use
them as a new medium. Thus an algorithm can for instance be simultaneously
developed, presented, and verified.

The goal of applying the MMiSS-system in as many universities and com-
panies as possible, and the fact that the area of Safe and Secure Systems will
further evolve in the future, requires the highest level of flexibility, extensibility
and reusability of the content. It should be possible to incrementally extend or
adapt content and meta-data, to suit the teacher’s individual requirements, and
to keep them up-to-date. We expect the system to be easily adapted and well
usable in other subject domains.

As the individual parts of a curriculum rely on each other, there is a network
of semantic dependencies that the system should be able to administer; at the
least it has to offer a version- and configuration management. Additionally, an

84 B. Krieg-Brückner et al.

ontology allows a better support for orientation and navigation within the con-
tent. It forms the basis for adaptation to the user, for example by learning from
exercises which concepts the students have understood, and by adapting future
assignments accordingly.

The formalisation of semantic dependencies means that the system can help
to maintain the consistency (and completeness) of the content. Definitions must
be coordinated to suit each other; the removal or adaptation of some material
may force the removal or adaptation of all dependent concepts. In formal soft-
ware development, a similar problem has to be solved: there are also semantic
dependencies between different parts of a development, for example between
specification and implementation. Some of the project partners have already de-
veloped techniques for the administration of such dependencies as things change,
and implemented them in development tools. Here we perceive an important
synergy between expertise in formal software development – and support tools –
and the demands of long-term sustainable development for re-use of consistent
multimedia materials in an efficient and productive educational system.

Outline. Although the MMISS project is concerned with the development of a
multi-media based eduction system for safe and secure systems, the techniques
and tools developed in this project are not restricted to this particular area. In
this sense we start with a description of general concepts to structure documents
according to their semantics in Sect. 2 and briefly sketch an extension of LATEX,
called MMiSSLATEX, that allows the specification of these additional structuring
concepts. Sect. 3 describes the particular ontology used to structure the contents
in this particular problem domain. Sect. 4 illustrates the tool support of MMISS
to create or maintain such course material. MMISS provides various authoring
tools to transfer LaTeX or Powerpoint based course material, enriched with
additional semantic information, into the MMISS-Repository which maintains
versions, configurations and the (user-defined) consistency of the material. Sect. 7
focusses on the presentation of the teaching material stored in the Repository.
MMiSS supports two presentation mechanisms, one simply using the layout
information as it is encoded in input documents written in MMiSSLATEX, and the
ActiveMath environment that dynamically generates the presentations according
to the skills and needs of the user. We conclude this presentation in Sect. 8 with
a prelimary evaluation of teaching experiences using the MMiSS tools and with
a view towards future developments.

2 Structuring Mechanisms for Documents

MMiSS aims at the support of the creation, the maintenance and the presenta-
tion of education material dedicated to various courses or lectures in a domain.
As an author, one has to be aware of the various (mainly semantically ori-
ented) structuring mechanisms hidden in these documents. Writing, for instance,
a mathematical document in LATEX, there is an explicit syntactical structure of
the document triggered by LATEX commands such as section, paragraph, etc.

MultiMedia Instruction in Safe and Secure Systems 85

Additionally, there are other more semantically oriented structuring mechanisms.
Defining mathematical entities, we are likely to build up a hierarchy of defini-
tions. In a conventional LATEX document, we do not represent these relations
explicitly. However, we have to keep them in mind once we want to change doc-
uments in a consistent way. The overall design of MMiSS aims at an explicit
representation of such relations, e.g.

– to navigate in the material along the semantical relations: during class, as a
teacher; after class or during self-study, as a student;

– to support maintenance and update of course material.

2.1 An Ontology of Users

Ontologies provide the means for establishing a semantic structure. An ontology
is a formal explicit description of concepts in a domain of discourse. Ontologies
are becoming increasingly important because they provide also the critical se-
mantic foundations for many rapidly expanding technologies such as software
agents, e-commerce and knowledge management. Ontologies consist of concepts
and relations between these concepts. Properties of a concept are specified by
describing its various features and attributes. As instantiation we use a subset of
the modeling language UML which is an actual de facto standard language for
software development. As an ontology describes domain concepts abstractly by
means of classes, subclasses and slots, UML seems to be particularly well-suited
for the diagrammatic representation of the ontology [5].

Before we explore the variety of MMiSS Document Constructs for structuring
in the sequel, let us consider a little example of an ontology in Fig. 1; for a more
extensive treatment of the ontology subject see Sect. 2.6 and Sect. 3 below.

The example shows an ontology of potential Users of MMiSS and their Roles,
resp. A Professor, as an Academic User, may assume the Role of a Teacher, thereby
only having reading access to the material, or of an Author with a particular
kind of writing access. This ontology is of course much simplified (there are also
Developer and Administrator Roles, etc.). As notation we use a subset of UML
class and object diagrams. It shows, however, the general principles:

– a taxonomic hierarchy of classes (the fat arrow with a triangular head de-
notes the “subclassOf” relation), e.g. a Professor is an Academic User, inher-
iting all its properties,

– individuals (“objects”) of these classes (not shown here, but cf. deAttribute
in Fig. 3 as an object of class LanguageAttribute, distinguished in the notation
by underlining or leading and trailing underscores), and

– a (hierarchy of) relations (called associations in UML), declared between the
classes and applied to objects, e.g. User assumesRole Role. Note that relations
are inherited by the classes involved, e.g. Professor assumesRole Teacher.

We will use this notation to define and illustrate (parts of) the MMiSS ontology
in the sequel. As an experiment in formatting, classes, objects and relations
relating to the ontology used in this paper are highlighted by special fonts when

86 B. Krieg-Brückner et al.

AssumesRole

User AssistantUserAcademicUser

CorrectorRole

StudentUser

ProfessorUser

WriterRole

TutorRole

EditorRole

Role

AuthorRole

ReviewerRole

ReaderRole

StudentRole

TeacherRole

Fig. 1. Ontology of Users and Roles.

referred to in the text (as in ontology), and classes and objects pertaining to the
MMiSS ontology are capitalised (as in LanguageAttribute).

2.2 Document Structure

Structural Entities. The primary purpose of structuring documents is con-
ceptual. We are used to textually nesting paragraphs in sections, and sections in
other sections, possibly classified into (sub)subsections, chapters, parts of docu-
ments or the like. The same is true here, cf. Fig. 2 that shows part of the ontology
of MMiSS Structural Entities: Sections may be nested; they are not classified as
chapters or the like to ease re-structuring without the need for renaming (section
numbering etc. is, if desired, done automatically anyway during layout; the title
of a Section will appear in a table of contents). A Section may contain smaller
nested entities such as Units or Atoms, see below.

The largest Structural Entity is a Package. A Package is a document that cor-
responds to a whole course or book and contains all Structural Entities pertaining
to it. A Package contains a Prelude that contains a kind of “global declarations”
for it, e.g. a BibliographyPrelude, or an ImportPrelude for other Packages (“struc-
turing in-the-large”), see Sect. 2.3.

Ontology Prelude. In particular, it may contain an OntologyPrelude, where
the elements of an ontology may be declared (cf. Sect. 2.6) — it acts like a

MultiMedia Instruction in Safe and Secure Systems 87

contains

containscontains

containscontains

contains

contains

UnitSE

TheorySE

ClosedUnitSE

AssertionSE

SectionSE

CompositeUnitSE

StructuralEntity

PackageSE

AtomSE

Prelude

AxiomSE

TheoryFragmentSE

livesIn

TheoremSE LemmaSE ProofSE TermSE

proves

Fig. 2. (Partial) Ontology of Structural Entities.

signature of the Package for semantic interrelation, promising these elements to
be defined in this Package, such that they become available when imported by
another.

Sections, Units and Atoms. Each Section should contain three special sub-
Sections or Units: The Abstract contains an overview of the Section; the Introduc-
tion gives a motivation for the content to come and sets a didactic goal (“what
we are about to learn”); the Summary at the end recalls the highlights of the
content (“what we have learned”). Note that there are no explicit “transition”
Paragraphs between Sections since they would assume a given order; instead, the
Introduction should refer to the upper context (“what we already know”), if nec-
essary, and the Summary should provide forward references to the lower context
(“what we will learn more about”) in subsequent Sections.

A Section may contain Units, and Units may contain other Units or Atoms.
A Unit is an entity one would like to be able to keep together and eventually
present as a whole as far as possible, i.e. on a single slide in a lecture (or a single
page in a book), possibly with a continuation slide with the same title. The
Unit is the primary structuring facility; it is the minimal context for editing and

88 B. Krieg-Brückner et al.

the primary unit of change (corresponding to a node in the structure graph, see
change management in Sect. 6.3).

As we see in Fig. 2, a ClosedUnit may be used to classify the enclosed content
to be of a particular kind, e.g. a whole Theory in a particular Formalism such as
Casl. A CompositeUnit may have further internal structure, for example a List,
a Table, a structured Proof, or an Example.

An Atom, such as a TextFragment or a TheoryFragment (e.g. an Axiom), is an
indivisible leaf of structuring and the smallest Structural Entity that can be shared
(see Sec. 2.2 on structural sharing); it is usually not shown in the structure graph
unless a visualisation of the micro-structure of a Unit is explicitly requested.

Conceptual and Formal Structure. The (partial) ontology in Fig. 2 is tai-
lored to the particular application domain of the MMiSS project: safe and se-
cure systems with formal methods. While it is meant to be generally applicable
and extensible, it also specially caters for formal, e.g. mathematical, documents.
Therefore some of the Units or Atoms may be classified as formal ; these are asso-
ciated with a particular Formalism. A Formalism comprises, in general, a formal
Syntax and (hopefully more often than not) a formal Semantics, cf. also Sect. 3.
Examples are a Program in a programming language or a Theory in a specifica-
tion language. Thus a formal Atom such as an Axiom, while being atomic from a
document structuring point of view, may indeed have further substructure when
analysed by a specialised tool.

This way the structure graph contains the formal structure as a subgraph (cf.
Fig. 14). A particular document may contain consistent formal sub-documents,
e.g. a complete executable Program or a complete Theory, to be analysed to-
gether.

Sharing. Formal entities may be embedded piecewise (e.g. just an Axiom of a
Theory), as they are being introduced and explained from a conceptual or peda-
gogical point of view. However, it is also a good idea to present them together,
possibly in a separate part of the same document. Thus they are exhibited as a
consistent whole, both from a conceptual point of view (e.g. a complete Theory
with all TheoryFragments put together) and the technical consideration of having
a complete formal document that can be treated by a tool (e.g. analysis of a com-
plete Theory or compilation and execution of a Program with input data). Note
also that it is often necessary for pedagogical purposes to be able to present al-
ternatives and variations in a document, even incomplete or intentionally wrong
ones that should not be subjected to formal analysis.

Units or Atoms of such a whole formal (sub)document may then be referred
to repeatedly in other parts of the document; one would often wish them to be
included as such instead of a mere Reference. Indeed, an entity will often appear
in more than one place, e.g. as an Axiom in an explanatory Paragraph and as
part of a consistent and complete Theory in an appendix. A copy will not do;
common experience dictates that two copies of the “same” entity have a tendency
to differ eventually. Thus structural sharing is needed, avoiding the danger of un-
intentional difference: an Axiom named by a Label in one part of a document (or

MultiMedia Instruction in Safe and Secure Systems 89

a different document) may be included by an IncludeAtom operation, with a link
to this Label, in another1. This operation will trigger a textual expansion in the
presentation of the document such that both occurrences are indistinguishable in
the presentation. In the source, the Axiom has a “home” where it can be edited,
whereas it cannot be edited at the positions of the IncludeAtom operation. From
a methodological point of view, it is preferable to maintain a complete Theory,
which is, however, structured in such a way that links to a particular Axiom are
possible from other places.

Sharing is not restricted to formal entities. Indeed, whole sub-documents can
be shared when composing a new document from bits and pieces of existing ones.

Comprises and ReliesOn Relations. The textual nesting gives rise to con-
tains relations and the include operations to includes relations corresponding to
arrows in a directed acyclic graph, the structure graph, see Sect. 5.4 (cf. also Fig. 2
and Fig. 14). An Axiom, for instance, is contained in a Section, while Sections
are themselves contained in Packages. MMiSS defines a hierarchy of Structural
Entities to define the contains relation, e.g. Packages, Sections, Units, or Atoms.
The contains and includes relations are special cases of the comprises relation; in
the sequel we will make use of this comprises relation to define an appropriate
change management for MMiSS-documents.

Besides the comprises relations, there is a family of reliesOn relations, re-
flecting various semantic dependencies between different parts of a document
(cf. Fig. 2). For example, an Assertion (such as a Theorem) livesIn a Theory, a
Proof proves an Assertion, an Example illustrates a Definition, and so on. In this
case, we would usually like to insist on a linear order of appearance, i.e. the
right-hand-side (target) of the relation should (textually) be presented before
the left-hand-side.

2.3 Packages

Packages provide a means for modular document development by introducing
name spaces. When writing a document, authors introduce identifiers as Labels
for Structural Entities or as technical terms in an ontology. If these identifiers,
subsumed as names in the sequel, are defined more than once, we say there is a
name clash.

A Package encapsulates the name space of a document, such that names de-
fined in a Package do not clash with names from other Packages. In order to use
names from other Packages, these have to be imported explicitly (see below). In
other words, Packages are very much like modules in programming languages
such as Modula-2, Haskell, or Java.

Package Hierarchy. Packages are organised in a folder hierarchy, with the
names given by paths. Because path names can get very long, paths can be re-
named by Path declarations (aliases) of the form
1 It is technically immaterial, whether the Axiom appears in the Paragraph and the

IncludeAtom operation in the Theory, or vice versa.

90 B. Krieg-Brückner et al.

a = p1.p2.pn

where a is the new alias, and p1,. . . ,pn are either folder names or previously
defined aliases, subject to the condition that each alias is defined exactly once,
and Path declarations are acyclic.

There are three special aliases: Current refers to the folder of the Package it
is used in; Parent refers to the parent folder; and Root refers to the root folder
of the folder hierarchy (thus, the three special aliases correspond to ‘.’, ‘..’ and
‘/’ in Posix systems). Users are discouraged to use the Root alias, since it makes
reorganising the folder hierarchy difficult; it is mainly intended for usage by tools.

Export and Import. The local names are those defined in this package (as
opposed to names imported into the package). By default, all local names are
exported. Imported names may be re-exported. It is not possible to restrict the
export; rather, name clashes and restrictions are resolved on import.

A Package specifies the imported packages in the ImportPrelude. The Import-
Prelude contains a number of ImportPreludeDecls; each specifies a Package to
be imported, plus a number of import directives. Import directives allow us to
specify:

– Path aliases;
– Local or global import (when importing globally, the imported names are

re-exported);
– Qualified or unqualified import (when an import is qualified, the imported

Labels for Structural Entities are prefixed with the name of the Package from
which they are imported);

– Hiding, revealing, or renaming of imported names (when we hide a name, it
is not imported – when we reveal names, only these are imported);

2.4 Attributes

The possibility to define Attributes is a central feature for a Structural Entity,
cf. Fig. 3. Standard StructureAttributes are e.g. the individual Label and Title of
some Section or Unit.

Inheritance of Attributes. Most importantly, attribute inheritance to nested
Structural Entities relieves the author from specifying Attributes over and over
again and avoids cluttering; at the same time, an Attribute may be superseded
for a nested “subtree” of Structural Entities.

Authors and Version Attributes. Each Structural Entity has an Authors
and a Version Attribute (see also version control in Sect. 6.2). These Attributes
record the author(s) of each fragment (inherited to nested Structural Entity).
The System automatically keeps track of PriorAuthors and the authorship of
individual Revisions.

MultiMedia Instruction in Safe and Secure Systems 91

StructureAttribute

SystemAttribute

FormalismAttribute

FormatAttribute

LanguageAttribute

enAttribute

Attribute

VariantAttribute

deAttribute

PedagogicalAttribute

AnimationAttribute

DetailAttribute

PresentationAttribute

LayoutAttribute

Fig. 3. (Partial) Attribute Ontology.

Layout and Animation Attributes. As will be discussed further in Sect. 7.1
and 7.2, presentation issues such as layout and animation should be separable from
the “logical” content of a Structural Entity and should be confined to the neces-
sary only. It is a relief that these can be specified independently as attributes and
that attribute inheritance takes care of otherwise tedious repetition of logically
irrelevant presentation detail. The specification, for example, that list items on
a slide should be rolled out one after another could be specified at the root of
a (sub)document and applies to it as a whole unless re-specified for a nested
subdocument. Similarly, a revision of such a specification need only be made at
its root.

2.5 Variants

Perhaps the most innovative feature of the MMiSS project is the definition
of VariantAttributes and the management of documents with several different
variants in a consistent way.

Natural Languages. Let us take the LanguageAttribute as an example, cf.
Fig. 3. A LanguageAttribute specifies the natural language in which a text is
written, following the language codes of IETF RFC 1766 / ISO 639. The default
is en-GB (British English), overriding the standard ANY attribute that is usually
the default for the other VariantAttributes. Another example is de (German).

Let us now assume that an author wants to manage e.g. English and German
documents in parallel. Most probably, the author would want the structure of the

92 B. Krieg-Brückner et al.

two documents to be identical as they are being used for the same purpose, e.g.
slides for a Lecture. In this case, s/he may edit two copies of the same document
side by side, e.g. in two separate windows of the XEmacs editor (cf. Sec. 5).
These two variants should have the same structure, i.e. the same Structural En-
tities, nested in the same way, where each of them has the same Label as in the
other variant, resp. This ensures that the structures of the two variants can be
compared, and are consistent and complete, during configuration management
(cf. Sec. 6.2). In fact, in the Repository the two variants of the document are
merged such that two variants can be identified for each Structural Entity. Thus
the author may also edit one variant first and then the other step by step, for
each Structural Entity separately, along the structure of the first. Similarly, an
individual revision for one Structural Entity is possible, with the two variants side
by side.

The structuring relations introduced by these various notions of variants are
represented in the MMiSS-system by the variantOf relation.

Format and Formalism Attributes. The FormatAttribute takes care of dif-
ferent formats for the same Structural Entity, such as PDF or EPS for Figures,
or ASCII, XML or LATEX for a Casl specification. The FormalismAttribute de-
fines the particular Formalism that a Structural Entity (and all its sub-entities)
complies with, e.g. a specification language such as Casl; tools may then take
advantage of this fact by checking for a special syntax in an ASCII source or
generating a LATEX variant from it for pretty formatting. The Formalism must
be related to a particular ontology of FormalismAttributes, cf. also Sect. 3 and
Sect. 2.2.

Detail and Presentation Attributes. A document or an individual Struc-
tural Entity may exist at several levels of detail during its development, and for
different purposes (cf. the DetailAttribute in Fig. 3 and Table 1): a set of slides for
a Lecture may be refined by adding annotations to LectureNotes, or further to a
complete self-contained Course as a hyper-document for self-study. The Contents
and Outline denote the underlying structure reflected in the table of contents,
and this structure augmented by the various Summaries, resp. At the other end
of the scale, conventional articles and books are located.

Table 1 contains another dimension — the PresentationAttribute specifies var-
ious kinds of presentation media: presentation on Paper, on a (black or white)
Board, or as a Hyper document; further kinds specify presentation using an ex-
ternal tool by Replay of a previously conceived script, or by an Interactive pre-
sentation with the tool itself.

2.6 Semantic Interrelation

Declaration of an Ontology. Recall Fig. 1, the example of an ontology of
Users and Roles. Such an ontology would be declared in MMiSSLATEX, the LATEX
extension of MMiSS to represent the Document Constructs (cf. Sect. 5.1), in the
OntologyPrelude as follows (partially shown here):

MultiMedia Instruction in Safe and Secure Systems 93

\DeclClass{User}{User}{}
\DeclClass{AcademicUser}{Academic User}{User}
\DeclClass{StudentUser}{Student}{AcademicUser}

\DeclClass{Role}{Role}{}
\DeclClass{ReaderRole}{Reader}{Role}
\DeclClass{TeacherRole}{Teacher}{ReaderRole}
\DeclClass{StudentRole}{Student}{ReaderRole}

\DeclClass{WriterRole}{Writer}{Role}
\DeclClass{AuthorRole}{Author}{WriterRole}

\DeclRel{*-*}{assumesRole}{assumesRole}{}
\RelType{assumesRole}{User}{Role}

Consider e.g. \DeclClass{StudentRole}{Student}{ReaderRole}, the dec-
laration of a class. The first parameter, StudentRole, denotes the particular
technical term we use in the ontology; the second, Student, the textual phrase
that should appear in the text as default (see below); the third, ReaderRole,
the superclass of StudentRole, from which properties are inherited. Analo-
gously, \DeclObject{...} and \DeclRel{...} declare objects and relations,
resp., whereas \RelType{assumesRole}{User}{Role} declares the type of a re-
lation, in this case from the class User to the class Role; such a declaration
may appear several times for different (sub)classes to allow specific typing and
“overloading”. In the MMiSS ontology, such an OntologyDecl operation appears
as a Prelude Operation in the OntologyPrelude, cf. Fig. 4.

Table 1. Detail and Presentation.

Paper Board Hyper

Text+Pictures Manual Hyper-Medium
Contents
skeleton
Outline
abstracts
Lecture
presentation handout presentation on laptop browsing
in class before class black/white board during class
Lecture Notes
annotated handout annotated offline browsing
after presentation after lecture manuscript personal annotation
Course
self-contained course script integrated personal navigation
for self-study (manu)script

Definition and References. An OntologyDecl is a kind of promise, that a
corresponding OntologyDef will appear somewhere as an Prelude Operation in
the source text of the document; e.g. \DefClass{StudentRole} is the defining

94 B. Krieg-Brückner et al.

references

designates

PreludeOp

DeclClassOp

OntologyDecl

OntologyDef

DefClassOp

EmbeddedOp

RefPtr

OntologyPtr

Fig. 4. PointsTo Relations.

occurrence for StudentRole, yielding “Student” in the formatted document, i.e.
the default phrase declared above. Such an OntologyDef operation may appear
as an Embedded Operation anywhere in the source.

Whenever a class, say, has been declared by an OntologyDecl, the technical
term may be referred to simply as \StudentRole{} in the source text (or equiv-
alently \Ref{StudentRole}), yielding “Student” in the formatted document. If
an alternative phrase rather than the default phrase should appear, then e.g.
\Ref[my role as a student]{StudentRole}, using an optional parameter for
this phrase, will yield the desired “my role as a student”.

An OntologyPtr, e.g. a Ref, may appear as an Embedded Operation anywhere
in the source, before or after a corresponding OntologyDef. It will yield a hyper-
text link for the PresentationAttribute Hyper. A full reference may be obtained
by \Reference{StudentRole}, yielding “StudentRole (see 2.6, on page 94)”.

Note that a relation is predefined as a macro with two parameters, thus
\assumesRole{A }{ B} yields “A assumesRole B”, whereas \Ref{assumesRole}
yields “assumesRole”.

Resolution of Ambiguities. There are at least three reasons for having an
extra technical term (the first parameter in an OntologyDecl):

– the default phrase (the second parameter) may be translated into a different
language variant of the ontology, assuming that the technical term remains
the same for uniformity of language variants,

– the technical term may be renamed upon Import from another package to
avoid name clashes while the default phrase remains the same,

– apparent ambiguities may be resolved by having two different technical terms
with the same default phrase.

MultiMedia Instruction in Safe and Secure Systems 95

To illustrate the ambiguity issue consider the following example and its source:

a Student assumes the role of a Student
a \StudentUser{} assumes the role of a \StudentRole{}

An apparent ambiguity (which is usually resolved by context in natural language)
is resolved since there are two different technical terms in the example ontology.
Note that a hyper-reference references the appropriate OntologyDef correctly.

PointsTo Relations. Consider Fig. 4: a Reference references an OntologyDef,
an OntologyDef designates an OntologyDecl. Both relations belong to the family
of pointsTo relations, quite similar to the relation family reliesOn.

Inheritance of Relation Properties. Consider an extract of the ontology of
relations for Document Constructs:

\DeclRel{*-*}{comprises}{comprises}{relatesDocConstructs}
\DeclRel{<-}{contains}{contains}{comprises}
\DeclRel{*-*}{includes}{includes}{comprises}

\DeclRel{>}{reliesOn}{reliesOn}{relatesDocConstructs}
\DeclRel{}{imports}{imports}{reliesOn}
\DeclRel{}{livesIn}{livesIn}{reliesOn}
\DeclRel{}{proves}{proves}{reliesOn}
\DeclRel{}{after}{after}{reliesOn}

\DeclRel{->}{pointsTo}{pointsTo}{relatesDocConstructs}
\DeclRel{}{designates}{designates}{pointsTo}
\DeclRel{}{references}{references}{pointsTo}

\DeclRel{->}{variantOf}{variantOf}{relatesDocConstructs}

These form a hierarchy, where each relation inherits the properties for its
super-relation. Formal properties are indicated by symbols whose semantics is
only sketched here: > denotes a strict order, -> denotes an onto-relation, etc.

3 The Content Ontology for MMiSS Courses

In this section we present the variety of courses produced and presented in
the MMiSS project (see Sect. 3.1). Moreover we describe the content ontology
structure (see Sect. 3.2) and its development process (see Sect. 3.3) that we
are using for the MMiSS courses. In general these content ontologies provide
the means for establishing the semantic structure to relate different parts of the
teaching material. In this sense an ontology is an explicit formal description of
concepts in the domain of discourse.

3.1 MMiSS Courses

The MMiSS courses are divided into three areas for differently experienced au-
diences. Basic courses are provided for the subjects logic, data models and event

96 B. Krieg-Brückner et al.

models. We provide advanced courses for the subjects verification, data specifica-
tion and reactive systems. Moreover, there exist specialised courses for subjects
like formal software development, security and safety critical systems. For each
subject shown in Fig. 5 several courses have been prepared and presented at the
partner universities of MMiSS and also at other universities such as TU Berlin,
TU Dresden, Univ. of Swansea, etc. For a detailed listing of all courses visit the
MMiSS website (see [16]).

Fig. 5. Structure of MMiSS Courses.

3.2 The Ontology for Formal Methods

Although ontologies exist for many applications we are not aware of any ontol-
ogy for formal methods. However, we base our ontology on several approaches
for classifying and defining topics related to formal methods such as the ACM
classification scheme [1], Astesiano and Reggio’s work on defining a schema for
formal development techniques [3], Clarke and Wing’s survey on formal methods
[8] and Steffen’s framework for formal methods tools [26].

For describing the ontology of Formal Methods and its instances in UML we
use class and object diagrams; cf. the introductory example in Sect. 2.1. The
class diagrams serve as representation for the abstract notions such as Domain,
Engineering Method, Formal Method, Formalism, Language and Tool. The object
diagrams represent the instances of the abstract notions. Typically, particular
concepts chosen in a course are represented by object diagrams (see Sect. 3.3).

MultiMedia Instruction in Safe and Secure Systems 97

The most general notion to describe a topic of research or teaching is the
notion of Domain (see Fig. 6). A Domain is characterized by a number of Con-
cepts and can have zero, one or more subdomains indicated by the association
(relation) isSubDomainOf. Additionally, a Domain uses other Domains (the top
level associations like isSubDomainOf and uses are not shown in Fig. 6).

Other classes are specializations of Domain and inherit its associations such
as isSubDomainOf and uses. For example, since the class Engineering Method (see
Fig. 6) is a specialization of Domain, it inherits the subdomain relation and the
relation to Concept. Additionally, an Engineering Method appliesTo (zero,) one
ore more Domains, it isSupportedBy Tools and its pragmatics are described by
Processes (see [3]). Note that in our presentation the multiplicities of an associ-
ation are indicated below the association name. Moreover, the multiplicities of
the association ends are separated by a hyphen.

appliesTo
 −

describes
 −

isSupportedBy
 −

hasFormalism
 *−1

hasProcess
*−1

Process

VerificationTechnique

AnalysisTechnique

EngineeringMethod

SpecificationTechnique

FormalMethod

Domain

Tool

SystemView

Formalism

Fig. 6. Semantic Structure of Engineering Method and Formal Method.

The class Formal Method (see Fig. 6) is a specialization of Engineering Method
with the particular feature that any instance of Formal Method is based on a For-
malism. Formal Methods are classified into Specification Technique and Analysis
Techniques; Verification Techniques is a subclass of Analysis Techniques (see [8]).
Any Specification Technique serves to specify some System Views such as the
data view, functional behaviour, concurrent behaviour, performance view etc.
The class Formalism (see Fig. 7) is another specialization of the class Domain.
A Formalism has one or more associated Languages and a Theory consisting of
Definitions and Theorems. Any Language (see Fig. 8) has several Language Con-
structs, Language Classifications such as natural, functional, object-oriented or
real time language (see [1]), and can be supported by some Tools. Moreover,
any Language possesses a Language Definition consisting of a Syntax and possibly
of one or more Semantics. We specialize languages into Programming Language,

98 B. Krieg-Brückner et al.

hasLang
−

hasDef
−

isTheoryOf
1−1

hasTheorem
1−*

Theorem

Domain

Definition

Theory

Language

Formalism

Fig. 7. Semantic Structure of Formalism.

interprets
*−1

representedBy
−

hasSemantics
1−*hasSyntax

1−1

hasLangDef
1−*

hasLangConstruct
−

isClassifiedBy
−

ProgrammingLanguage

LanguageClassification

Language

LogicalLanguage

Domain

SpecificationLanguage

LanguageDefinition

Tool

Syntax

Semantics

LanguageConstruct

Fig. 8. Semantic Structure of Language.

Specification Language, Logical Language and possibly other kinds of Languages
which are not represented here.

3.3 Systematic Construction of Ontologies

For constructing ontologies of particular courses in the area of Formal Methods
we proceed as follows: We base the ontology of the course on the general model
of Formal Methods as outlined above. In a first step, the general model is ex-
tended by new abstract Domains of the course that are not yet covered by the
general model. In a second step, object diagrams of the ontology specific to the
course are constructed according to the extended general model. We give an
example of this procedure by describing (part of) the ontology of the course
’Foundations of System Specification’ which is held regularly at LMU München.
This course presents formal techniques for specifying and refining complex data
structures, state-based systems and reactive systems. The underlying Formal-
isms are algebraic specifications based on the Language Casl for data structures;
model-oriented specification techniques based on the Language Z for state-based
systems, and Lamport’s Temporal Logic of Actions for reactive systems. In the

MultiMedia Instruction in Safe and Secure Systems 99

isSupportedBy
−

interprets
*−1

representedBy
−

hasSemantics
1−*hasSyntax

1−1

hasLangConstruct
−

hasLangDef
1−*

isClassifiedBy
−

ProgrammingLanguage

LanguageClassification

Tool

LogicalLanguage

Language

Domain

CASL

SpecificationLanguage

LanguageDefinition

Z

LanguageConstruct

Syntax

Semantics

Fig. 9. Extension of the Model by the Languages CASL and Z of the Course.

isTheoryOf

isSubDomainOf

uses

isSubDomainOf

usesuses

FSDSignature:
 Formalism

FSDFirstOrderLogic :
 Formalism

FSDTransToSML :
 Theory

FSDAlgSpec :
 Formalism

FSDAlgTheory :
 Theory

FSDUniversalAlgebra :
 Formalism

FSDAlgSpecRef :
 Theory

CASL1.0 :
 CASL

hasLang

Fig. 10. Ontology for the Alg. Specification Formalism of the Course.

following we present the ontology for the specification of data structures and
state-based systems. In a first step the class diagram of Language is extended
by Z and Casl which form two new subclasses of Specification Language (see
Fig. 9).

The specific instance of Casl [2, 13, 6, 18] used in the course is the version
CASL 1.0. It is classified as Specification Language; its Language Constructs are
partitioned into Basic CASL Specification, Structured CASL Specification, Archi-
tectural CASL Specification and Library CASL Specification. Casl1.0 has formally
defined CASL Syntax and CASL Semantics; its CASL Toolsuite consists of parsers,
theorem provers and pretty printers (not detailed here; cf. [17]).

The specific instance of Formalism called FSD Algebraic Specification of the
course uses basic facts about FSD Signatures, FSD First Order Logic and FSD
Universal Algebra to explain the associated FSD Algebraic Specification Theory.
Different notions of refinement including their main properties and a translation
from executable specifications to the functional Programming Language SML are

100 B. Krieg-Brückner et al.

presented (see Fig. 10). The instances of the ontology are prefixed by ’FSD’ since
they refer to those notions and Theorems of a Formalism of a Theory which are
presented in this course. The particular approach of the course to formal devel-
opment of algebraic specifications is shown in Fig. 10. Algebraic Techniques are
used in the context of data specification and the development of functional pro-
grams. The chosen development process (the pragmatics) is stepwise refinement.

4 Support Environment

In this section we give an overview on the Support Environment integrating the
authoring, the management, and the presentation tools for multimedia courses.
The Support Environment developed in the MMiSS project aims at the following
goals:

Authoring. Authors have to be supported in the development and maintenance
of their course material. This comprises the production of new documents, the
adaption and revision of existing courses, the import of existing documents
(e.g. slides), but also the composition of existing courses to create a new
course. MMiSS supports editing and creating of documents using a synthesis
of textual and graphical interaction, combining a graph editor to manipulate
the structure of a document and a text editor to edit the actual text.

Management. The development management is responsible for persistency,
consistency, and accessibility of the teaching material (Repository), and it has
to treat version control, configuration management and change management
(Development Manager) for consistency and the dependencies between the
document components (via the ontology). It provides an interface mechanism
to call external applications to allow for the presentation of such tools during
the course or the collection of practical experiences when doing exercises
within these tools. Additional support is given by a flexible user management
with administration support and the possibility for integrating typical tools
for electronic communication.

Presentation The use of the learning material will be supported in different
kinds of teaching scenarios: by a Teacher, Tutor or Student on various presen-
tation platforms, or for individualised self-study by a Student using Active-
Math (see Sect. 7.3). Moreover, Students and Correctors use WebAssign
for assignments.

To achieve the above goals we have designed an open architecture that inte-
grates subsystems developed by the different partners. Fig. 11 shows the major
components of the Support Environment.

In the following sections we illustrate the individual components for author-
ing, maintenance and presentation in more detail.

5 Authoring Tools

The MMiSS tools allow users to produce, maintain and present course material.
As mentioned before, one of the key design ideas is to provide means for making

MultiMedia Instruction in Safe and Secure Systems 101

MMISS−
XMLMMISS−

XML

ActiveMathWeb Assign

MMISS−
XML

LaTeX
Structure Parser

Author

LaTeX

Development Manager

Text EditorGraph Editor

OMDOC

Presenter

LaTeX

OMDOC
Structure Parser

Student

C
ontent

M
anagem

ent
D

evelopm
ent

Tasks

D
ocum

ent

Presentation

PDF
PS

MMISS−XML

Repository

User Data

Fig. 11. MMiSS Support Environment System Architecture.

semantic relations in the course material explicit. However, standard languages
that are normally used to represent course material, such as PowerPoint or LATEX,
do not support such semantic relations. Therefore, on the one hand MMiSS
provides extensions of both languages to cope with such relations, and tools
to import existing course material into MMiSS. On the other hand, MMiSS
provides an authoring tool to create new course material in a structured way
using graph and text editing facilities. Below we illustrate these features in more
detail.

5.1 MMiSSLaTeX

LATEX is a generally accepted language to produce technical documents and
course material of high print quality. Although LATEX comes with some structur-
ing mechanisms it still lacks the expressiveness to formulate many of the struc-
turing mechanisms presented in Sect. 2. In order to support all these mechanisms
of MMiSS, we developed a LATEX-style authoring language called MMiSSLATEX,
consisting essentially of a library of LATEX class files. MMiSSLATEX provides com-
mands for each of the structuring operations presented in Sect. 2. Technically,
most of them are defined as environments, e.g. for sections, definitions, or lists.
The attributes are given as optional arguments to the environments or commands.

A document can be typeset using normal LATEX with the help of the MMiSS-
LATEX class files to generate documents in PDF, Postscript or other formats. For

102 B. Krieg-Brückner et al.

\begin{Paragraph}[Label=Algebra, Title=Algebra]
Algebras are models of \Signature{}s.
\begin{Definition}[Label=DefAlgebra, Title={Σ-Algebra}]
An \Emphasis{Algebra} $A= (S_A, \Omega_A)$ for a signature
$\Sigma=(S, \Omega)$ (Σ-Algebra) is given by
\begin{List}[Label=AlgebraComponents, ListType=itemize]
\item
for each sort $s\in S$, a \Emphasis{carrier set}
$A_s\in S_A$;

\item
for each operation $\omega:s_1\ldots s_n\rightarrow s$, an
operation $\omega_A:A_{s1}\ldots A_{sn}\rightarrow A_s$.

\end{List}
\end{Definition}

\end{Paragraph}

Fig. 12. Example of a MMiSSLATEX document: Definition of an Algebra.

Fig. 13. The example from Fig. 12, rendered as a slide.

example, Fig. 12 shows a MMiSSLATEX source text in which the concept of an
algebra is defined; with LATEX this is rendered as the slide shown in Fig. 13. More-
over, MMiSSLATEX serves as an authoring and input language for the MMiSS
repository.

5.2 PowerPoint

In order to migrate existing slides and to relieve the authors from the burden
of writing content in an unfamiliar language, tools which allow the import of

MultiMedia Instruction in Safe and Secure Systems 103

PowerPoint slides into the MMiSS-repository have been developed. The tool
CPoint, developed at the Carnegie Mellon University by Andrea Kohlhase,
translates PowerPoint slides into OMDoc, which is another exchange language
of the MMiSS-repository; CPoint enriches PowerPoint documents with addi-
tional semantical information, like the semantic structuring relations mentioned
in Sect. 2, or with other metadata, like for instance authors or date, and finally
translates these annotated slides into OMDoc. As OMDoc documents, the
slides can be imported into the repository. CPoint makes use of the QMath
tool to parse and translate mathematical formulas occurring inside the slides.

5.3 Interactive Course Creation

To edit material, MMiSS provides a graphical interface based on the graph vi-
sualisation system daVinci [9, 4] and the XEmacs editor [29]. The idea is to
visualize and edit the various structuring relations contained in MMiSS docu-
ments in a graph editor while a text editor is used to deal with the basic text
fragments (like Units, see Sect. 2.2). The predominant interaction paradigm is
direct manipulation — authors do not have to learn cryptic command lines to
interact with the system, they can just point at the entity of interest, or select
from a menu of given choices.

5.4 Structure Graph

According to the structure of MMiSS documents in Sect. 2, a Structural Entity
is an entity such as Section, Program, Exercise, TextFragment, etc. These entities
are related, most obviously by textual nesting, but also by structural Links or
References. This structure gives rise to the structure graph, which has the various
entities as nodes, and the relations as labelled, directed edges. With regard to
the comprises relation, the graph is directed and acyclic, but it is not a tree, since
a Structural Entity may be included in more than one place (structural sharing).

As an example, consider a real-life lecture series introducing formal program
development in the algebraic specification style to undergradute computer sci-
ence students. One section of this lecture series, corresponding roughly to one
lecture, introduces the basic concepts of algebraic specifications. The document
is structured as follows:

– it has a short Introduction motivating what is going to come,
– an Abstract summarising the new concepts,
– the main part consisting of Paragraphs, introducing and defining the concepts

of Signatures, Algebras, and Terms,
– followed by a short Example (the natural numbers in Casl),
– and closes with a Summary of the new concepts.

Introduction and Summary contain a list enumerating the concepts the user is
about to learn, or has just learned. The main parts are Paragraphs, which are
structured further: for example, Signatures, Algebra and Terms contain defini-
tions of the corresponding concept. The resulting structure graph is shown in

104 B. Krieg-Brückner et al.

Intro

Reasons Concepts

Summary

PRELUDE

IntroAlgSpec

CASL_Nats

AlgebraComponents

DefAlgebra

Example

AlgSpec

Algebra

AlgSpec

TermAlgebra

Terms Abstract Signatures

SignatureComponents

DefSignature

Fig. 14. Structure Graph of Example Document.

Fig. 14. Note how later Definitions and Examples refer back to earlier Definitions
(indicated by dashed arrows), for example to define an Algebra we need to refer
to Signatures.

Thus, each node represents a Section (shaded yellow), Unit (shaded green),
or Atom containing the description of the corresponding notion in more detail.
In order to edit this description the user can select a node, corresponding to a
Repository object, and its code is loaded into the XEmacs editor (see Fig. 15).
A special MMiSSLATEX mode gives the user additional editing assistance, e.g. to
insert environments or commands. Documents can be edited in the MMiSSLATEX
exchange format using a particular MMiSSLATEX mode; thus other editors may
be used as well.

Since a Structural Entity can get quite large (for example, a whole Package),
we only display one level in the XEmacs editor; nested Structural Entities are
displayed by clicking buttons. For example, Fig. 15 shows the Paragraph labelled
Algebra being edited. It contains the definition labelled DefAlgebra, which
has been opened, and the user is just about to open the list AlgebraCompo-
nents.

The Repository objects in the Repository are organised in folders, which allow
the grouping of Repository objects much like directories in a file system. Folders
may contain other folders, or MMiSS Structural Entities, i.e. Sections, Units or

MultiMedia Instruction in Safe and Secure Systems 105

Fig. 15. The Structure Graph: Editing the Definition of an Algebra.

Atoms. The structure graph contains the hierarchy of folders and, at the leaves of
this hierarchy, the structure of the Repository objects inside a Package, as nodes,
with edges corresponding to the comprises relation (resulting from nesting and
structural sharing).

6 Sustainable Development and Maintenance

The MMiSS Repository is the central database maintaining MMiSS documents.
Sustainable development is supported by fine-grained version control, configura-
tion management and a change management. The structured representation of
documents as graphs allows operations to take the structuring into account (see
e.g. change management described in Sect. 6.3). It is also the basis for a con-
figuration management to control various versions of a document. We call such
graphs together with the possible activities a development graph.

The Repository is implemented almost entirely in the functional programming
language Haskell [11] in about 60 Kloc. It uses the open source data base
BerkeleyDB [25] to store documents. The graph visualisation system daVinci,
the graphical user interface library Tcl/Tk [21] and the XEmacs editor are

106 B. Krieg-Brückner et al.

encapsulated in Haskell. These encapsulations are available separately, and
can be used independently, in particular the Tk encapsulation, called HTk [23].

The content model is generic over the XML DTD used (although of course
the structure parsers for the external exchange formats are not), so the Repository
can be used for other document formats as well. More importantly, small changes
and extensions in the DTD can be implemented directly without needing to
recompile the Repository. To parse the DTD and the documents, we use the
Haskell XML library HaXML [28].

6.1 Representation

The principal representation and external exchange format for documents in the
Repository is MMiSS-XML, a straightforward translation of the Document Con-
structs introduced in Sect. 2 into XML. However, XML is not meant to be read
or written by human users, and tools have their own input formats, hence for
presentation and editing purposes, we need external exchange formats. An ex-
ternal exchange format is incorporated into MMiSS by implementing a structure
parser, which converts documents in the external exchange format, like MMiSS-
LATEX, into MMiSS-XML and back. More external exchange formats will be
added if and when editing and presentation tools accepting and requiring these
formats shall be incorporated into the MMiSS system.

6.2 Version Control and Configuration Management

The art of keeping track of the evolution of complex systems in general, and
complex documents in this particular case, is called configuration management.
Changes to a documents have to be organised and recorded, such that earlier
configurations can always be retrieved. While usually configuration objects are
source files, we follow here a fine-grained approach using Structural Entities of
MMiSS, like Sections, Units or Atoms or associated Attributes, as configuration
objects.

The version graph is the representation underlying version control. Nodes of
the graph represent different versions of Repository objects while edges denote the
RevisionOf relation. An author always starts interaction with the Repository by
picking a version under development from the version graph. This version will be
checked out into the user’s local filespace and can then be edited. Fig. 16 (left)
shows a typical version graph, as displayed by daVinci. Version 1.5 is the current
working version (as visualised by the red shade); it is edited as shown in Fig. 15.
When finished with editing, a user may commit changes back into the Repository
(or may just dispose of them silently). New versions of the changed Repository
object and of all Repository objects containing the changed Repository object are
created. Thus, new versions are propagated upwards: a change in a constituting
Repository object results in a new version of the parent Repository object, all the
way up to the root folder.

When a Repository object has more than one Repository object which is a
revision thereof, we say this is a span in the version graph. For example, in

MultiMedia Instruction in Safe and Secure Systems 107

Fig. 16. Version Graph displayed by daVinci (left); Merging of Versions (right).

Fig. 16, there are three spans, starting at the versions 0.1, 1.0 and 1.2. A span
corresponds to concurrent revisions of one object. It can be reconciled by a
merge: users can pick the source versions from which they wish to incorporate
all changes into one new version, which then becomes a revision of all the source
versions. Fig. 16 (right) shows the merging of versions 1.1a, 1.3 and 1.4 to form
a new version 2.0.

6.3 Change Management

The notion of change management is used for the maintenance and preservation
of consistency and completeness of a development during its evolution. More
precisely, we want to have a consistent configuration in which all constituents
harmonise, versions are compatible, References and Links refer to the proper
targets, etc. At the same time, it should be a complete configuration: e.g. the
promises of forward References and Links should be fulfilled, i.e. they must not be
dangling; if we have an English and a German variant of a whole document, then
we expect to have a corresponding German variant for each English variant for
all constituent Structural Entities, with the same overall structure and relations,
and vice-versa.

Such notions are well-known for formal languages; in contrast, natural lan-
guage used for writing teaching material does not usually possess a well-defined
semantics; the notion of consistency is debatable. Different authors may postu-
late different requirements on the material in order to regard it as being consis-
tent. The existence of an ontology already helps a great deal to check References.

It turns out that the notions of consistency and completeness are closely re-
lated to the Document Constructs and relatesDocConstructs relations. For special
FormalismAttributes, additional structuring relations may be explored by special

108 B. Krieg-Brückner et al.

tools operating on these. Casl, for instance, offers the notions of extension,
union, etc., to define dependencies between specifications.

The change management keeps track of the various structuring mechanisms
described in Sect. 2. Below we will tentatively explore various properties of the
individual structuring mechanisms to illustrate possible notions of consistency
and completeness and their interaction. Postulating such invariant properties as
requirements on the consistency and completeness of a document, and formulating
these invariants as formal rules, will enable us to implement a generic and flexible
change management that keeps track of the various invariants and informs the
user about violations when a previously consistent document has been revised.

Properties of Individual Structuring Mechanisms. For each of the struc-
turing mechanism described above we can formulate various invariants that are
prerequisites for consistency or completeness. Some of these are enforced by the
underlying structuring language (MMiSSLATEX) but others may be violated once
the user revises a document.

Obviously the comprises relation is reflexive, transitive and antisymmetric
denoting an acyclic finite graph (which is actually a subgraph of the structure
graph). These properties are trivially enforced by the Document Constructs. We
may want to require additional invariants for consistency, e.g. that each major
Structural Entity (such as Package or Section) contains at least one Unit or Atom,
or that there is at most one Summary in a Section.

Each reliesOn relation or pointsTo relation is irreflexive and acyclic. We would
also postulate as a consistency requirement that there is at most one target,
i.e. the relations are in fact many-to-one; a completeness requirement is that
that there is at least one target, e.g. References must not be dangling; both
together require a unique target. Furthermore, for reliesOn relations, we require
the target to be presented beforehand. However, the completeness requirement
may be weaker for pointsTo relations as we tolerate forward pointers, even to
other, future Packages (warnings should be given, though).

Regarding special FormalismAttributes, we adopt their reliesOn relations and
corresponding properties. Axioms in Casl, for instance, depend on their global
environment resulting from fragments of the Theory that specifies the signature
of the symbols used in the Axioms.

The semantics of the variantOf relations depends on the various types of vari-
ants. Regarding variants in different languages (or on different levels of detail),
we impose the completeness requirement that each variant in one language must
have a corresponding variant in the other, for each constituent Structural Entity,
with the same overall structure and relations (as an option, for each level of
detail, and so on). Similarily one will be able to specify, as a consistency re-
quirement, that all Programs should be in a particular FormalismAttribute, e.g.
the programming language Haskell. A corresponding completeness requirement
would be that we have, for each Program, a variant in programming language C
and Java, e.g. for different Teachers of a course.

Properties of Interactions between Structuring Mechanisms. While the
properties mentioned above are specific to an individual structuring mechanism,

MultiMedia Instruction in Safe and Secure Systems 109

we will explore possible interactions of different structuring mechanisms and how
they can be used to refine consistency and completeness.

Relating the comprises and reliesOn relations (we subsume pointsTo relations
here) allows us to formalize constraints regarding the closure of document parts
with respect to the reliesOn relation. We may require, for example, that there
is a Proof for each Theorem in a Package or that each Reference references an
OntologyDef occurrence in this Package unless there is an explicit import. Fur-
thermore, a reliesOn relation between two Structural Entities is propagated along
the comprises relation towards the root of the hierarchy of nested Structural Enti-
ties. Consider, for example, a Proof in Section A that proves a Theorem in Section
B, then Section A reliesOnSection B. Conversely, a reliesOn relation between two
Structural Entities cannot be decomposed and propagated towards the leaves.
Changing (parts of) one of them can affect the proposed reliesOn relation.

The interaction between the comprises and the variantOf relation is rather
subtle and has not fully been investigated yet. For example, we expect the struc-
ture of a document with the DetailAttribute Lecture to be a homomorphic pro-
jection of the corresponding structure with the DetailAttribute Course.

Similarly, the interaction between the reliesOn relation (or pointsTo relation)
and the variantOf relation merits further investigation. It is not clear what kind
of relations across variants are desired, if any. In principle, each variant should
be closed with respect to reliesOn relations, i.e. all targets should be provided in
that variant. An exception might be an explicit pointer to material in a lecture
from a course, but then this material should be included in the course anyway
as a completeness requirement. The converse is more likely: one might want to
make a pointer into a more detailed course or lecture notes document from slides
in a lecture.

In any case, the more structure there is, the better are the chances for preserv-
ing consistency and completeness; any investment in introducing more reliesOn
relations, for example, will pay off eventually. The change management will ob-
serve whether revisions by the user will affect these relations and, depending
on the user’s preferences, emit corresponding warnings. It is crucial to point out
that, in contrast to formal developments such as in the MAYA-system [24], there
is no rigorous requirement that a document should obey all the rules mentioned
above. There may be good reasons, for instance, to present first a “light-weight”
introduction to all notions introduced in a Section before giving the detailed def-
initions. In this particular case, one would want to introduce forward pointers
to the definitions rather than making the definitions rely on the introduction;
thus the rules are covered. The eventual aim of the MMiSS-design is to allow
the user to specify her individual notion of consistency by formulating the rules
the relations between the various structuring mechanisms have to obey.

6.4 Foreign Tools and Administration

A User Management component supports a simple user model with different Roles
and handles the access rights of Authors, Teachers, Students, Tutors, Correctors,
and also ToolDevelopers, SystemDevelopers, and Administrators (cf. Sect. 2.1).

110 B. Krieg-Brückner et al.

WebAssign. The WebAssign system developed at FernUniversität Hagen (see
[7] or http://niobe.fernuni-hagen.de/WebAssign) supports web-based distribu-
tion, correction, and administration of course related assignments. Assignments
may have interactive parts where system gives direct feedback to the student.
WebAssign also manages the integration of external tools (such as compilers)
that check student answers or provide help in other ways. In addition, We-
bAssign provides a flexible administrative support. The WebAssign subsystem
is presently being integrated.

7 Presentation

In this section, we concentrate on presentation issues such as layout and animation,
and show how they can be realised using the authoring language MMiSSLATEX.

In general, presentation issues should be separated from issues of represent-
ation in an abstract form (MMiSS-XML here), which can also serve as an
external exchange format. In fact, the Author should be relieved from tedious for-
matting as much as possible. Therefore, work is under way to isolate layout and
animation as attributes. Ideally, tools will generate different presentation forms
automatically. The subsystem ActiveMath, which is developed separately, is
integrated via a mapping from MMiSS-XML to OMDoc and provides user-
adaptive presentation based on pedagogic rules.

7.1 Layout in MMiSSLaTeX

Annotating Slides. At Universität Freiburg, experiments have been made
to enhance slides for the course Computer-Supported Modelling and Reasoning
(held regularly each year) towards a self-contained online course. We will report
on our experiences below; they have led to new insights into the best ways of
defining the layout (and animation) of the DetailAttribute LectureNotes and, to
some extent, Course.

Usually, slides for a lecture are sketchy and rely on the oral presentation of the
Teacher. So in order for the slides to be adequate for self-study, an apppendix has
been added to each slide suite containing detailed explanations. There is a rich
structure of pointers (hyperlinks resulting from References and Links), mainly
going from some item in the lecture slides to an explanation of that item, but
also many other pointers to even more detailed explanations, and forward and
backward pointers within the slides. For example, whenever there is a sentence
starting with “Recall that . . . ”, there is a pointer to the corresponding previous
item in the lecture, usually a Reference to the OntologyDef occurrence of an
element declared in the ontology.

In fact, the slides of the lecture have been extended (as a refinement) to a level
of detail that we would now regard as lecture notes for review by a Student after
attending class; a self-contained online course without any tutoring would require
yet a higher degree of verbosity. The tentative experience seems to indicate that
different explicit levels of detail, depending on the Student’s learning profile, are

MultiMedia Instruction in Safe and Secure Systems 111

not so important. The level of detail develops dynamically during a learning
session depending on the pointers the Student decides to follow.

However, in its current form the lecture notes is not very suitable for print-
ing. At the least, the detailed explanations would have to be interleaved with
the lecture slides so that an explanation immediately follows the slide referred
to, and other pointers (References or Links), which are not hyperlinks anymore,
have to be augmented by “(see Sect. . . .)” or “(see page . . .)”. This empha-
sises the need for a more abstract representation format and tools for generating
different output formats automatically, cf. Sect. 2.5. In fact, a different presen-
tation for a Reference or Link is now being generated in MMiSSLATEX, depending
on the PresentationAttribute: a hyperlink for Hyper and an extended text “(see
Sect. . . .)” for Paper.

To give a quantitative assessment of the material involved, one can say that
extending lecture slides to a lecture notes at least doubles the size of the sources.
A typical lecture notes slide will contain around five pointers. We will further
extend the material as Student feedback reveals where more detail is needed.

Board Presentation. The Board PresentationAttribute of MMiSSLATEX (cf.
Sect. 2.5) allows for preparing a ‘shooting script’ of courses. In addition to the
slides to be presented, such a script may also include notes on

– what to write on the board,
– which interactions with the students shall take place,
– important oral remarks etc.

during a lecture. Thus, while the annotated slides for online learning provide
help for the students, the Board PresentationAttribute is a means of support to
the lecturer during the course presentation. Slides to be presented are included
as pictures between text blocks to be written on the board. These text blocks
are structured by the same environments as available for slides. During the lec-
ture, this kind of presentation helps to keep overview on the course material:
the lecturer sees more than the slide currently presented; personal notes of all
kinds can be included; tedious but important things like a uniform numbering
of chapters, sections, environments, etc. are done automatically.

While preparing a lecture in the Board style of MMiSSLATEX, text blocks or
graphics can easily be shiftet between slide- and board-presentation thanks to
the uniform naming of the structural entities. Technically, this is done by adding
or removing the Board PresentationAttribute. This makes it possible to postpone
the decision on how to present a certain item to the very last translation before
presentation. In the electronic version of the resulting script, it is possible to
run tool demonstrations included in the slides. Thus, one should consider the
shooting script prepared in this way as the all inclusive document of a course’s
presentation.

Concerning the board content, one should be aware that it is of a different
type than the material on slides: while slides are intended for presentation to
students, only the lecturer will see the contents with the Board Presentation-
Attribute. This allows board content to be less detailed, for instance the following

112 B. Krieg-Brückner et al.

might suffice: ‘ex-tempore example: model an automaton with the signature
provided by the above specification’. From a didactical point of view, such ex-
tempore examples — maybe even suggested by the audience — are often better
and far more impressive than examples, which are prepared in all details before
the presentation. Of course, the same type of argument carries over to proof
sketches instead of complete proofs. The Board PresentationAttribute allows also
to include this kind of reminders in the course’s shooting script.

7.2 Animation in MMiSSLaTeX

With respect to animation, we focus here on a presentation (e.g. of a slide in a
lecture, but also of lecture notes in the Hyper variant) where parts are gradually
appearing or disappearing in a sequence of displaying steps. The simplest and
best-known case is that of an incremental buildup of a page: each step adds new
text below the text already presented. These and more complex effects can be
very useful in a lecture to illustrate how some complex object is built up step
by step; the effect is similar to a presentation on the board. They are even more
useful for lecture notes or a self-contained course as no Teacher is available.

So far, such steps have been realised by so-called pause levels in PDFLATEX
using the PPower4 package [10].

Courses involving logic give rise to
a particular application of animation ef-
fects, namely animated derivation trees.
A derivation tree is shown in Fig. 17. The
LATEX package proof for drawing such
trees has been extended to support ani-
mation: the particular logical structure of

[A ∨ B]1
[A]2

B ∨ A
∨-IR

[B]2

B ∨ A
∨-IL

B ∨ A
∨-E2

A ∨ B → B ∨ A
→-I1

Fig. 17. Derivation tree

derivation trees and the general input syntax for such trees is taken into account.
For each tree, one can specify at which pause levels it should be displayed. For

each (sub)tree, one can again specify at which pause levels it should be displayed,
overriding the specification for the surrounding tree. Derivation trees involve
applications of rules, e.g. →-I. Each rule application can be associated with the
discharging of an assumption, marked by brackets around the assumption and
labelling both the rule and the brackets with a number. We have automated
this process: the numbers are administrated using symbolic references (making
it easy to compose trees). Moreover, the brackets and their label will by default
inherit the pause level from the rule application. For example, one could specify
that the whole tree (and hence its root step marked by rule →-I) appears from
pause level 4 onwards, whereas the assumption A∨B at one of the leaves appears
from level 2. Then, by default, the brackets around A ∨ B and the label (here:
1) will appear from level 4 onwards.

Derivation trees can be quite complex and the process of constructing them
is very hard to understand based on static illustrations. We therefore found the
new style package very useful.

MultiMedia Instruction in Safe and Secure Systems 113

7.3 User Adaptive Presentation in ActiveMath

The ActiveMath project [14] was started independently from and before the
MMiSS project and has provided a lot of valuable ideas.

Goals. In the previous sections it became clear that producing on-line learning
material involves a lot of effort and that reusability in different contexts and
for different presentations and presentation formats is a must in the develop-
ment of future learning material. As one conclusion, a more abstract, semantical
XML knowledge representation, OMDoc [12], has been developed and in addi-
tion, presentation tools and other functionalities of the learning environment are
strictly separated from the knowledge representation of the learning content in
ActiveMath and can thus deliver different output formats, different hyperlink-
ing, different presentations of symbols and formulas, personalized appearances
etc.

Apart from these economically and technically-driven developments, a ma-
jor goal of multimedia on-line learning is a better quality of learning. This ob-
jective calls for pedagogically and cognitively motivated features of a learning
system which include personalization of content and appearance, the provision
of feedback, and presentation according to the learning progress. For instance,
a learner becomes bored and less motivated when the material and exercises are
too easy for her and not challenging at all. Similarly, the learner’s motivation will
drop considerably when material and exercises are beyond her capabilities and
knowledge mastery level. Therefore, a few advanced intelligent tutoring systems
– including ActiveMath – adapt the content and its sequencing to the learners
goals, capabilities, and learning preferences/scenario.

Knowledge Representation. ActiveMath was the first system that uses
the knowledge representation OMDoc [20]. OMDoc is an extension of the
OpenMath XML-standard2. OpenMath provides a grammar for the represen-
tation of mathematical objects and sets of standardized symbols (the content-
dictionaries). OMDoc inherits the grammar for mathematical objects from
OpenMath and the existing content-dictionaries. In addition, OMDoc defines
a framework for the definition of new symbols.

The objectives of OMDoc and MMiSS-XML are quite similar: OMDoc
was originally more tailored towards mathematical content and is being extended
now; MMiSS-XML has had more general objectives, is more tailored towards the
document Document Constructs described above and the input language MMiSS-
LATEX; MMiSS-XML can be mapped to OMDoc and vice-versa — efforts are
presently being made for further unification.

The metadata in core-OMDoc include the Dublin Core [27] metadata such
as contributor and publisher. The ActiveMath DTD extends OMDoc (see
e.g. [15]) and contains additional – pedagogically motivated – metadata such as
difficulty or field of an exercise and the prerequisite-of relation of instructional
items for a concept that allow even more customization of the document delivery
to the student and her learning situation.
2 http://www.openmath.org

114 B. Krieg-Brückner et al.

Adaptive Presentations. Thanks to a user model that stores and updates
the learner’s preferences, goals, activities, and mastery levels, ActiveMath is
able to present the learning material in a user-adaptive manner, content-wise
and presentation-wise. In the table-of-contents a color-annotation informs the
student about her mastery level for concepts to be learned.

The flexibility of the presentation process also chooses a low slide-verbosity
or a high script-verbosity of the material according to the learner’s needs. A
slide presentation can automatically be (hyper-)linked to the more verbose ex-
planations and other instructional items from the script sources.

Mathematical objects/symbols in the presentation have a semantic annota-
tion that points to the meaning of the symbol in the content dictionary. This
enables functionalities such as copy and paste of mathematical formulas to a
service system’s console.

The transformation from assembled XML content items to the actual output
format is realized with a modular presentation process with style sheet applica-
tion at its heart. Currently, ActiveMath can realize LATEX PDF output formats
that are well-suited for printing as well as HTML output format augmented by
MathML-presentation for mathematical symbols that is well-suited for browser
presentation output.

Learning-Effective Features in ActiveMath. ActiveMath offers several
other features that are known to improve learning. In particular, it has a generic
mechanism for integrating service systems/tools for active and exploratory learn-
ing, such as computer algebra systems or tools for formal software development.

A dictionary can be called from the material or by explicit search in the dic-
tionary. It displays the definition of a concept and, if required, also the concepts
and instructional items that are somehow related to that concept, e.g., examples
illustrating the concept or exercises training the concept.

The learner can resume studying where she left off last time. She can ma-
nipulate (rename, delete) those (listed) materials she has studied previously. A
notes facility enables the learner to take personal or group notes corresponding
to items in the learning material. The user model is open and inspectable.

ActiveMath is customisable to teacher’s and learner’s needs and easily
configurable to pedagogical strategies and knowledge resouces.

8 Conclusion

In this paper we have presented the methodology, the techniques and tools of the
MMiSS-project to support multimedia instructions in safe and secure systems.
Summing up, the developed infrastructure allows a user

– to develop transparencies, lecture notes, complete courses
– to work on the board, with transparencies, interactively with tools
– to embed mathematical formulae, programs, etc.
– to manage e.g. English and German variants in parallel
– to publish complete and consistent packages

MultiMedia Instruction in Safe and Secure Systems 115

– to (partially) re-use the transparencies of a colleague
– to be made aware of the changes made by colleagues
– to develop a uniform terminology among various authors, and
– to have support for sustainable development.

Experiences. The system has been gradually introduced, over the duration of
the project, into the normal teaching activities of the project partners. For exam-
ple, the two semester course TeCS (Techniques for the development of Correct
Software) at Universität Bremen provides a gentle introduction to formal meth-
ods for software development. It deals with sequential as well as with reactive
systems, using the algebraic specification language Casl [2, 13, 6, 18] and the
process algebra CSP, e.g. [22], resp. On the tool’s side, the theorem prover Is-
abelle and the model checker FDR play central roles. Besides simple exercises
explaining single concepts, the TeCS problem sheets also include more complex
tasks like specifying a family game (Nine Men’s Morris) in Casl; verifying a
simple interpreter within Isabelle/HOL; modelling a file system in Casl at both
the requirements and the design level; proving the refinement relation between
these two specifications in HOL/Casl.

Presenting TeCS using the presentational part of MMiSSLATEX has been
quite successful. For the author, the overhead to produce course material within
the MMiSSLATEX format is negligable compared to other presentation systems.
Besides the usual benefits of a computer based presentation like ‘no slide con-
fusion’, the MMiSSLATEX integration of tool demonstrations in the slides en-
courages the teacher to enliven the lectures by live demonstrations on the com-
puter. The students are fond of the readability, the consistent markup, and the
download-friendly PDF-filesize of the slides. It should be mentioned that these
positive results also arise from a cautious usage of computer based presenta-
tions: about half of the course material has been taught in ‘classical style’ using
a blackboard. A poll among the students of TeCS gave the result that this is
an optimal mixture.

State of the Project and Future Developments. The project has made
good progress during its first two years. Many lectures have been converted
to the initial LATEX-oriented input format, with good quality output as slides in
PDF-format. This material is now awaiting further coordination and refinement,
as well as semantic interlinking via an ontology and using development graphs
in the repository. The Development Manager, and other editing and authoring
tools, have been made available in a first version.

While the project has achieved a satisfactory, consistent state, a lot still has
to be done: the documentation has to be improved, various bits and pieces have
to be completed (e.g. layout and animation attributes), etc. We hope that the
planned extension mechanisms will facilitate future developments considerably.

MMiSSForum. As the open source model is used, teaching materials and tools
are freely available to achieve a much wider national and international take-up.

116 B. Krieg-Brückner et al.

To assist this, a MMiSSForum is has been set up with German, international,
and industrial members, to evaluate the emerging curriculum and assist its de-
velopment and distribution; you are welcome to join ([16]). The Advisory Board
advises the project from a scientific as well as an industrial perspective, with a
view to future applications. To go with the planned deployment at universities,
a number of well-known German companies have already, through the various
industrial contacts of the project partners, expressed an interest in measures for
further in-house training.

Support and Partners. The MMiSS project is being supported by the Ger-
man Ministry for Research and Education, bmb+f, in its programme “New Media
in Education” from 2001 to 2004. The project partners are

– Universität Bremen (Krieg-Brückner, Drouineaud, Eckert (now at Darm-
stadt), Gogolla, Kreowski, Lindow, Lüth, Mahnke, Mossakowski, Peleska,
Roggenbach (now at Swansea), Russell, Schlingloff (now at HU Berlin),
Schröder, Shi)

– FernUniversität (Distance Education University) Hagen (Poetzsch-Heffter
(now at Kaiserslautern), Bealu, Kraemer, Sun, Jelitto)

– Universität Freiburg (Basin (now at ETH Zürich), Klaedtke, Smaus,Wolff),
– Ludwig-Maximilians-Universität München (Wirsing, Kröger, Knapp, Hen-

nicker, Meier, Zhang),
– Universität des Saarlandes (Hutter, Melis, Autexier, Siekmann, Stephan,

Goguadze, Libbrecht, Ullrich).

Acknowledgement

We are grateful to the members of the Advisory Board, M. Kohlhase (Carnegie-
Mellon University, Pittsburgh), V. Lotz (Siemens AG, München), H. Reichel
(Technische Universität Dresden), W. Reisig (Humboldt Universität Berlin),
D.T. Sannella (University of Edinburgh), and M. Ullmann (BSI [Federal In-
stitute for Security in Information Technology], Bonn), for their advice.

References

1. Computing Classification System [1998 Version]. http://www.acm.org/class/.
2. E. Astesiano, M. Bidoit, B. Krieg-Brückner, H. Kirchner, P. D. Mosses, D. Sannella,

and A. Tarlecki. Casl – the common algebraic specification language. Theoretical
Computer Science, 286:153–196, 2002.

3. E. Astesiano and G. Reggio. Formalism and method. In Theoretical Computer
Science, pages 236(1–2), 2000.

4. b-novative GmbH. davinci presenter web site.
http://www.b-novative.com/products/daVinci/.

5. K. Baclawski, M. K. Kokar, P. A. Kogut, L. Hart, J. Smith, W. S. Holmes III,
J. Letkowski, and M. L. Aronson. Extending UML to support ontology engineering
for the semantic Web. Lecture Notes in Computer Science, 2185:342–360, 2001.

MultiMedia Instruction in Safe and Secure Systems 117

6. H. Baumeister, M. Cerioli, A. Haxthausen, T. Mossakowski, P.D. Mosses, D. San-
nella, and A. Tarlecki. Casl semantics. In P.D. Mosses, editor, Casl Reference
Manual. [19], Part III.

7. J. Brunsmann, A. Homrighausen, H.-W. Six, and J. Voss. Assignments in a virtual
university - the webassign-system. In Proceedings of the 19th World Conference
on Open Learning and Distance Education, Vienna/Austria, June 1999.

8. E. M. Clarke and J. M. Wing. Formal methods: State of the art and future
directions. In ACM Computing Surveys 28, pages 626–643, 1996.

9. M. Fröhlich. Inkrementelles Graphlayout im Visualisierungssystem daVinci. PhD
thesis, Dissertation, Universität Bremen, 1998.

10. K. Guntermann and C. Spannagel. PPower4 Manual. TU Darmstadt, 2002.
11. Haskell web site. http://www.haskell.org/.
12. M. Kohlhase. OMDoc: Towards an internet standard for mathematical knowl-

edge. In E. R. Lozano, editor, Proceedings of Artificial Intelligence and Symbolic
Computation, AISC’2000, LNAI. Springer Verlag, 2001.
See also http://www.mathweb.org/omdoc.

13. CoFILanguage Design Group, B. Krieg-Brückner and P.D. Mosses (eds.). Casl
summary. In P.D. Mosses, editor, Casl Reference Manual. [19], Part I.

14. E. Melis, E. Andres, G. Goguadse, P. Libbrecht, M. Pollet, and C. Ullrich. Active-
math: System description, 2001.

15. E. Melis and C. Ullrich G. Goguadse, P. Libbrecht. Wissensmodellierung und
-nutzung in ActiveMath. KI, to appear(1):12–18, 2003.

16. MMiSS web site. http://www.mmiss.de.
17. T. Mossakowski. Casl: From semantics to tools. In S. Graf and M. Schwartzbach,

editors, TACAS 2000, volume 1785 of Lecture Notes in Computer Science, pages
93–108. Springer-Verlag, 2000.

18. P. D. Mosses and M. Bidoit. Casl — the common algebraic specification language:
User Manual. Lecture Notes in Computer Science. Springer. To appear.

19. P. D. Mosses (ed.). Casl — the common algebraic specification language: Reference
Manual. Lecture Notes in Computer Science. Springer. To appear.

20. OmDoc. http://www.openmath.org.
21. J. K. Ousterhout. Tcl and the Tk Toolkit. Addison Wesley, 1994.
22. A.W. Roscoe. The theory and practice of concurrency. Prentice Hall, 1998.
23. G. Russel and C. Lüth. Htk — graphical user interfaces for haskell programs.

http://www.informatik.uni-bremen.de/htk/.
24. S.Autexier, D.Hutter, T.Mossakowski, and A.Schairer. The development graph

manager MAYA (system description). In H. Kirchner and C. Reingeissen, edi-
tors, Algebraic Methodology and Software Technology, 2002, volume 2422 of Lecture
Notes in Computer Science, pages 495–502. Springer-Verlag, 2002.

25. Sleepycat Software. Berkeley DB. http://www.sleepycat.com/.
26. B. Steffen, T. Margaria, and V. Braun. The electronic tool integration platform:

Concepts and design. In International Journal on Software Tools for Technology
Transfer (STTT) 1, pages 9–30, 1997.

27. The Dublin Core Metadata Initiative. Dublin core metadata initiative - home page,
1998. http://purl.org/DC/.

28. M. Wallace and C. Runciman. Haskell and XML: Generic combinators or
type-based translation? In International Conference on Functional Programming
ICFP’99, pages 148– 159. ACM Press, 1999.

29. Xemacs web site. http://www.xemacs.org/.

	1 Introduction and Overview
	2 Structuring Mechanisms for Documents
	2.1 An Ontology of Users
	2.2 Document Structure
	2.3 Packages
	2.4 Attributes
	2.5 Variants
	2.6 Semantic Interrelation

	3 The Content Ontology for {\sf MMiSS} Courses
	3.1 {\sf MMiSS} Courses
	3.2 The Ontology for Formal Methods
	3.3 Systematic Construction of Ontologies

	4 Support Environment
	5 Authoring Tools
	5.1 MMiSSLaTeX
	5.2 PowerPoint
	5.3 Interactive Course Creation
	5.4 Structure Graph

	6 Sustainable Development and Maintenance
	6.1 Representation
	6.2 Version Control and Con.guration Management
	6.3 Change Management
	6.4 Foreign Tools and Administration

	7 Presentation
	7.1 Layout in MMiSSLaTeX
	7.2 Animation in MMiSSLaTeX
	7.3 User Adaptive Presentation in ActiveMath

	8 Conclusion
	References

