2500.25174v1 [csLG] 29 Sep 2025

arXiv

Preprint. Under Review.

XQC: WELL-CONDITIONED OPTIMIZATION
ACCELERATES DEEP REINFORCEMENT LEARNING

Daniel Palenicek!:?> Florian Vogt> Joe Watson* Ingmar Posner* Jan Peters'2:5:6

!Technical University of Darmstadt 2hessian.Al ®University of Freiburg *University of Oxford
5German Research Center for AI (DFKI) SRobotics Institute Germany (RIG)
daniel.palenicek@tu-darmstadt.de

ABSTRACT

Sample efficiency is a central property of effective deep reinforcement learn-
ing algorithms. Recent work has improved this through added complexity, such
as larger models, exotic network architectures, and more complex algorithms,
which are typically motivated purely by empirical performance. We take a more
principled approach by focusing on the optimization landscape of the critic net-
work. Using the eigenspectrum and condition number of the critic’s Hessian,
we systematically investigate the impact of common architectural design deci-
sions on training dynamics. Our analysis reveals that a novel combination of
batch normalization (BN), weight normalization (WN), and a distributional cross-
entropy (CE) loss produces condition numbers orders of magnitude smaller than
baselines. This combination also naturally bounds gradient norms, a property crit-
ical for maintaining a stable effective learning rate under non-stationary targets
and bootstrapping. Based on these insights, we introduce XQC: a well-motivated,
sample-efficient deep actor-critic algorithm built upon soft actor-critic that em-
bodies these optimization-aware principles. We achieve state-of-the-art sample
efficiency across 55 proprioception and 15 vision-based continuous control tasks,
all while using significantly fewer parameters than competing methods.

Better Conditioning Number of State-based RL Pixel-based RL
Improves RL Performance Parameters (55 tasks) (humanoid-walk)
8 =

g 10 SAC 35M g =51 . 8004

R=I'd 107 CrossQ B S 0.6 - = i B =l B

25 .6 Crossor WS M z 2 600

SE 100 CrowewNe M 5 Soaq ka8 B 200

S 2 10° o SimbaV2 aMm 3 ; 0o 2 EE s = B % 200

<4 4 XQC®] =

B T & T M 2 00 0
0 500 1000 0 1 2 3
IQM Return @ 1M Env Steps (10M)

I XQC (ours) I CrossQ SAC BRO SimbaV2 BRC CrossQ + WN MR.Q HEE DrQ-V2

Figure 1: Well-conditioned network architectures yield state-of-the-art RL performance. Our
algorithm, XQC with a BN and WN-based architecture and a CE loss, achieves competitive perfor-
mance against state-of-the-art baselines across 55 proprioceptive continuous control tasks from four
different benchmarks with a single set of hyperparameters. Notably, with ~4.5x fewer parameters
and ~ 5x less compute in terms of FLOP/S than SIMBA-V2, the closest competitor. XQC’s efficiency
carries over to RL from pixels on 15 vision-based DMC tasks, significantly improving on DRQ-V2.

1 INTRODUCTION

Sample efficiency remains a major challenge in deep reinforcement learning (RL). Methods that can
learn effectively from limited interactions are crucial for applying RL in domains such as robotics,
where generating data on real hardware is costly and time-consuming. Recent advances in model-
free RL have primarily been driven by a paradigm of scaling—Ilarger networks, higher update-to-date
ratio (UTD) ratios, and ever-increasing computational budgets (Nikishin et al., 2022; D’Oro et al.,
2022; Nauman et al., 2024; 2025; Lee et al., 2025a;b; Palenicek et al., 2025). These works have
viewed architectural improvements primarily as a means to scale up stably and in turn improve sam-
ple efficiency. While proven effective, this ‘bigger is better’ paradigm comes at the cost of compu-

https://arxiv.org/abs/2509.25174v1

Preprint. Under Review.

tational efficiency and often overlooks a more fundamental question: Can we improve performance
not by adding complexity, but by creating a better-conditioned optimization problem?

To develop this principled understanding, we conduct a systematic investigation into three com-
monly used architectural components whose roles in RL are often guided by heuristics. First,
we examine normalization layers. The RL community has converged mainly on layer normalisa-
tion (LN) (Ba et al., 2016), primarily due to concerns about the batch dependency of batch normal-
isation (BN) (Ioffe & Szegedy, 2015), which until recently was thought to be problematic in the RL
setting. Second, we consider weight normalisation (WN) (Lyle et al., 2024; Loshchilov et al., 2025;
Palenicek et al., 2025) by periodically projecting the network’s weights to the unit sphere, permit-
ted through the normalization layers’ scale invariance property. A technique known to improve the
effective learning rate (ELR) (Van Laarhoven, 2017). Lastly, we study the critic’s loss function. Dis-
tributional critics using a categorical cross entropy (CE) loss have grown in popularity (Bellemare
et al., 2017). The conventional argument for their adoption is that modeling the full distribution of
returns provides a better learning signal compared to regression with a mean squared error (MSE)
loss (Farebrother et al., 2024); there is evidence this loss is easier to optimize (Imani & White, 2018).

Through a systematic eigenvalue analysis of the critic’s Hessian, we provide a principled explanation
for why different architectures outperform others. Our analysis first shows that BN consistently
produces better-conditioned local loss landscapes than LN during learning, with condition numbers
that are orders of magnitude smaller. Second, our investigation of the critic loss reveals that, beyond
its representational advantages, the CE loss induces a remarkably well-conditioned optimization
landscape compared to the MSE loss. We find that the combination of BN, WN, and a categorical
CE loss works in synergy to dramatically improve the conditioning of the optimization problem and
stabilize the ELR, a key metric for maintaining plasticity in deep RL. In summary, we claim the
following contributions:

1. XQc, a simple and efficient extension to soft actor critic, uses the powerful synergy between
BN, WN, and a distributional critic with a CE Bellman error loss for sample-efficient learning.

2. A Hessian eigenvalue analysis of modern deep RL critics, revealing the superior conditioning
properties of distributional critic losses over the mean squared error.

3. Extensive empirical validation on 55 proprioception and 15 vision-based continuous control
tasks, demonstrating state-of-the-art performance against more complex, larger-scale methods.

2 PRELIMINARIES

This section briefly introduces the necessary background and notation for this paper.

Deep reinforcement learning. In this work, we assume the standard RL setting (Sutton & Barto,
2018), where an agent attempts to learn a policy that maximizes its expected discounted re-
turn. Our experiments are based on the popular off-policy actor-critic algorithm soft actor-critic
(SAC) (Haarnoja et al., 2018), where policy and critic are represented by neural networks. A key
quantity in reinforcement learning with function approximation is the Bellman error Ag,

AG('S?a) = Q(s,a) - QQ(S,G), Q(37a) = T(S,G,) +'7]Es’~p(-\s,a)[v(8/)]a (1)
where () and V' are the ‘soft’ parametric critic and value functions, respectively. Minimizing this
Bellman error effectively is key to the success of actor-critic methods (Sutton & Barto, 2018). This
error is typically minimized with the mean squared regression loss and gradient-based optimization.
The distributional €51 algorithm (Bellemare et al., 2017) reformulates the task as a classification
problem. Instead of a scalar estimate, the function approximator outputs the logits of a categorical
distribution over the full support of (). The Bellmann error can then be minimized using a categorical
CE loss, which has been shown to improve performance and stability (Farebrother et al., 2024).

Analyzing gradient-based optimization. To analyze the optimization of our gradient-based up-
dates, we consider their first- and second-order aspects. For gradient-based optimization with pa-
rameter normalization, we must consider the effective learning rate (Definition 1).

Definition 1. (Effective learning rate, ELR, Van Laarhoven (2017)). For a scale-invariant function
f(@) = f(AO),A>0, the ‘effective’ learning rate 7] for an update f(0+1g(0)) with gradients
g(0) is the learning rate when taking this scale invariance into account,

fO+1g(0) = f(0+7g(0), 71=n/6l2 6=20/6]>.

Preprint. Under Review.

k=1 r =10 K =100 x = 1000

—_— k=1
10° k=10
k=100

— i 10% A _
~] £ = 1000

v — l074'
1077 A
T T

To T2 T2 T2 0 20000 40000
steps

b
@
|

Figure 2: When performing gradient-based optimization, the condition number (k) of the objec-
tive’s Hessian significantly impacts convergence. We illustrate this phenomenon with a simple
two-dimensional quadratic example. As k increases by an order of magnitude, gradient descent
converges at a lower rate. We believe this phenomenon plays a similar role when learning the critic
in deep reinforcement learning, where high condition numbers lead to poor sample efficiency.

Recent work has studied ELR in the context of loss of ‘plasticity’ in neural networks and scaling
gracefully to larger UTD ratios in RL (Lyle et al., 2024; Palenicek et al., 2025).

To analyze the second-order properties of the loss landscape, a local quadratic approximation
1
L(0+50) =~ L(0) + VaLl(0)50 + 559Tv§£(0)50 2)

illustrates the role of the Hessian V3.£(0) in characterizing the curvature of the local loss land-
scape, which is measured using its eigenvalues. The -smoothness of the objective upper-bounds
the largest eigenvalue of the Hessian (Definition 2), while the ratio of largest to smallest absolute val-
ues describes the condition number (Definition 3). The larger the condition number, the less effective
gradient descent with a fixed learning rate will be due to the large range in curvature per dimension,
as illustrated in Figure 2 (Nocedal & Wright, 2006). While we use an adaptive learning rate opti-
mizer (Adam, Kingma & Ba (2015)), whose adaptivity helps overcome issues with ill-conditioning,
the loss landscape curvature remains relevant when assessing optimization difficulty.

Definition 2. (S-smoothness, Aravkin et al. (2017)). A loss function L(0) is said to be B-smooth if its
gradient is Lipschitz continuous with constant f3, i.e., |[VoL(01) — Vo L(02)| < 3 /61 — 02| which
is equivalent to the largest eigenvalue of its Hessian being bounded by 3, i.e., Amax(V2L(6)) < B.
As such, the B-smoothness quantifies the maximum curvature of the landscape.

In our experiments, we will look at the largest eigenvalue as a proxy for the empirical measure of 3.

Definition 3. (Condition number, Nocedal & Wright (2006)). For a normal matrix H € R4*¢ with
eigenvalues M1, . .., \q, its condition number r is k(H) = max; |\;|/ min; |\;|. As a measure of
sensitivity, a low condition number describes a ‘well-conditioned’ matrix, while a high condition
number describes an ‘ill-conditioned’ matrix.

For a Hessian, the condition number is used to analyze and characterize the effectiveness of gradient-
based optimization algorithms (Nocedal & Wright, 2006). Using the insights of the effective learn-
ing rate, B-smoothness, and condition numbers, we now compare the optimization landscapes of
different actor-critic architectures in deep RL.

3 THE OPTIMIZATION LANDSCAPES OF THE BELLMAN ERROR

We seek to improve sample efficiency by enhancing the critic’s optimization landscape. This section
applies the optimization insights from Section 2 to the Bellman error minimization. Hessian eigen-
values have previously been used to understand the benefits of batch normalization in supervised
learning (Ghorbani et al., 2019). To our knowledge, this is the first such analysis for deep RL.

3.1 AN EMPIRICAL INVESTIGATION OF CRITIC OPTIMIZATION.

To quantify the impact of common architectural components on the optimization of the Bellman
error, we looked at the eigenvalues of the critic’s Hessian while learning the challenging DeepMind
control suite (DMC) dog-trot environment, a high-dimensional continuous control task, ensuring
the findings are not artifacts of a trivial toy-task.

Preprint. Under Review.

BN+WN LN+WN Dense+WN BN Dense

CE loss
logyo(A)

[y
(=)
=]

bbblo—vw
I
i
11l
1
A
11l

MSE loss
logyo(A)

roblo—ww
|
|
111111
—r
1
L
:f?!‘iii:
i
1
111111
=
I
|
111111

7 8 HJIo - -
S S L
~ 7 -1 =N \ - -~ -
% o ¢ =N S 4 LAY SN - S=Ja { -
3 s 4)
= s E - E
S . . .
I T T T T T
0.0 0.5 10 00 0.5 L0 00 0.5 L0 00 0.5 L0 00 0.5 10 00 0.5 1.0

Env Steps (1M) Env Steps (1M) Env Steps (1M) Env Steps (1M) Env Steps (1M) Env Steps (1M)

N BN N 1N B Dense = CE == MSE

Figure 3: Eigenvalues and condition numbers on dog-trot over 5 seeds for different critic
architectures during training. The top and middle rows show the eigenspectra of the CE loss and
MSE loss, respectively. The columns correspond to different combinations of normalization layers
and WN. The bottom row shows the 1IQM and 90% SBCI of the condition number x aggregated over
five seeds for CE and MSE losses, respectively. Architectures using BN show more compact and
stable eigenspectra over the course of training with no outliers. LN suffers from large outlier modes
and includes overall larger eigenvalues. Similarly, the CE loss significantly improves loss landscape
conditioning over an MSE.

We systematically compare critic networks with combinations of common architectural components:

* Normalization strategies: BN, LN, None (Dense).
* Weight projection to the unit sphere: WN (O), no WN (m).
¢ Loss functions: MSE (a), CE (0).

This results in a total of 12 distinct architectural combinations, allowing for a thorough dissection of
each component’s contribution. Per architecture, we run 5 random seeds for 1M environment steps
and compute the Hessian eigenspectrum at 20 checkpoints throughout training using an efficient
JAX (Bradbury et al., 2018) implementation of the stochastic Lanczos quadrature algorithm (Golub
& Welsch, 1969; Lin et al., 2016), adapted from Ghorbani et al. (2019).

Eigenvalue analysis. First, we qualitatively analyze how the eigenvalues evolve during training for
the different architectures. Figure 3 (top & middle) reveals striking differences in the curvature of the
loss landscape for the different components. Architectures employing BN consistently produce more
compact and stable eigenspectra throughout training, with eigenvalues remaining bounded within a
moderate range and free of significant outliers. In stark contrast, LN architectures suffer from large,
growing outlier eigenvalues, signifying sharp curvature that can destabilize training. Similarly, the
CE loss significantly improves loss landscape conditioning over an MSE. This is also reflected in
the condition numbers Figure 3 (bottom), where BN-based architectures are consistently an order of
magnitude smaller and more stable than their non-BN counterparts.

Condition numbers and J-smoothness. To make the relationship between the spectral properties
and performance explicit, Figure 4 presents the data in an aggregated form. Each point shows ag-
gregated results over 5 seeds, correlating an architecture’s 1QM condition number, IQM max()\) and
1QM Kurtosis(A), respectively, over the entire course of training, with its sample-efficiency (1QM re-
turn at 1M timesteps). These plots show a clear and strong trend: architectures with lower condition
numbers and smaller maximum eigenvalues achieve higher returns. This trend provides compelling
empirical evidence that, perhaps unsurprisingly, a smoother, better-conditioned optimization land-
scape is a key driver of performance in deep RL. The Kurtosis provides a proxy measure for outliers
in the eigenspectrum, where BN-based architectures consistently show lower Kurtosis than their
LN-based counterparts. Furthermore, the results show that BN, WN, and a categorical CE loss each
independently improve the landscape’s conditioning, and when combined, their synergistic effect
yields the best-conditioned landscape and the highest performance.

Preprint. Under Review.

IQM Return @ 1M

IQM Return @ 1M

IQM Return @ 1M

IQM Return @ 1M

LN — BN Adding WN MSE — CE IQM max(X) IQM Kurtosis(\)
©
5 ~ A 102 A
£ 107 T3a~e Pa b4 *.M Py
£ Lo \ A Py °
g 106 A A A % YA N X 10! é
= Q 2% \ \ @ o
S s Pl _ X LY o ® °
O 10 0‘::“7\». =0 ? o \3 []
2 .) o o 10° @ o
= 10 T T T T T T T T T T T T T T T
250 500 750 250 500 750 250 500 750 250 500 750 250 500 750

IQM Return @ 1M

Figure 4: The condition numbers and maximum eigenvalues against the return at 1M steps on DMC
dog—-trot. Normalization strategies are color-coded BN, LN, Dense. Use of WN = empty shape 0,
whereas no WN is represented by a filled shape m. MSE loss = » and CE = 0. Architectures with lower
condition numbers and lower maximum eigenvalues tend to have better final returns. Also, BN,
WN, and the categorical CE loss each improve the loss conditioning independently (columns 1-3).
Combined, they result in the best conditioning and best performance o. For reference, we include
SIMBA-V2 O a strong baseline with a similarly low condition number.

3.2 WHY DOES CROSS-ENTROPY OUTPERFORM THE SQUARED ERROR?

Distributional RL and €51 were proposed to perform distributional regression of the returns, beyond
predicting only the average value (Bellemare et al., 2023). In this section, we motivate distributional
losses from the optimization perspective (Imani & White, 2018) to explain the dramatic difference
in condition numbers between CE and MSE Bellman errors in Section 3.1. We show that the CE loss
has desirable properties for optimization over the MSE. Firstly, Propositions 1 and 2 show that the
gradient norm for the loss with respect to the predictions can only be bounded for the CE loss.

Proposition 1. The loss, [(y,§) = %||y — 9|3 has unbounded gradients w.r:. g,
IVgl(y, 9)ll2 = [ly = gll2 < 00, 3 = fo(x). 3)
Proposition 2. The loss, I(t,y) = — Zle t;logt;, t = Softmax(y) has bounded gradients w.r.t. 9,
Vgt D)2 = it — Sofimax(@)]]2 < V3, § = folw)). @

Combining Proposition 2 with weight normalization and a Lipschitz assumption, we can upper
bound the effective gradient update (Definition 1) in Theorem 1.

Theorem 1. For the cross entropy-loss | and learning rate 1 > 0, for a scale-invariant function
approximator fe which is Ly Lipschitz continuous in the L2 norm with respect to 8 with fixed
parameter norm ||0|2 = C, the effective gradient update can be upper bounded as

n|10]1>~"Vol(t, fo(x)) <nC~'V2Ly. (5)

To analyze second-order properties, we must assume that we can bound the eigenvalues of the func-
tion approximator’s Hessian so that weight decay can ensure the Hessian of the objective is positive
definite and the smallest eigenvalue is greater than zero.

Assumption 1. We assume eigenvalue bounds for the function approximator Hessian (per output),
0 < M| <|0s(Vifo(x))| < M| <o Viel0,m],zeX,0c0.

Proposition 3. Given Assumption 1, the eigenvalues of the Hessian of the mean squared error loss

with weight decay 2, 1> 0 are unbounded and the condition number cannot be upper bounded.

Proposition 4. Given Assumption 1, the eigenvalues of the Hessian of the cross-entropy loss with
weight decay u? have an upper-bounded condition number

Kk (VEL) < (4N, + L3 +e)fe, €>0,
when p? = 2M\, + €, which provides a finite upper bound when ¢ > 0.

For proofs see Section I. In practice, we do not require weight decay to attain good performance,
and as a result, the Hessian was observed to not always be positive definite. Nonetheless, these
results provide a formal intuition for our empirical result that CE losses consistently report smaller
condition numbers. This analysis directly motivates the design of our XQC algorithm, presented
next.

Preprint. Under Review.

4 XQC: A SIMPLE & WELL-CONDITIONED ACTOR-CRITIC ARCHITECTURE

This section presents our novel XQC algorithm, a direct conclusion of
our optimization analysis in Section 3. It is a simple, yet powerful archi- T
tecture with the purpose of improving the loss landscapes optimization
behaviours, that extends the popular SAC algorithm. XQC’s critic archi-
tecture is motivated by a central principle: combining components that
synergistically improve optimization dynamics. We provide a complete

Input

list of hyperparameters in Section A. Linear

Batch normalization. XQC uses BN layers directly on the network in-
put and after each linear layer (Figure 5). Following Bhatt et al. (2024), RelU

we implement a joined forward pass to automatically calculate the BN

running statistics on the joined (s,a) and (s’,a’) distribution (Bhatt

et al., 2024), to successfully integrate BN in the RL loop. In contrast ! N
to Bhatt et al. (2024), we find that switching the order of normalization Linear

and ReLU-activation leads to better performance. It has the added bene- v

fit that in this order, BN’s scale invariance is preserved for any activation Output

function, as opposed to homogeneous ones only. XQC uses four hidden
layers with 512 neurons each.

Cross-entropy Bellman loss. We use a C51-style categorical critic with Figure 5: The XQC net-
101 atoms and a CE loss (Bellemare et al., 2017). We use standard re- Wwork architecture con-
ward normalization based on running statistics of the standard deviation ~sists of only three stan-
of the return R to effectively bound the () values to the support of our dard components: Lin-
categorical critic 7, = r;/o(R) (Engstrom et al., 2020). Next to im- ear, BN, and ReLU for a
proving the loss landscape conditioning, another desirable property of ~total of 4 hidden layers.
the categorical CE loss is to keep gradient norms bounded and thereby

help keep the ELR constant.

Weight normalization. Enabled by BN’s scale-invariance property, we project the weights of each
dense layer to the unit sphere after each gradient step. This normalization keeps the denominator
of the ELR constant, so it becomes practically constant when using the CE loss (Figure 8), so XQC
maintains good plasticity. With a constant ELR, we can now leverage a learning rate schedule for
Adam (Kingma & Ba, 2015) as previously suggested (Lyle et al., 2024; Lee et al., 2025b).

Vision encoder. For experiments on the DMC vision-based environments, we use the standard DRQ-
v2 (Yarats et al., 2022) image encoder. For a fair and direct comparison to DRQ-V2, we use its
standard, unmodified vision encoder, which consists of convolutional layers alternated with ReLU
activations, followed by a linear layer, LN, and a tanh activation. Our architectural modifications
are confined to the subsequent MLP layers of the actor and critic.

5 EXPERIMENTS

This section empirically validates our central hypothesis: that the synergistic combination of BN,
WN, and a categorical CE critic loss, designed to create a well-conditioned optimization land-
scape, directly translates into state-of-the-art sample efficiency and training stability. We structure
our experiments to first demonstrate XQC’s superior performance against strong baselines (Sec-
tion 5.1), then dissect the underlying mechanics through analysis of common plasticity metrics and
the ELR (Section 5.2), Finally, in Section 5.3 we analyze computational efficiency, scaling prop-
erties, and present a thorough ablation study (Section G) confirms the necessity of each of XQC’s
architectural components.

Evaluation metrics. For the main experiments we run 10 random seeds per environment for 1 mil-
lion environment steps and for ablations 5 seeds, unless otherwise noted. For statistically rigorous
evaluations, we report the IQM and 90% SBCI for all aggregate scores, following the recommended
best practices of Agarwal et al. (2021). To aggregate IQM return curves over multiple environments
and benchmarks, each score needs to be normalized. We follow standard practice, details in Sec-
tion B. In aggregated bar charts, we present area under the curve (AUC) of the IQM normalized
return curve. The AUC captures both training speed as well as absolute performance simultaneously.

Preprint. Under Review.

Humanoid Bench DMC Hard DMC Med+Easy Myo Suite MuJoCo Aggregated (55 tasks)
£ 0.6
g & E| 084 === 1 EEE o |
3 T & < 1.0 9 0.6 =T |
~ 0.4 | | = P O S | = -1 ==
<] B | | 3 v | 0.4 4 Q
202—»11 Ig-g I 32? 0‘4_%": LEL If“"‘?dg& 0'5—<rIo\ BEE =0 & Egﬁ
= L EEN INEES L D | B lzERRE =58 EREN|
5 =S BS =3 s 5
= 0.0 0.0 0.0 0.0

SAC BRC BRO I CrossQ + WN MR.Q SimbaV2 XQC (ours)

Figure 6: XQC achieves state-of-the-art sample efficiency across 55 propioceptive continuous
control tasks. We report the IQM AUC of normalized returns. Error bars denote 90% SBCIs. The
right column shows total aggregated performance across the benchmarks (55 tasks). XQC matches
or outperforms strong baselines, especially on the hardest DMC and HB tasks, while using a simpler
and smaller architecture (see Section 5.3).

DMC vision DMC vision

- Humanoids Medium humanoid-run humanoid-walk humanoid-stand

-

2 — =

2 00| [£ 200

© 044 & 500 - 500

g 0.2 4 0.53 E

= 2 4 N i

o 0.0 - 0 T T 1 0 T T 0 T T 1
B XxQC B DrQ-V2 o 23 o 23 o 23

Env Steps (10M) Env Steps (10M) Env Steps (10M)

Figure 7: XQC improves sample efficiency on 15 vision-based DMC tasks. The left two columns
show aggregated IQM AUC, demonstrating a significant performance advantage over the strong DRQ-
V2 baseline, particularly on the difficult humanoid tasks. The right three columns show full train-
ing curves for the three humanoid environments (IQM over 10 seeds), highlighting XQC’s signifi-
cantly better sample-efficiency. For these experiments, XQC uses the standard DRQ-V2 encoder and
hyperparameters, isolating performance gains to our proposed well-conditioned critic architecture.

As such, it discriminates between two algorithms, which converge to the same performance but at
different speeds, as opposed to the 1QM of the final performance.

Benchmarks. To validate XQC’s effectiveness, we conduct comprehensive experiments across 70
continuous control tasks spanning five popular benchmark suites. Our evaluation covers 15 vision-
based tasks from DMC, plus and additional 55 proprioceptive tasks from HumanoidBench (HB) (Sfer-
razza et al., 2024) (14 tasks), DMC (Tassa et al., 2018) (25 tasks), MyoSuite (Myo) (Caggiano et al.,
2022) (10 tasks), and MuJoCo (Todorov et al., 2012) (6 tasks). Our extensive evaluation shows
XQC’s generality, using a single set of hyperparameters across all tasks.

Baselines. We compare to several strong, recent model-free baselines: SIMBA-V2 (Lee et al.,
2025b), BRO (Nauman et al., 2024), MRQ (Fujimoto et al., 2025), BRC (Nauman et al., 2025),
CROSSQ+WN (Palenicek et al., 2025), SAC (Haarnoja et al., 2018), When available, we use the re-
spective authors’ evaluation results; otherwise, we run experiments using their official open-source
implementations. Full details on baseline results are provided in Section C.

5.1 SAMPLE EFFICIENCY RESULTS

We start our experiments by investigating the training performance in terms of sample efficiency and
comparing it to state-of-the-art baselines. All of these results use 10 seeds per environment. First,
we present the proprioception-based results and then the vision-based tasks.

Reinforcement learning from proprioception. Figure 6 shows that XQC matches our outperforms
strong baselines SIMBA-V2, MRQ, BRO and CROSSQ+WN on all 4 benchmarks. The rightmost col-
umn shows that on average XQC performs as well SIMBA-V2 while using significantly less network
parameters and a substantially simpler architecture Figure 5. Notably XQC shows exceptional per-
formance on the most complex tasks HB and DMC-hard. These environments are known to induce
notoriously difficult and ill-conditioned optimization landscapes. XQC’s superior performance and
learning speed suggest that its well-conditioned critic—characterized by a stable ELR and bounded
gradients as shown in Section 5.2—is fundamentally better equipped to handle the non-stationary
targets and bootstrapping errors inherent in these challenging domains.

Preprint. Under Review.

Parameter Norm Gradient Norm ELR Stable Rank Feature Norm
0.002 A 180
0.10 4 — - —
200 - 40 1.0 350 160 XQC (ours)
100 0.05 0.001 320 7 140 — XQCLN
- 20 _ 250 120 - = XQC MSE
0.000 £
' T 0.5 ' ' — XQC wio WN
00 05 1.0 00 05 1.0 00 0.5 1.0 00 05 1.0 00 05 1.0
Env Steps (1M) Env Steps (1M) Env Steps (1M) Env Steps (1M) Env Steps (1M)

Figure 8: XQC’s architecture creates exceptionally stable learning dynamics. For XQC, BN +WN
stabilizes the parameter norm, while BN +CE keep the gradient norm and ELR near constant.

Reinforcement learning from pixels. On the vision-based DMC environments, we compare XQC to
DRQ-V2. For these results, we re-implemented XQC in the official DRQ-V2 codebase. We used the
DRQ-V2 encoder and the same hyperparameters as the original DRQ-V2 to make the comparison as
fair as possible. Figure 7 shows that on most tasks, XQC outperforms or at least matches DRQ-V2
performance. This is most pronounced on the much more challenging humanoid tasks. Learning
the vision-encoder from scratch requires a large number of samples in itself. We hypothesize that this
is why the performance increase of XQC is smaller on the easier tasks and much more pronounced
on the humanoids, which have a 10x overall runtime.

5.2 PLASTICITY ANALYSIS

Analysing the improvement of common plasticity metric confirms the effectiveness of XQCs design
principles. Figure 8 presents plasticity metrics aggregated over all 55 proprioceptive tasks. XQC
w/0 WN’s growing parameter norms decrease the ELR towards zero over time, reconfirming the
findings of Lyle et al. (2024) and Palenicek et al. (2025). We notice that the ELR appears directly
coupled to the gradient norm, for all architectures employing WN. While XQC MSE controls the
parameter norm, its gradients are unbounded and heavily influenced by outliers; consequently, its
gradient norm and ELR grow over the course of training by about one order of magnitude (requiring
a second y—axis to compare). XQC’s CE critic loss removes this disturbance, directly reflected in
remarkably stable gradient norm and ELR throughout the course of training, which are many orders
of magnitude smaller. We show per benchmark plasticity metrics in Section F.

5.3 PARAMETER AND COMPUTE EFFCIENCY

XQC achives its competitive sample efficiency while requiring ~ 4.5x fewer parameters than
SIMBA-V2 (Figure 9). This parameter efficiency directly results in high computational efficiency
with ~ 5x fewer FLOP/S than SIMBA-V2 and BRO and > 100X fewer FLOP/S than BRC. We con-
jecture that XQC’s superior computational efficiency is rooted in its well-conditioned architecture.

Total Network Params FLOP/s - UTD Scaling Width Scaling Depth Scaling Ablation

35M 3] 5 0.8

] 100B ¥ &
oM S b

E 10B - =]
4M 4 E < 0.6 1

] n =
™M 1B S 0.5 1 T — T T T T

1 4 8 256 512 1024 2 4 6
XQC BRO MrQ SimbaV2 BRC HEE XQCLN XQCMSE HEE XQC w/o WN

Figure 9: XQC is significantly more parameter and compute efficient & scales stably with
UTD, network depths, and widths. Left two columns: XQC is significantly more parameter- and
compute-efficient than the competing baselines. ~ 4.5x fewer parameters and ~ 5x fewer FLOP/S
than SIMBA-V2 and BRO and > 100x fewer FLOP/S than BRC. Columns 3-5: XQC’s scaling in terms
of UTD, layer width, and layer depth. Increasing compute and model capacity generally improves or
maintains performance, demonstrating that our well-conditioned design is robust to scaling. Results
are aggregated across all 55 proprioception tasks and 5 seeds each. Right column: We compare the
full XQC algorithm against three variants: one replacing BN with LN (XQC LN), one replacing the CE
loss with an MSE loss (XQC MSE), and one without WN (XQC w/o WN). Each component’s removal
results in a significant performance drop, showing their synergistic contribution.

Preprint. Under Review.

5.4 XQC SCALING BEHAVIOUR AND ARCHITECTURE ABLATIONS

Figure 9 colums 3-5 demonstrate XQC’s scaling ability. XQC improves performance with increas-
ing UTD at a similar slope to SIMBA-V2, with a faction of the parameters (Section 5.3). Similarly,
XQC improves or maintains performance with larger and deeper networks. These results demon-
strate robustness towards different hyperparameters and XQC’s ability to scale stably, enabled by its
well-conditioned architectural design. This property is desirable since increasing compute always
represents a trade-off between sample efficiency and wall-clock or energy. It allows practitioners
to use their available budget most efficiently. To demonstrate the synergy, we ablate each of the
three main components of the proposed XQC architecture: BN, WN, and the CE distributional critic.
Results for all 55 and 5 seeds are shown in Figure 9 with per benchmark ablations in Figure 16. Our
analysis confirms that each of the components is vital, especially in the most difficult DMC-hard
and HB suits. The largest drop in performance occurs when switching BN for LN. While using a
MSE critic loss has the second most significant influence, the removal of WN is still substantial, but
shows the lowest overall impact. In summary, combining each of the three components is vital for
XQC'’s performance.

6 RELATED WORK

Our work is positioned at the intersection of several key research areas in deep RL that all attempt
to improve sample efficiency. A prevailing trend for improving sample efficiency has been scal-
ing along different axes. Compute scaling, particularly increasing the UTD ratio, has recently been
a major focus. However, naively increasing UTD can lead to instability and overfitting on early
experience (Nikishin et al., 2022). Researchers have suggested many different regularizers to sta-
bly increase the UTD; From full parameter-resets (Nikishin et al., 2022; D’Oro et al., 2022), to
critic ensembles (Chen et al., 2021) and drop-out (Hiraoka et al., 2021), to normalization layers
like LN (Hiraoka et al., 2021; Lyle et al., 2024; Nauman et al., 2024; Lee et al., 2025a), BN (Bhatt
et al., 2024), hyper-spherical normalization (Hussing et al., 2024; Lee et al., 2025b) and spectral
normalization (Bjorck et al., 2021). Recently, works have found that the combination of normal-
ization layers together with WN can stabilize the ELR, helping against loss of plasticity (Lyle et al.,
2024) and also enable scaling RL to high UTD ratios (Palenicek et al., 2025). Recent works have
worked on developing scaling laws for RL (Rybkin et al., 2025; Fu et al., 2025). Network scaling,
is another path authors are exploring to increase sample effieincy. Bhatt et al. (2024) showed that
BN allowed them to significantly scale the layer width. Since then, authors have looked into specific
LN-based architectures (Nauman et al., 2024; Lee et al., 2025a) and network sparsity (Ma et al.,
2025). Lee et al. (2025a) propose a ‘simplicity bias’ score, computed using an FFT and scoring
’simplicity’ higher for functions with lower frequency content across random initializations. This
score has no theoretical justification relating it to sample efficiency or generalization. Another line
of research attempts to scale network sizes dynamically during training (Liu et al., 2025; Kang et al.,
2025). Concurrent work Castanyer et al. (2025) combine second-order optimization and multi-skip
residual connections to improve scaling and monitor the trace of the Hessian for deep value-based
RL. Model-based methods scale computation by learning a separate dynamics model, which is then
leveraged in the RL loop (Janner et al., 2019; Hafner et al., 2020; Hansen et al., 2024).

7 CONCLUSION & FUTURE WORK

In this work, we shifted the focus from the prevailing pure scaling goal in deep RL and instead fo-
cus on improving the critic’s optimization landscape. Through an eigenvalue analysis of the critic’s
Hessian, we demonstrate that specific architectural choices, namely batch normalization, weight
normalization, and a distributional cross-entropy loss, create a better optimization landscape with a
condition number orders of magnitude smaller during learning. This superior conditioning translates
directly into learning performance gains. We propose XQC, an algorithm embodying these prin-
ciples, which achieves state-of-the-art sample efficiency across 70 continuous control tasks from
proprioception and vision domains. XQC accomplishes this performance with significantly fewer
parameters than competing methods, underscoring that a principled focus on optimization funda-
mentals can yield greater performance and efficiency than brute-force scaling alone.

Preprint. Under Review.

ACKNOWLEDGEMENTS

This research was funded by the research cluster “Third Wave of AI”, funded by the excellence
program of the Hessian Ministry of Higher Education, Science, Research and the Arts, hessian.Al
This work was also supported by a UKRI/EPSRC Programme Grant [EP/V000748/1].

REPRODUCIBILITY STATEMENT

We took special care to ensure this work is reproducible and will make the code open source upon
acceptance. To ease reproducibility, algorithm details are explained Section 4, all hyperparameters
are listed in Section A, and training curves are shown Sections D and E.

LARGE LANGUAGE MODEL USAGE

A large language model was helpful in polishing writing, improving reading flow, and identifying
remaining typos.

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural Informa-
tion Processing Systems, 2021.

Aleksandr Y. Aravkin, James V. Burke, and Dmitriy Drusvyatskiy. Convex analysis and nonsmooth
optimization. 2017.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International Conference on Machine Learning, 2017.

Marc G Bellemare, Will Dabney, and Mark Rowland. Distributional reinforcement learning. MIT
Press, 2023.

Aditya Bhatt, Daniel Palenicek, Boris Belousov, Max Argus, Artemij Amiranashvili, Thomas Brox,
and Jan Peters. CrossQ: Batch normalization in deep reinforcement learning for greater sample
efficiency and simplicity. In International Conference on Learning Representations, 2024.

Nils Bjorck, Carla P Gomes, and Kilian Q Weinberger. Towards deeper deep reinforcement learning
with spectral normalization. In Advances in Neural Information Processing Systems, 2021.

Bernhard G. Bodmann. Matrix theory, math6304: Variational characterization of eigenvalues.
Lecture Notes, 2012. URL https://www.math.uh.edu/~bgb/Courses/Math6304/
MatrixTheory—-20121011.pdf.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/ jax.

Vittorio Caggiano, Huawei Wang, Guillaume Durandau, Massimo Sartori, and Vikash Kumar.
Myosuite—a contact-rich simulation suite for musculoskeletal motor control. In Learning for
Dynamics and Control Conference, 2022.

Roger Creus Castanyer, Johan Obando-Ceron, Lu Li, Pierre-Luc Bacon, Glen Berseth, Aaron
Courville, and Pablo Samuel Castro. Stable gradients for stable learning at scale in deep rein-
forcement learning. In Advances in Neural Information Processing Systems (NeurIPS), 2025.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith Ross. Randomized ensembled double Q-learning:
Learning fast without a model. In International Conference on Learning Representations, 2021.

10

https://www.math.uh.edu/~bgb/Courses/Math6304/MatrixTheory-20121011.pdf
https://www.math.uh.edu/~bgb/Courses/Math6304/MatrixTheory-20121011.pdf
http://github.com/google/jax
http://github.com/google/jax

Preprint. Under Review.

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G Bellemare, and
Aaron Courville. Sample-efficient reinforcement learning by breaking the replay ratio barrier.
In International Conference on Learning Representations, 2022.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. Implementation matters in deep policy gradients: A case study
on ppo and trpo. In International Conference on Learning Representations, 2020.

Jesse Farebrother, Jordi Orbay, Quan Vuong, Adrien Ali Taiga, Yevgen Chebotar, Ted Xiao, Alex
Irpan, Sergey Levine, Pablo Samuel Castro, Aleksandra Faust, et al. Stop regressing: Training
value functions via classification for scalable deep RL. In International Conference on Machine
Learning, 2024.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Preston Fu, Oleh Rybkin, Zhiyuan Zhou, Michal Nauman, Pieter Abbeel, Sergey Levine, and Aviral
Kumar. Compute-optimal scaling for value-based deep RL. arXiv preprint arXiv:2508.14881,
2025.

Scott Fujimoto, Pierluca D’Oro, Amy Zhang, Yuandong Tian, and Michael Rabbat. Towards
general-purpose model-free reinforcement learning. In International Conference on Learning
Representations, 2025.

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net optimization
via Hessian eigenvalue density. In International Conference on Machine Learning, 2019.

Gene H Golub and John H Welsch. Calculation of Gauss quadrature rules. Mathematics of compu-
tation, 23(106):221-230, 1969.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic algo-
rithms and applications. arXiv preprint arXiv:1812.05905, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. In International Conference on Learning Representations, 2020.

Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world models for contin-
uous control. In International Conference on Learning Representations, 2024.

Takuya Hiraoka, Takahisa Imagawa, Taisei Hashimoto, Takashi Onishi, and Yoshimasa Tsuruoka.
Dropout g-functions for doubly efficient reinforcement learning. In International Conference on
Learning Representations, 2021.

Marcel Hussing, Claas A Voelcker, Igor Gilitschenski, Amir-massoud Farahmand, and Eric Eaton.
Dissecting deep RL with high update ratios: Combatting value divergence. In Reinforcement
Learning Conference, 2024.

Ehsan Imani and Martha White. Improving regression performance with distributional losses. In
International Conference on Machine Learning, 2018.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning, 2015.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. In Advances in Neural Information Processing Systems, 2019.

Zilin Kang, Chenyuan Hu, Yu Luo, Zhecheng Yuan, Ruijie Zheng, and Huazhe Xu. A forget-and-
grow strategy for deep reinforcement learning scaling in continuous control. In International
Conference on Machine Learning, 2025.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

11

Preprint. Under Review.

Hojoon Lee, Dongyoon Hwang, Donghu Kim, Hyunseung Kim, Jun Jet Tai, Kaushik Subramanian,
Peter R Wurman, Jaegul Choo, Peter Stone, and Takuma Seno. Simba: Simplicity bias for scaling
up parameters in deep reinforcement learning. International Conference on Learning Represen-
tations, 2025a.

Hojoon Lee, Youngdo Lee, Takuma Seno, Donghu Kim, Peter Stone, and Jaegul Choo. Hyper-
spherical normalization for scalable deep reinforcement learning. International Conference on
Machine Learning, 2025b.

Lin Lin, Yousef Saad, and Chao Yang. Approximating spectral densities of large matrices. SIAM
review, 58(1):34-65, 2016.

Jiashun Liu, Johan Samir Obando Ceron, Aaron Courville, and Ling Pan. Neuroplastic expansion
in deep reinforcement learning. In International Conference on Learning Representations, 2025.

Ilya Loshchilov, Cheng-Ping Hsieh, Simeng Sun, and Boris Ginsburg. ngpt: Normalized trans-
former with representation learning on the hypersphere. In International Conference on Learning
Representations, 2025.

Clare Lyle, Zeyu Zheng, Khimya Khetarpal, James Martens, Hado van Hasselt, Razvan Pascanu, and
Will Dabney. Normalization and effective learning rates in reinforcement learning. In Advances
in Neural Information Processing Systems, 2024.

Guozheng Ma, Lu Li, Zilin Wang, Li Shen, Pierre-Luc Bacon, and Dacheng Tao. Network sparsity
unlocks the scaling potential of deep reinforcement learning. In International Conference on
Machine Learning, 2025.

Michal Nauman, Mateusz Ostaszewski, Krzysztof Jankowski, Piotr Mito§, and Marek Cygan. Big-
ger, regularized, optimistic: scaling for compute and sample-efficient continuous control. In
Advances in Neural Information Processing Systems, 2024.

Michal Nauman, Marek Cygan, Carmelo Sferrazza, Aviral Kumar, and Pieter Abbeel. Bigger, regu-
larized, categorical: High-capacity value functions are efficient multi-task learners. arXiv preprint
arXiv:2505.23150, 2025.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The
primacy bias in deep reinforcement learning. In International Conference on Machine Learning,
2022.

Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 2006.

Daniel Palenicek, Florian Vogt, Joe Watson, and Jan Peters. Scaling off-policy reinforcement learn-
ing with batch and weight normalization. In Advances in Neural Information Processing Systems,
2025.

Oleh Rybkin, Michal Nauman, Preston Fu, Charlie Victor Snell, Pieter Abbeel, Sergey Levine, and
Aviral Kumar. Value-based deep RL scales predictably. In International Conference on Machine
Learning, 2025.

Carmelo Sferrazza, Dun-Ming Huang, Xingyu Lin, Youngwoon Lee, and Pieter Abbeel. Hu-
manoidbench: Simulated humanoid benchmark for whole-body locomotion and manipulation.
In Robotics: Science and Systems, 2024.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
2018.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin Ried-
miller. Deepmind control suite. arXiv preprint arXiv:1801.00690, 2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In International Conference on Intelligent Robots and Systems, 2012.

12

Preprint. Under Review.

Twan Van Laarhoven. L2 regularization versus batch and weight normalization. arXiv preprint
arXiv:1706.05350, 2017.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous con-
trol: Improved data-augmented reinforcement learning. In International Conference on Learning
Representations, 2022.

A HYPERPARAMETERS

Table 1 summarizes all proprioception-based experiments’ hyperparameters. The heuristic discount
factor is determined using the heuristic proposed by (Hansen et al., 2024). Specifically, it is com-
puted as:

1
: 5
~v = clip (7 7[O.95,O.995]> ,
5

where T" denotes the effective episode length, calculated by dividing the episode length by the num-
ber of repeated actions. We use the default hyperparameters used in their respective GitHub repos-
itories for all other baselines. One exception is BRC, where we reduced the number of parameters
from the default 256M to 64M. As noted by the authors, using more than 64M parameters does not
provide additional benefit in the single-task setting, which is the focus of our work.

Table 2 contains all hyperparameters for the vision-based experiments based on the official DRQ-V2
codebase.

13

Preprint. Under Review.

7 10AIN 7 10AIN 1 :0AIN 7 10AIN T 0AIN T 10AIN T 10AIN
.N ‘dH .N ‘dH ._ ‘dH .N ‘dH .N ‘dH .N ‘dH .N ‘dH eador uonoy
¢ :DONd ()il I :DNd ¢ DONd ¢ ONd ¢ ONA [Ee)i\el
[:0D0MMW [:0D0MMW [:0D0MN [:0D0MMN [:0D0MMN [:0DO0MIN [:0D0[MN
96¢ Y201 8¢CI 96¢ 9¢¢C 9¢¢C 96¢ 9z1s yoreq
0od4d 01
I C [rews O¥d ¢ C I 4 C darLn
SSOT 1] g0 HSIN g0 dSIN HSIN g0 SSO[ONLD
- (01 ‘01-] - [S ‘s - - [c ‘¢ 1o0ddng [eouo3ae)
1000°0 1000°0 1000°0 - - 10°0 - Keoo WSToMm
Muepy Muepy Muepy wepy wepy Mmurepy wepy ToziumdQ
660 660 660 OnsSLINOH JnSLINOH dnNsUNoH JNSUNSH unossIg
oA / DN UO |
[4 [4 ¢ dH/O0Dofmpuog 4 4 4 SONLID JO JoqunN
0ST 1 1 1 1 1 1 Aouonbaiy ojepdn yromiou joSre],
01 S00°0 S00°0 S00°0 S000 S00°0 S00°0 WNJUITOW JI0M)OU JOTIE],
- ¢/ vl ¢/ vl e/ vl ¢/ vl ¢/ vl ¢/ vl £donus 1031,
- €000°0 €000°0 1000°0 €000°0 £000°0 €000°0 ajer Surured] armerdduwd,
- 1'0 0’1 100 1 100 100 amjereduwra) TenTuy
I I I I I € € Kerop ajepdn Korjog
€ I I I C 4 ¥ S)00[q JO JoquInu IO}y
(459 9¢¢ 9¢¢ 8CI 9¢¢C 9¢¢ 9¢¢ $300[q TequInu 101y
€000°0 €000°0 €000°0 1000°0 €000°0 €000°0 €000°0 ajer SuruIed] 1010y
€ [4 [4 4 4 C ¥ SY00[q JO IqUINU JNLID)
(459 8¥0C 459 (459 9s¢C 459 459 WIp uspply onuy
€000°0 €000°0 €000°0 1000°0 €000°0 €000°0 €000°0 ajex SUIUIEA] dDLL)
uonodduuo) doyg uonossuuo) drys UHON T
NT NT 4T
UONBAOY osuaq osuaq wioN 7’1 Ny Ng N1
NT NN n71ed (wrp)asus (wip)osua N1y Nd ug1sap yoo[g
(wip)asuaq N1y . (wip)asusg (WIp)asusg
, NT , N1 [0S
(wrp)asusq (wrp)asusq (WIp X $)asua(y
O odd [ox:c: TA-VAINIS JOVS NM+0SSOID 20X JPpPwereddiyg

‘sysey uondooorrdoid [[e uo saurfeseq pue DOX J0j siojoweredrodAy :1 9[qe],

14

Preprint. Under Review.

Table 2: Hyperparameters for vision-based RL tasks.

Hyperparameter XQC DRQ-V2
Dense(dim) o
Block design BN Ezlri%e(dlm)
ReLU
Critic learning rate 0.0001 0.0001
Critic hidden dim 1024 1024
Critic number of blocks 4 2
Actor learning rate 0.0001 0.0001
Actor hidden dim 1024 1024
Actor number of blocks 4 3
Target network momentum 0.01 0.01
Target network update frequency 1 1
Number of critics 2 2
Discount 0.99 0.99
Optimizer Adam Adam
Categorical Support [-5, 5] -
Critic Loss CE MSE
UTD 0.5 0.5
Batch size 256 256
Replay buffer capacity 10M 10M
N-step returns 3 3
Feature dim 50 50
Exploration stddev. clip 0.3 0.3
Action Repeat 2 2
easy: linear(1.0, 0.1, 100K) easy: linear(1.0, 0.1, 100K)

Exploration stddev. schedule

(Defined by task difficulty) medium: linear(1.0, 0.1, 500K) medium: linear(1.0, 0.1, 500K)

hard: linear(1.0, 0.1, 2M) hard: linear(1.0, 0.1, 2M)

B ENVIRONMENT AGGREGATION DETAILS

As the magnitude of returns varies across environments, we normalize them for comparability be-
fore aggregating (Agarwal et al., 2021). We normalize scores to be between 0 and 1. Where the
normalization protocols are benchmark-specific and follow standard practice.

For MuJoCo and Humanoidbench we compute the normalized score as

z — Random Score
Target Score — Random Score’

j}:

where the random scores are obtained using a uniformly random policy (Fu et al., 2020). Target
scores are taken from a trained TD3 policy in MuJoCo, and are provided by the authors for HB,
where they represent the threshold required to mark a task as solved.

For DMC tasks, we normalize by dividing the final score by 1000, the maximum achievable return.

MyoSuite tasks require no normalization, as performance is already expressed in percentage-
based success rates.

15

Preprint. Under Review.

C BASELINES

In this section, we briefly describe how the results were collected for every baseline we present in
this work. Additionally, all hyperparameters are listed in Section A.

SIMBA-V2 (Lee et al., 2025b). We used the results made publicly available on the official GitHub
repository. The results are based on 10 seeds. For SIMBA-V2 (small) we ran the code from the
official codebase ourselves, for 10 seeds.

CROSSQ+WN (Palenicek et al., 2025). We ran all experiments ourselves using our codebase for
10 seeds.

BRO (Nauman et al., 2024). We used the publicly available results on the official SIMBA-V2
GitHub repository. We only considered the ’small’ version of BRO, which uses a UTD ratio of
2. The results are based on 5 seeds.

MRQ (Fujimoto et al., 2025). For MuJoCo and DMC, we used the results provided by SIMBA-V2
on their official GitHub repository, which are based on 10 seeds. We conducted experiments for My o
and HB ourselves, by running the official MRQ codebase using 5 random seeds due to computational
reasons. We matched the action repeat used in our experiments to ensure a fair comparison.

SAC (Haarnoja et al., 2018). We ran all experiments ourselves using our codebase. We used the
default SAC hyperparameters and ran 5 seeds for every environment.

BRC (Nauman et al., 2025). Using the official BRC GitHub codebase, we experiment ourselves
for 3 seeds, due to computational constraints. While we used their default settings as reported in the
paper, reducing the parameters to 64M, since Nauman et al. (2025) noted that using more than 64M
parameters provides no benefit for single-task settings. Additionally, we used the same action repeat
environment wrapper used in all our other experiments, ensuring a fair comparison.

DRQ-V2 (Hiraoka et al., 2021). We used the results reported in the offical GitHub repository
based on 10 seeds. Our vision-based XQC experiments are based on the DRQ-V2 codebased for a
fair comparison.

16

Preprint. Under Review.

D ALL TRAINING CURVES: REINFORCEMENT LEARNING FROM
VISION-BASED DMC ENVIRONMENTS

Results from RL on the vision-based DMC benchmarks. We compare to DRQ-V2 (Yarats et al.,
2022).

humanoid-run acrobot_swingup finger_turn_easy quadruped_run reacher_easy
1000 750 1000
200 - 400 500 4
200 500 500
250
0 _I T 0 _I T T T T T 0 T T
humanoid-walk cartpole_swingup_sparse finger_turn_hard quadruped_walk reacher_hard
1000 1000 -
=)
E 750
E 500 500 500 500 500
= 250
5 0 7 T 0 T 0 T T T 0 T
Z humanoid-stand cheetah_run hopper_hop reach_duplo walker_run
s 400
200
g 500
500 500 - 7
200 100 4
0 T 04 T 0~ T 07y T 0 T
0 2 0 2 0 2 0 2 0 2
x107 x10° x10° x10° x10°
Env Steps Env Steps Env Steps Env Steps Env Steps
= DrQ-V2 = XQC (ours)

Figure 10: XQC and DRQ-V?2 training curves for each of the 15 vision-based DMC tasks. We show
the IQM and 90% SBCI aggregated over 10 seeds per environment.

17

Preprint. Under Review.

E ALL TRAINING CURVES: REINFORCEMENT LEARNING FROM
PROPRIOCEPTION

All results for the proprioception continuous control benchmarking tasks.

E.1 HUMANOIDBENCH

h1-pole-v0 h1-slide-vO h1-stair-vO hl-crawl-v0
500 600 1000 A
/ 800
600 7 400 - 400
600
400 -
= 400
200 200
200 200
0 04# 0 0
T T T T T T T T T
h1-maze-v0 h1-run-vO hl-walk-v0
800
300 600 6000
600
200 400 4000
400
100 200 2000 200 -
7/
£ 01 0 0 0
E T T T T T T T T T T T T
a“é h1-stand-v0 h1-hurdle-vO h1-balance_hard-vO hl-balance_simple-v0
é 800 - 7 250 - 150 o 800 -
S \
< 600 200 600
s 100
150 -
SEPTI y 400 -
100 - 50
200 A 50 4 200
0 0 0 0
T T T T T T T T T T T T
h1-sit_hard-vO h1-sit_simple-v0
800 800 -
600 - 600 -
400 - 400 -
200 200 /
0 o4V
T T T T T T
0.0 0.5 1.0 0.0 0.5 1.0
Env Steps<10° Env Steps<10°
—— SimbaV2 BRC === BRO === XQC (ours)
—— MR.Q

Figure 11: XQC and baseline training curves for each of the 14 HB tasks. We show the IQM and 90%
SBCI aggregated per environment.

18

Preprint. Under Review.

E.2 DEEPMIND CONTROL SUITE

dog-stand

1000
500 ﬁ; 500
0 - 0

T T

humanoid-walk

dog-walk dog-trot dog-run humanoid-stand
f 600
500 -/ 400 -% 500 -f
200
0 0 0

humanoid-run

acrobot-swingup

cartpole-balance

cartpole-swingup

750 1000
/ 600 7 pT 750
200
500 400 4
500 - 500
250 100 200 + ‘ 250 -
0 - 0 0 - 0 -I 0
1 I 1 I 1 I I I I 1
cheetah-run finger-spin finger-turn_easy finger-turn_hard fish-swim
1000 A 1000 o 1000 o N
= 750 o f,
T 500 500 500 - 500 500 7
P 250
E
2 0 -I I 0 -I I 0 -I I 0 -I I 0 -I 1
s hopper-hop hopper-stand pendulum-swingup quadruped-run quadruped-walk
o 1000 1000 1000
= 300 750
200 500 500 500 - 500 -
100 250
0 0 - 0 - 0 - 0
1 I 1 I I I I 1
reacher-easy reacher-hard walker-run walker-stand walker-walk
e 1000 E 1000 o
1000 = 750 J 1000
500
500 500 500 500
250
0 'L—r 0 0 0 -I 0 -
1 I 1 I I T I 1
0 0 1 0 1 0 1 0 1
Env Stepe°® Env Step9°® Env Stepo® Env Stepo® Env Step9°®
—— SimbaV2 BRC == BRO = XQC (ours)
= MR.Q

Figure 12: XQC and baseline training curves for each of the 25 DMC tasks. We show the IQM and
90% SBCI aggregated per environment.

19

Preprint. Under Review.

E.3 MYOSUITE

myo-pen-twirl-hard myo-key-turn-hard myo-obj-hold-hard myo-pose-hard
1.0 H 1.0 A 1.0 4 Sewmer=>] 0.05 -
0.5 —W 0.5 0.5 0.00
0.0 44 T r 0.0 73 T r 0.0 T r —0.05 1 T T
myo-reach-hard myo-pen-twirl myo-key-turn myo-obj-hold
o 1.0 1.0 1.0 1.0
Q 0.5 0.5 0.5 0.5
E WY
oy o
% 0.0 7 T r 0.0 T r 0.0 T T 0.0 T T
Z myo-pose myo-reach
S 1.0 A 1.0 A
o
[t
0.5 0.5
0.0 44 T r 0.0 T T
0.0 0.5 1.0 0.0 0.5 1.0
Env Steps<10° Env Steps<10°
—— SimbaV2 BRC —— BRO =—— XQC (ours)
= MR.Q

Figure 13: XQC and baseline training curves for each of the 10 Myo tasks. We show the 1IQM and
90% SBCI aggregated per environment.

E.4 MuJoCo BENCHMARK

HalfCheetah-v4 Hopper-v4 Ant-v4 Walker2d-v4
4000 8000
6000 6000
10000 i 3000
/ 4000 4000
2000 -
5000 4
1000 2000 2000
0 -
=] 0 4 o0 0 -
E T T T T T T T T T T T T
&" Humanoid-v4 HumanoidStandup-v4
= 400000
5 10000 A
Z. 300000
E 200000 -
O 5000 +
[Ser)
100000
0 0
T T T T T T
0.0 0.5 1.0 0.0 0.5 1.0
Env Steps10° Env Steps 10°
~——— SimbaV2 BRC =—— BRO = XQC (ours)
= MR.Q

Figure 14: XQC and baseline training curves for each of the 6 MuJoCo tasks. We show the 1QM and
90% SBCI aggregated per environment.

20

Preprint. Under Review.

F PLASTICITY METRICS

Parameter Norm Gradient Norm ELR Stable Rank Feature Norm
0.0010 400 -
5 2007 0.04
3 ’ m2 - 0.05 350 7 150 1
ﬁ 0.0005 100
g 100 | 300 1
= 0.02
—] 250 50
T T 0 0.0000 . 0.00 T T
- 0.12
200 4 0.06 - 0.0010 200
> 300
g -4
B 0.04)
9 0.0005 r0.10 150
g 100
kS 0.02 200 +
—_— -3
— : 0.0000 4——=—o : 100 ,
200 0.15 A _\/‘ 200 0.003 - \'\f— 5.0 400 7 150 7 /‘
o 0.10 0.002
= - |5 = _ 100
0.05 S Zf E :
T T 0.000 T T 50 T
] 5
200 06 - o200 00107 400 /
250
o - - 4 .
E’ o4 0.005 o
-005 200 -
100 . 350
027 100 [
—— B 150
— 325
T T 0.000 T T T
0.0015
300 [~ 10000 - 200
0.06 300 _
g8 0.0010 \/\w 1000 /\—_
% 200 A 0.04 — I 250
g N 0.0005 - 100 500 -
100 - 0.02 4 % 200 A
T 1 T 0.0000 T T T
0.002 180 -
= 200 - 0.10 + /~'\f 350
£ - 40 - 1.0 160 -
an
s 0.001 300
& _ 0.05 140
2:0 100
. 250
20 } 120 4
T T 0.000 T 0.5 T T
00 05 1.0 00 05 1.0 00 05 1.0 00 05 1.0 00 05 1.0

Environment Steps (1M)
—— XQCLN = XQCMSE = XQCw/oWN == XQC (ours)

Figure 15: Per benchmark plasticity metrics for XQC and architectural ablations.

21

Preprint. Under Review.

G ARCHITECTURE ABLATIONS

dmc_hard dmc_easy hb myo mujoco Aggregated
£ 06 0.8 0g
2 06 ' 1.0 0.6
X 0.4 : 0.4 0.6
O] 0.4
=) 0.4 0.4 0.5
< 0.2 0.2
E 0.2 0.2 0.2
< 0.0 0.0 0.0 0.0 0.0 0.0

BN XQCLN s XQCMSE HEE XQCw/oWN B XQC (ours)

Figure 16: Ablation study confirms the necessity of all three of XQC’s components. We compare
the full XQC algorithm against three variants: one replacing BN with LN (XQC LN), one replacing
the CE loss with an MSE loss (XQC MSE), and one without WN (XQC w/o WN). Each component’s
removal results in a significant performance drop, demonstrating their synergistic contribution.

22

Preprint. Under Review

H XQC UTD SCALING TRAINING CURVES
g dmc_hard dmc_easy hb myo mujoco Aggregated
3 0.8 4 2.0
& oo] 0.8 ====3E4 0.8] 1.00 15 0.8 _:Sg S
> 04 _)@-)(8.461 i 8.461 e=x | 075 "P/'X Lo == || 0.6 1

. 4 . 0.50 O e 04 1
2 02 0.2 - 0.2 VRS 0.25 - 0.5 7 0.2 -
800 m 17T 007717 17 00T 7T 00077717 00777171 00 - 7TT7T7
= 1246810 12 4 6810 12 4 6 810 12 4 6 810 1246810 1246810

UTD UTD UTD UTD UTD UTD
=& BRO SimbaV2 =& XQC

Figure 17: XQC stably improves with increased UTD ratios. We compare IQM AUC for XQC

trained with UTD ratios € {1,2,8,16}. Performance consistently improves with more updates,
showcasing the stability of the learning process.

dmc_hard dmc_easy hb
1.00
£ 0.8 7
2 0.75 0.75
r 0.6
é 0.50 0.50 -
o 0.4 4
Z
S 024 0.25 0.25
o
- 0.00
0.0 4 .00
T T T 0.00 T T T T T T
myo mujoco Aggregated
1.00 4 - 1.5 4
g
g 0.75
o 0.75 4 .
22 1.0
é 0.50 y 0.50 -
Z
E 0.25 0.5 0.25
o
o
0.00 0.0 0.00
T T T T T T T T T
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Env Steps ~ x10° Env Steps ~ x10° Env Steps ~ x10°
UTD 1 Urb2 =—— UTD8 =—— UTDI16

Figure 18: UTD scaling. We present the area under the curve of the IQM Norm Return. This measure
captures fast and stable learning simultaneously.

I THEORETICAL ANALYSIS

The section details the proofs for bounding the gradient norms and Hessian condition numbers.

Lemma 1. For the loss £L(0,D) = (Y, fo(X)), if f is Ly Lipschitz in the L2 norm with respect
to 0, the L2 norm of the gradient has the following upper bound,

IVeL(0,y,@)|l2 < Ly - ||V £l(y, fo())]]2- (6)
Proof. Using the chain rule and the Cauchy-Schwarz inequality,
Vo L8,y 2)ll2 < [IV£l(y, fo(@))ll2 - Ve So(@))ll2 < [[Vsl(y, fo(®))ll2- Ly (D)
O
Proof of Proposition 1. Standard calculus. O

23

Preprint. Under Review.

Proof of Proposition 2. Standard calculus, and then using the difference of two categorical proba-
bility vectors (on a simplex) to bound the largest squared error as 2. O

Proof of Theorem 1. Combine Lemma 1, Proposition 2, and the constrained parameter norm for the
definition of the gradient update in Definition 1 to obtain an upper bound. O

Lemma 2. For a symmetric matrix A € R™*™ with ranked eigenvalues)\‘14 <... < /\,‘?1, then the
eigenvalues of the sum of two such matrices C = A+ B, then \{ + AP < X§ and M2 + 2B > \G.
This result holds for all finite sums.

Proof. Weyl’s theorem applied to the sum of two Hermitian matrices (Bodmann, 2012). O

Proposition 5. The mean squared error loss, l(y,y) = %Hy — 9|13, y € R? has a constant Hessian

and therefore constant Hessian eigenvalues),

v%l(ya:')) = Ida)‘l:d =1. (8)

Proof. Standard calculus. O

Proposition 6. The cross entropy loss, [(y,g) = — Z?:l yq log G4 has the following Hessian and
eigenvalue bounds given the model §y = Softmax(fe(x)) where y; > ¢,

Vil(y, fo(y)) = diag(g) — 9", 0< N\ <1, 9)

as Zf-l:l y; = 1,0 < y; < 1. The Hessian is singular due to the loss of degree-of-freedom in
categorical probabilities.

Proof. Standard calculus. O

For Proposition 3 and 4, we use that the objective’s Hessian can be decomposed using the chain rule,

V3L(0,y.x) = Vofo(x)' Vii(y, fo(x)) Vofe(x)+ Vil(y, fo(x)Vfe(x),
=go(z) Hi(0,,y)go(x) + 91(0, ,y) " Ho(). (10)

Proof for Proposition 3. The first term of Equation 10 has a rank of 1 as it’s an outer product,
and g(0,x) " g(0,x) = ||g|]3 < L%, so its eigenvalues \; € [O,L%]. Using Assumption 1, the
eigenvalues of the second term are bounded by [—m|g|max A, 7|g|maxA,]. As the gradient ele-
ments cannot be upper bounded (i.e., Proposition 1), the Hessian of the loss has eigenvalue range
(112 — 2m|g|max M, , 112 4 2m|g|max AL,], which leads to an unbounded condition number due to both
the largest eigenvalue — oo and the the case that the smallest eigenvalue is 0 when adding eigenval-
ues from both terms due to Weyl’s theorem (Lemma 2). O

Proof for Proposition 4. The first term in Equation 10 has eigenvalue bounds [0, L?E] (see previous
proof). It’s positive semi-definite so we know 0 is a lower bound on the eigenvaluse. Since the max
eigenvalue is non-zero, we know the Frobenius norm of g is greater or equal to than the trace of
the outer product, and the trace is also the sum of eigenvalues, so we can bound the (largest) non-
zero eigenvalue by L?c. The second term in Equation 10 has range \; € [—2\/ , 2)\/], as they are
bounded by [— Y, [¢;|ANZ, 3", |g;| M) and 0 > |g;| > 1, ", g; = 0. With Wey!’s theorem (Lemma
2) we have A € [p? —20H 2 4201 4 L%] If 4% = 2\ 4 ¢, then we have \ € [e, 4\ + e+ L?],
SO

AN, + L5 + e
< ™ 7

R
€

which concludes the proof. Unsurprisingly, the upper bound is only finite if the regularization en-
sures positive definiteness of the objective’s Hessian. O

24

	Introduction
	Preliminaries
	The Optimization Landscapes of the Bellman error
	An empirical investigation of critic optimization.
	Why does cross-entropy outperform the squared error?

	XQC: A Simple & Well-conditioned Actor-Critic Architecture
	Experiments
	Sample efficiency results
	Plasticity analysis
	Parameter and compute effciency
	XQC scaling behaviour and architecture ablations

	Related Work
	Conclusion & Future Work
	Hyperparameters
	Environment aggregation details
	Baselines
	All Training Curves: Reinforcement Learning From Vision-based DMC Environments
	All Training Curves: Reinforcement Learning From Proprioception
	HumanoidBench
	DeepMind Control Suite
	MyoSuite
	MuJoCo Benchmark

	Plasticity Metrics
	Architecture ablations
	XQC UTD Scaling Training Curves
	Theoretical analysis

