Datenbank-Spektrum (2025) 25:39-50
https://doi.org/10.1007/s13222-025-00495-8

SCHWERPUNKTBEITRAG

®

Check for
updates

Towards High-performance and Trusted Cloud DBMSs

Adrian Lutsch'® - Muhammad El-Hindi' (® - Zsolt Istvan'(® - Carsten Binnig'2

Received: 15 October 2024 / Accepted: 20 January 2025 / Published online: 7 March 2025
© The Author(s) 2025

Abstract

Cloud Database Management Systems (DBMSs), such as cloud-native analytical or serverless DBs, are experiencing rapid
growth in adoption due to their flexibility and scalability. However, recent incidents with cloud providers show that the
traditional model of a trusted provider/admin no longer applies to protect the customers’ data. One promising solution
that can prevent a sole reliance on cloud and database service providers are trusted execution environments (TEEs). While
past TEEs had many limitations and caused high performance overheads, recent work shows that the support of TEEs
like Intel SGX for DBMS workloads improved significantly. Thus, it is time to actively integrate TEE technologies into
cloud DBMSs to achieve better security that does not rely on the cloud provider. In this paper, we discuss directions for
how recent TEEs can be used to build efficient and secure databases. We summarize the recent results on Intel SGX’s
performance for DBMS workloads and lay out the remaining research challenges that must be addressed to achieve optimal

performance and thus minimize the performance cost for additional security.

Keywords Databases - Security - Trusted Execution Environments - Intel SGX

1 Introduction

Trust Model of Cloud Databases Cloud Database Manage-
ment Systems (DBMSs), such as cloud-native analytical or
serverless Databases (DB)s, are experiencing rapid growth
in adoption due to their flexibility and scalability [1]. This
new class of DBMSs places the responsibility for data secu-
rity on cloud providers, fundamentally altering traditional
trust models where infrastructure providers and company
administrators were considered trusted entities. Incidents
like Microsoft’s loss of an Azure master key [2] and reg-
ulations such as the CLOUD Act [3] forcing providers
to grant government access to customer data have shown
that the traditional model of a trusted provider/admin is no
longer applicable. To address these trust challenges, new
approaches to privacy and confidentiality for cloud DBMSs
are required.

P4 Adrian Lutsch
adrian.lutsch@cs.tu-darmstadt.de

Systems Group, Technical University of Darmstadt,
Darmstadt, Germany

DFKI, German Research Center for Artificial Intelligence,
Darmstadt, Germany

Trusted Execution Environments One promising security
solution that can prevent a sole reliance on cloud and
database service providers are Trusted Execution Environ-
ments (TEEs). They are meant to create isolated processing
environments where data can be processed securely with-
out access by third parties. TEEs generally aim to provide
data confidentiality and integrity, code and execution in-
tegrity, and attestation. Attestation is the act of proving
the identity and integrity of the TEE and the code within
it, also referred to as Trusted Computing Base (TCB).
Compared to alternative approaches, such as secure multi-
party computation and homomorphic encryption, TEEs can
provide these security guarantees while achieving the same
or nearly the same performance as traditional processing.

Intel SGXv1 and SGXv2 The first commercially available
TEE built into general-purpose CPUs was Intel’s Software
Guard Extensions (SGX). It protects a process against other
processes, the Operating System (OS), the Hypervisor, and
hardware attacks [4]. Thus, it can provide isolation even in
cloud settings or against a malicious OS. However, the first
version of SGX was created with client applications and
not with server-grade DBMSs in mind. It supported only
128 MB of secure enclave memory per system, limiting the
in-memory buffer sizes and thus leading to significant per-
formance limitations even for moderately sized databases.

@ Springer

https://doi.org/10.1007/s13222-025-00495-8
http://crossmark.crossref.org/dialog/?doi=10.1007/s13222-025-00495-8&domain=pdf
http://orcid.org/0009-0008-7889-8152
http://orcid.org/0000-0001-5295-1316
http://orcid.org/0000-0002-4127-8573
http://orcid.org/0000-0002-2744-7836

40

Datenbank-Spektrum (2025) 25:39-50

Enclave-native Enclave DBMS

DBMS using Gramine
DBMS Enclave
Enclave Syscalls

LibOS

ecaLts 1| ocaLLs| | EcaLLs) ocatLs
Host Application Platform Adaptation Layer |

[}
| Kernel

Fig.1 Secure DBMS architecture options. Database engineers can ei-
ther split their DBMS into a host application and an enclave, defining
ECALLSs and OCALLs required for communication (left), or they can
rely on a 1ibOS like Gramine to emulate the kernel inside the enclave
and implement the enclave interface (right)

This changed with the second, server-grade generation,
which we call SGXv2. It is available on server-grade Xeon
processors and supports up to 512GB of secure memory
per socket [5]. However, the high isolation guarantees still
introduce two significant hurdles to adoption: (1) reduced
performance due to security mechanisms, such as context
switches and memory encryption, (2) necessary architec-
tural changes to split an application into a trusted enclave
and an untrusted host process.

Implementation Choices To secure DBMSs with Intel
SGX, there are two fundamental architecture options de-
picted in Fig. 1. Developers can split their database into
trusted and untrusted parts and implement the interface
between them, or they can leverage an adaptation layer
like the Library Operating System (libOS) Gramine [6].
The first option enables fine-grained architecture control
and performance optimizations. However, it requires major
rewrites of existing DBMSs because direct interaction with
the untrusted OS through syscalls is not allowed inside
SGX enclaves, making it necessary to handle operations
like storage access and networking outside the TEE. The
second option lowers the engineering overhead at the cost of
a larger trusted computing base and a reduced optimization
potential by making the enclave environment transparent to
the DBMS. The reduced optimization potential raises the
question of whether a generic solution, such as the 1ibOS,
achieves acceptable trade-offs in terms of performance.

Contributions This paper compiles the current knowledge
on building high-performance DBMSs along these two ar-
chitectural choices and presents interesting findings for both
directions. Furthermore, this paper outlines directions for
future work to build high-performance enclave DBMSs.
After introducing necessary background and summarizing
related work in Sect. 2 and 3, our main contributions are:

@ Springer

1. We summarize the most important results of our two
recent papers on benchmarking Intel SGXv2 for DBMSs
[7, 8] and discuss strategies to reduce data process-
ing overhead in SGX enclaves, such as low-level code
changes to circumvent the overhead caused by side chan-
nel mitigations. (Sect. 4)

2. We analyze the overhead of running the in-memory
DBMS Hyrise in an SGX enclave using the libOS
Gramine, and find that optimizations are required for
both the DBMS and the 1ibOS to achieve optimal perfor-
mance. (Sect. 5)

3. From the previous results, we derive open research and
engineering challenges for high-performance trusted
DBMSs in Intel SGX, such as developing an efficient
query execution engine for SGXv2 and co-optimizing
1ibOSes and DBMSs. (Sect. 6)

2 Background

Intel SGX was initially developed for client hardware and
has seen two major changes since its inception. This section
reviews the basics of Intel’s SGX technology and discusses
the most important changes introduced with the SGX2 in-
struction set extension [9] and with server-grade SGX [5].
Additionally, we review the basic concepts of the Gramine
1libOS.

SGX Basics Intel SGX protects the integrity and confiden-
tiality of user data and code by shielding it from the OS, the
hypervisor, and attacks on the memory bus. These guaran-
tees are achieved by 3 main components: (1) SGX creates
a protected memory region in RAM, called Processor Re-
served Memory (PRM), which can only be accessed via
special CPU instructions [4, 10] and is not accessible to
the operating system and its administrators. Inside this pro-
tected memory region, SGX maintains the Enclave Page
Cache (EPC) which stores the trusted code and data of en-
claves within encrypted 4 kB memory pages. These pages
are only decrypted when loaded into the CPU cache for
processing [4, 10]. Initially, the PRM size was limited to
128 MB. (2) The untrusted OS can only create and destroy
enclaves and manage EPC by evicting encrypted enclave
pages via a special CPU instruction. It cannot otherwise
access enclave pages after enclave creation. The correct
creation of an enclave can be checked using remote at-
testation [4, 10]. (3) To execute enclave code and access
its data, a thread must call special CPU instructions that
cause a context switch to enclave mode executing (secure)
user code. SGX guarantees that only code from within the
same enclave has access to the EPC pages of that enclave
by adding security checks to the address translation. If the
CPU is not in enclave mode, it will not translate enclave

Datenbank-Spektrum (2025) 25:39-50

41

addresses, which protects the sensitive user code & data
within the enclave. When the CPU leaves enclave mode,
it securely stores the enclave state in EPC and clears all
security-sensitive caches, especially the TLB [4, 10].

Dynamic Enclaves Extension Originally, the memory size
of SGX enclaves, the page access permissions, and the
maximum number of available thread contexts was fixed
at compile time. The SGX2 instruction set extension intro-
duced instructions that allow changing these characteristics
at runtime. This enables more dynamic enclaves that adapt
to the workload and use only as many resources as they
need [9].

SGXv2—Server-grade Enclaves The capacity limitations of
the PRM and the high cost of secure paging made Intel
SGXvl impractical for data-intensive applications such as
DBMSs [7, 11, 12]. With the Ice Lake CPU architecture, In-
tel introduced server-grade SGX (SGXv2), which increases
the supported PRM size to 512 GB per socket. This change
allows DBMSs to hold large data sets fully in the EPC
and avoids expensive enclave paging. This was achieved
by replacing the previously used SGX Memory Encryption
Engine with Total Memory Encryption—Multi-Key (TME-
MK) [5]. In addition to changing the encryption hardware,
SGXv2 replaced the integrity protection and freshness tree
and the associated checks when loading encrypted enclave
data into the cache with a special bit in ECC RAM [5].
Finally, enclaves can now scale across multiple sockets,
increasing the number of CPU cores and the amount of
memory available even further [5]. To access EPC pages on
a remote socket, SGXv2 introduces the UPI Crypto Engine
(UCE) that encrypts data before transferring it over Ultra
Path Interconnect (UPI) [5]. In summary, these changes re-
move the most severe bottlenecks for data processing in
enclaves and justify a reevaluation of the technology for
data processing.

Developing SGX Enclaves When developing an application
with Intel SGX, developers must split it into a trusted
part—the enclave—and an untrusted part—the host appli-
cation (cf. Fig. 1, left part). The enclave is responsible for
executing security-sensitive operations over private data.
The host application is required to communicate with the
OS and other applications since no system calls to the (un-
trusted) kernel are possible inside the enclave. The interface
between both parts is implemented as RPCs with so-called
enclave calls (ECALLSs) and outside calls (OCALLSs).

Gramine Library Operating System Gramine, previously
Graphene-SGX [13], enables running native Linux appli-
cations inside SGX enclaves without changes by emulating
the Linux ABI. As of version 1.7, Gramine supports ap-

proximately 170 of ~360 Linux system calls, parts of the
/dev, /proc, and /sys pseudo file systems, and, overall,
most features required for running single applications in
enclaves [14]. System calls are either routed to the libOS
as library calls by using a patched libc implementation or
by trapping errors inside the enclave [14]. Some system
calls are implemented purely inside the libOS and thus
do not require OCALLs to the underlying OS [13]. One
example is the mmap call for allocating memory in fixed-
size enclaves. Other system calls like file and socket access
require cooperation with the untrusted OS. To implement
them, Gramine forwards accesses outside of the enclave
using OCALLs. If possible, the system implements ad-
ditional security checks for these forwarded system calls
[13]. For example, the libOS can transparently encrypt files
and protect their integrity [15].

3 State of the Art

This section summarizes the state of the art in SGX-native
databases for SGXv1, which came with significant perfor-
mance overheads. The following sections discuss the design
of high-performance and secure DBMSs for SGXv2. There
are three areas of important previous work in the context
of SGXvl: Secure DBMS using SGXv1, investigations of
query execution performance in SGXv1, and work on run-
ning full DBMSs in SGX enclaves using adaptation layers.

DBMS Architectures for SGXv1 Several proposals have been
made for secure DBMSs using the first generation of SGX.
Because of the limited enclave capacity and the need to
reduce the TCB, the systems differ in the components they
secure within the enclave. The key value stores SPEICHER
[16], ShieldStore [17], and the storage engine Enclage [18]
aim to run all components entirely within the protected
enclave. In contrast, the authors of StealthDB [19], Azure
SQL Database Always Encrypted [20], and EncDBDB [21]
minimize the part of the database that is protected inside an
enclave by only evaluating simple query predicates over en-
crypted columns inside the SGX enclave. EnclaveDB [11]
executes queries inside the enclave but keeps query pars-
ing and optimization as well as client connections outside.
Most of the proposed systems concentrate on OLTP scenar-
ios [11, 16-20, 22] and the latency effects of enclave transi-
tions, integrity protection, and encryption. We include a dis-
cussion of their main insights in Sect. 4.2. Only EncDBDB
[21] investigated an OLAP scenario and the performance
effect of in-enclave execution on range queries over dictio-
nary-encoded data [21].

Query Execution Performance Maliszewski et al. [12] in-
vestigate the performance of join algorithms in SGXv1 en-

@ Springer

42

Datenbank-Spektrum (2025) 25:39-50

claves. They come to the conclusion that partitioned joins
like the radix join perform best given the small EPC sizes
of SGXv1 enclaves. Still, the random access required for
radix partitioning of data sizes larger than the EPC reduces
performance by orders of magnitude [12]. Thus, they devel-
oped CrkJoin, which uses partitioning with linear accesses
to reduce the EPC paging costs [23]. However, in SGXv2
enclaves with enough EPC, their linear partitioning cannot
compete with classical radix partitioning [8].

Running Full DBMSsin SGX Enclaves The authors of SCONE,
an adaptation layer to execute containerized applications
in SGX enclaves [24], investigated the performance of
running memcached and Redis inside an enclave using
their framework. Redis achieved up to 61% in-enclave per-
formance, and memcached achieved higher performance
on top of SCONE because of a more efficient network
encryption implementation. The authors also report that
their asynchronous enclave calls improve the performance
of both key-value stores by reducing the number of en-
clave transitions [24]. The same insight was reported by
Orenbach et al. [25] for their extension of Gramine [25].

Concurrently with our work, Battiston et al. [26] did ini-
tial experiments on running DuckDB inside an SGXv2 en-
clave using Gramine [26]. Their investigation concentrated
on storage encryption performance and memory manage-
ment inside Gramine. They report a 2x overhead due to
query execution overheads inside the enclave [26] and ob-
serve a bad performance when using jemalloc as their mem-
ory allocator. In this paper, we conduct a more in-depth
investigation and explain the sources of query execution
overheads. We chose the in-memory DBMS Hyrise for our
experiments because pure in-memory processing isolates
the performance effects of query processing and data ac-
cess. Additionally, we investigate the memory management
issues and the interaction between jemalloc and Gramine
in more detail to determine the impact of different SGX
aspects on query execution performance.

4 Enclave-Native DBMSs

This section compiles the important performance effects
of Intel SGXv2 enclaves for designing high-performance
and secure DBMSs based on [7, 8]. We split our analy-
sis into OLAP and OLTP workloads because the differ-
ent workloads stress different performance issues of Intel
SGXv2, such as deactivated write position speculation in
SGX (OLAP) and increased disk access latencies due to
costly enclave transitions (OLTP). Based on these findings,
we discuss how the design of core algorithms for executing
these workloads needs to change.

@ Springer

Setup For all experiments, we used a server containing two
Intel Ice Lake Xeon Gold 6326 CPUs with 256 GB DDR4
3200 ECC memory and 64 GB PRM per socket. The CPU
has 16 cores with 48 kB/1.25 MB L1d/L2 cache per core
and 24 MB L3 cache per socket. The server runs Ubuntu
22.04 with kernel 6.8, SGX SDK version 2.24, and we
compile all software with GCC 12.3 using the optimization
flags -O3 -march=native. The source code repositories con-
taining all experiment configurations and execution scripts
are available at [27] and [28].

4.1 Analyzing OLAP

The performance of OLAP databases, such as cloud data
warehouses, depends strongly on the parallel and efficient
execution of analytical queries that aggregate large volumes
of data. Thus, efficient scans and joins that employ intra-
operator parallelism are paramount. In the following, we
review the performance of the scan and join operators and
how they are affected by the memory encryption and side
channel mitigation inside SGXv2 enclaves based on [8].
We also discuss aggregation operator performance, as well
as memory allocation and Non-Uniform Memory Access
(NUMA) in enclaves, which are known as important per-
formance factors outside enclaves.

Scans in SGXv2 With the redesigned memory encryption
and the high amount of secure memory available in SGXv2,
it was unclear if memory encryption could satisfy the
throughput needs of fast multi-threaded column scan al-
gorithms employed in modern DBMSs, such as the SIMD
scan [29]. Thus, we investigated the performance of run-
ning such algorithms inside SGXv2 enclaves and compared
it to running the same algorithm over the same data outside
enclaves in [8]. The results are summarized in Fig. 2.

The experiment shows that scans over encrypted enclave
memory can achieve nearly the same throughput as scans
over non-encrypted memory, even if all cores execute the
scan. Thus, we conclude that memory encryption and de-

mmm Plain CPU mwm SGX

Scan Throughput
in GiB/s
/
/]
i

Threads

Fig.2 Read throughput of a multi-threaded columnar range scan us-
ing SIMD instructions over 16 GB of byte-sized input values returning
a boolean bit vector. The read throughput of running the scan inside the
enclave reading encrypted enclave data is only 3% slower than outside
the enclave and reaches the memory throughput limit. Source: [8]

Datenbank-Spektrum (2025) 25:39-50

43

cryption happen at a line rate of the memory interface. More
experiments in [8] showed that this does not change with
the selectivity and the write rate of the scan (for writing
matching tuple indexes).

Joins in SGXv2 Joins are critical for the performance of
OLAP query engines. Thus, we investigated their perfor-
mance in SGXv2 enclaves and compared it to the perfor-
mance of the same join implementations on the plain CPU
without SGX in [8]. Our experiments revealed two main
sources of overhead that mainly influence hash-based joins.

Cache Misses Expensive last-level cache misses due to en-
cryption and TLB integrity checks are a performance prob-
lem already known in SGXv1 [12]. Micro-benchmarks in
[7] and join performance benchmarks in [8] revealed that
this performance issue persists with SGXv2. Especially
non-partitioned hash joins with hash tables larger than the
last-level cache incur last-level cache misses and thus ran-
dom main memory accesses with high frequency. Thus,
increased memory access latencies in SGX significantly
reduce the in-enclave performance compared to the plain
CPU performance [8]. To show this effect, we ran a paral-
lel hash join with 16 threads over 3 input table sizes. The
hash table is built on the smaller input table. We compare
the join throughput inside an SGX enclave with the join
throughput on the plain CPU. The results are depicted on
the left side of Fig. 3. For the small table size, the hash join
is nearly as fast inside the enclave as outside because the
whole hash table fits into the CPU cache. For the larger-
than-cache table sizes, the relative in-enclave performance
is significantly reduced because the hash table does not fit
into the cache, and resolving cache misses is more expen-
sive in SGX enclaves.

SSB Side-channel Mitigation In addition to slower cache
misses, the in-depth join performance investigation in [§]

I Plain CPU mwm SGX
34 1.5 1

X
i \ 1.0
il N
1

0.5 4

0- 0.0 -
1400 100|400 4k|4k
Table Size (MB)

Plain +Mit +Opt SGX +Opt
Setting

Throughput in 10° rows/s

Fig.3 Left: Hash join throughput for increasing input table sizes. More
expensive cache misses cause higher throughput reduction inside the
enclave. Right: The SSB mitigation reduces radix join performance
and the optimization successfully counteracts the mitigation slowdown
outside and inside SGX. Data source: [8]

revealed that the mitigation for the Speculative Store By-
pass (SSB) side-channel attack, which is enforced inside
SGX enclaves and optional outside [30], can significantly
reduce the performance of random access algorithms. All
algorithms that determine store positions from input data,
such as histogram calculation and hash table creation, are
affected.

To avoid this issue, loads and stores in an algorithm must
be batched or vectorized, reducing the algorithm’s reliance
on speculation. A guide on transforming code to achieve
the split is available in [8]. The right side of Fig. 3 sum-
marizes the performance results of the join optimizations
introduced in [8]. The workload consisted of a radix par-
titioning hash join using a 100 MB and a 400 MB table
with a 4-byte key and a 4-byte payload each. The join im-
plementation uses two partitioning phases and no software-
managed buffers with non-temporal stores. Due to the parti-
tioning, this join is cache-friendly. Plain CPU is the baseline
performance outside of the enclave without the mitigation.
Activating the SSB mitigation (+Mit) decreases join perfor-
mance by up to 50%. The optimized join implementation
(+Opt) is faster under the mitigation than the non-optimized
version without mitigation. The SGX setting shows the per-
formance of executing the join inside the enclave without
optimization. Similarly to outside the enclave, performance
improves significantly when using the optimized join imple-
mentation inside the SGX enclave (SGX+Opt.). Using the
optimization, the in-enclave join throughput reaches more
than 90% of the optimized plain CPU baseline.

Aggregation in SGXv2 Aggregation is the third important
operator for the performance of OLAP DBMSs. Given the
previous results, it can be expected that hash aggregations
behave similarly to the hash join discussed above. If the
hash table fits into the CPU cache, the main performance
bottleneck is the SSB mitigation, and vectorization of mem-
ory reads and writes can be applied to close the perfor-
mance gap to normal execution. If the hash table does not fit
into the cache, the higher latency of random main memory
accesses will likely decrease performance further. Hyrise
TPC-H query performance insights support these assump-
tions (cf. Sect. 5).

Memory Allocation Memory allocation in enclaves differs
from the allocation for normal processes. Initially, Intel
SGX enclaves had a fixed size, and all memory was pre-al-
located during enclave creation. Thus, enclave creation time
is slow, but every call to malloc inside it is fast because
it only returns already allocated and pre-faulted enclave
memory without OS interaction. With the SGX2 instruction
set and the necessary kernel and SDK support, it became
possible to dynamically increase and decrease an enclave’s
size [9]. This is called Enclave Dynamic Memory Manage-

@ Springer

44

Datenbank-Spektrum (2025) 25:39-50

ment (EDMM) and can be managed transparently by the
SGX SDK malloc implementation or explicitly by the en-
clave developer. However, experiments in [8] showed that
EDMM significantly decreases the performance of query
execution if memory allocation during query execution re-
quires increasing the enclave size because enclave malloc
requires multiple expensive instructions [9]. Thus, memory
allocation inside enclaves can be both slower (if EDMM is
required) and faster (if pages are already allocated to the
enclave) than in the native environment.

NUMA The availability of Intel SGX on multi-socket server
hardware and the option to use the PRM of multiple sock-
ets for one enclave are new features of SGXv2. Thus, en-
claves can now experience Non-Uniform Memory Access
(NUMA) which increases the latency of accessing memory
connected to another socket. Experiments in [7, 8] showed
that cross-NUMA memory accesses are more expensive in
SGX enclaves because of the Ultra Path Interconnect (UPI)
encryption: Latency of random remote memory accesses is
increased by 46% in SGX enclaves [7], column scans on
a remote NUMA region are 4 to 23% slower [8], and joins
executed on cores of two sockets while data is only stored in
the memory of one socket can be slower than only using the
cores of the socket where the data is stored [8]. Although an
enclave can use memory on multiple sockets, the location
of memory allocations is transparent to enclaves, and no
APIs for memory allocation in a specific NUMA region are
available within enclaves. This is because allocating physi-
cal memory to enclaves is a task of the untrusted OS. This
prevents optimizations for NUMA in SGX without trusting
the OS.

4.2 Analyzing OLTP

OLTP databases are characterized by many short-running
lookup, update, and insert transactions. Thus, their perfor-
mance depends on low-latency disk and network access. To
optimize query performance, OLTP databases use indexes
like B-Trees. In the following, we first review important ar-
chitecture effects directly impacting OLTP performance by
increasing transaction latency and then summarize insights
on B-Tree performance in an SGXv2 enclave.

Enclave Transitions To execute enclave code, the CPU must
switch from normal mode to enclave mode. When returning
from the enclave or when the enclave must access operating
system services or hardware, the CPU mode must switch
back. Thus, a write transaction in an OLTP database re-
quires at least 3 transitions: one to copy the transaction
into the enclave, one to write the updates to disk, and one
to return an acknowledgment to the client via the network
only accessible outside the enclave. These enclave transi-

@ Springer

tions are expensive because they must enforce the SGX se-
curity guarantees. This requires flushing caches, especially
the TLB. Additionally, copying function call parameters
can prolong effective transition time. This problem is well-
known from SGXv1 [24, 25, 31, 32] and there are 3 main
solutions for the issue: (1) Reduce the number of enclave
transitions, for example, by batching or by reducing reliance
on the OS. (2) Reduce the size of copied data during en-
clave transitions, for example, by transferring only pointers
to normal system memory [31]. (3) Use so-called switchless
enclave calls [24, 25, 32], that replace enclave transitions
with queues containing calls and data that are polled by
worker threads inside and outside of the enclave. All of
these approaches influence the latency of enclave calls, but
especially the second and third approaches also affect secu-
rity guarantees and place additional responsibility onto the
enclave developers. Additionally, the queueing approach of
switchless enclave calls requires developers to define how
many threads run inside the enclave and outside to service
the queues.

Synchronization Database systems must latch internal data
structures to prevent corruption while concurrently process-
ing transactions. In normal DBMSs, this kind of thread syn-
chronization is often supported by the OS to optimize CPU
utilization and prevent scheduling issues. Waiting threads
are sent to sleep via a system call and can be woken up by
other threads, for example, when they unlock a mutex. In
SGX enclaves, this design requires threads to leave the en-
clave before executing the required syscalls. The issue with
this approach is that enclave transitions are up to two orders
of magnitude more expensive than syscalls [31]. In the case
of contended latches, as they can occur in query execution
algorithms or when latching in-memory data structures, the
cost of enclave transitions can thus dominate the whole al-
gorithm runtime [8, 12]. To solve this problem, enclave de-
velopers should prefer lock-free designs, atomics, or spin-
locks over the SGX SDK mutex, which is implemented
with the design described above, for short critical sections
[8, 23]. For critical sections that involve enclave transitions
and are thus longer than an enclave transition by design,
the SGX SDK mutex might still be a good fit.

Storage Since OS and storage HW are untrusted in the
SGX security model, storing databases on disks requires
encryption and integrity protection. In [7], we investigated
the performance of the two APIs in the SGX SDK that
can be used for data sealing—encryption with keys that are
either bound to the enclave identity or the enclave signer
identity. The first option is the sgx_seal_data function. It en-
crypts and protects the integrity of a buffer with AES GCM
and writes the output to another buffer. The enclave devel-
oper is then responsible for copying the encrypted data out

Datenbank-Spektrum (2025) 25:39-50

45

of the enclave with an OCALL and saving it to a file. The
integrity protection of this encryption method only applies
to the data in the buffer. Thus, a file consisting of multiple
encrypted blocks is not protected against switching blocks
out or selectively reverting information in some blocks.

The second API for file encryption in the SGX SDK is
the “SGX Protected File System Library”. It provides en-
clave developers with a similar file API to the standard libc
file API, including functions like sgx_fwrite and sgx_fread.
In contrast to the sgx_seal_data function, sgx_fwrite en-
crypts the file in blocks and protects the whole file integrity
using a Merkel hash tree. This protects the file against block
swapping and selective rollback attacks. Furthermore, the
Protected File System Library transparently encrypts and
stores blocks in files. The enclave developer is not involved
in copying the encrypted data out of the enclave and to
the file. Finally, the library enables file recovery after en-
clave crashes by writing a recovery file before writing to
the actual file.

1/0 Experiment To investigate the performance costs asso-
ciated with the two file I/O approaches presented above,
we determined the number of CPU cycles per byte stored
on disk when using the secure file approaches and com-
pared the result with the fwrite and fflush functions in
the standard C library [7]. The results are depicted in
Fig. 4. It shows that all methods of writing files im-
prove in terms of cycles per byte when batching large
writes. Furthermore, it shows that the additional protec-
tions of the SGX Protected File System Library have
significant costs compared to the sgx_seal_data+OCALL
approach. The overhead is especially large for small writes
of 2 bytes, where sgx_fwrite+sgx_fflush is 20 times slower
than sgx_seal_data+OCALL. This can be attributed to the
large overhead of writing a full 4 kB page plus the metadata
page first to a recovery file and then to the protected file.
Although the overhead decreases with write size, even for

9 —e—untrusted —x--sgx_seal_data+OCALL --=-- sgx_fwrite

>

i) 16k 1 * ..."I._.

> P, Tkl

O 512 o ®~e ke, e

c *<e %, S,

= Sogg. MSx.. tow,

4[7') 16 — \.\.\ x\x - " Beorgormeegee g0

S ;- P S
T T T T

= 2 32 1kB 32kB 1MB

I/O Size

Fig.4 1/O cost in cycles/byte of the two trusted I/O variants (sgx_fwrite
and sgx_seal_data+OCALL) vs. untrusted I/O (fwrite). Source: [7]

large batches of 8 MB per write, sgx_fwrite+sgx_fflush is
still 4 times slower than untrusted fwrite+fflush.

These results exemplify that different security features,
such as swap protection and crash resistance, can incur
high costs for enclave-native DBMSs. Giving up on some
of these guarantees or implementing them by other means
inside the DBMS (e.g., page IDs and checksums against
swapping and corruption of pages) can speed up transac-
tion processing by orders of magnitude.

B-Trees in SGXv2 The performance of indexes like B-Trees
is especially important for OLTP workloads with high in-
sert, update, and lookup frequencies. Thus, [7] investigated
the performance of in-memory B-Tree inserts, updates, and
lookups in SGXv2 enclaves relative to the plain CPU. Since
B-Trees combine linear access patterns inside of nodes with
random lookups of node pointers, they combine patterns
with low and high overhead in one data structure and work-
load (cf. Sect. 4.1). To determine the slowdown caused by
using B-Trees in SGXv2 enclaves, we ran various YCSB-
like workloads with different read and write rates using our
implementation of an in-memory B-Tree with 4 kB nodes.
We measured the throughput of the workload running inside
the enclave relative to the same workload running outside
the enclave (right, green bars). For this paper, we addition-
ally ran the workloads outside the enclave with the SSB
mitigation (cf. Sect. 4.1) enabled (left, red bars). The re-
sults are depicted in Fig. 5. They show that the mitigation
does not negatively affect the B-tree performance and that
relative in-enclave performance decreases with higher read
rates. We attribute this to the fact that a considerable part of
the runtime for write-heavy workloads is spent on moving
data inside nodes to make space for the new keys and then
copying the new value. This makes the write-heavy work-
load up to 2.5x slower in terms of operations per second
than the pure read workload. Since copy performance in-
side SGX enclaves is the same as outside and dominates the

_02) === Mitigation B SGX

% S 1.00

<3 0.75 N
S £ 050 \
%r_o]
£5 0% N
€% 0.00

Joj 5%R 50%R 95%R 100%R

95%W 50%W 5%W
Workload

Fig.5 Throughput of four B-Tree read & update workloads with the
SSB mitigation enabled and inside an SGXv2 enclave, relative to the
plain CPU throughput. The mitigation does not influence the per-
formance. Costly cache misses cause up to 25% slowdown in SGX.
Source: [7]

@ Springer

46

Datenbank-Spektrum (2025) 25:39-50

runtime, it hides the random access overheads. In contrast,
the performance of the read-heavy workloads is limited by
random memory access for tree traversal, revealing the ran-
dom access overheads inside the enclave.

Summary Previous investigations revealed multiple ef-
fects that influence the performance of DBMSs in SGXv2.
For OLAP DBMSs, especially expensive cache misses
and the SSB mitigation require changes to query execu-
tion algorithms. Enclave dynamic memory management
must be managed explicitly if required, and optimizations
for NUMA require trust in the OS. For OLTP DBMSs,
slow enclave transitions can become the bottleneck of
query processing. To achieve optimal performance under
this limitation, implementations of thread synchronization,
storage, and networking must be adapted. The performance
of an in-memory B-Tree index inside an SGXv2 enclave
is reduced by expensive cache misses and random memory
access, mostly for fast, read-heavy workloads.

5 Full DBMSs in SGXv2

As introduced previously, an enclave-native DBMS requires
major rewrites of core parts of existing DBMSs because cer-
tain operations like storage access and network need to be
handled outside the TEE in the untrusted host application.
Another option is to use a library OS and run the full DBMS
unmodified in the enclave. For this option, the question re-
mains how the library OS abstraction influences the overall
DBMS performance. To answer this question, we ran the
Hyrise DBMS inside an SGXv2 enclave using the Gramine
Library Operating System [6]. The code and results can be
found on Github [33].

Hyrise DBMS We chose Hyrise [34] as an open source
columnar in-memory DBMS. We used the included TPC-H
benchmark runner to determine query latency and through-
put inside the enclave and outside and compare these
settings. Hyrise supports inter-query parallelism, where
different queries can be executed concurrently. Thus,
adding more cores and concurrent clients increases the
throughput in queries per second but does not reduce query
latency. To understand the performance overheads, we thus
used throughput in queries per second as the performance
measure for our experiments.

Out-of-the-box Performance In the first experiment, we
compiled both Gramine and Hyrise from their source and
executed the TPC-H benchmark using 8 cores and 8 clients
scheduling queries. We chose this 50:50 core split to pre-
vent NUMA effects and have sufficient free cores on the
same NUMA node for managing libOS threads. Each query

@ Springer

was repeatedly executed for 10s. Each experiment was re-
peated 10 times and we report the arithmetic mean. Since
the benchmark failed with out-of-memory errors at scale
factor 10, we reduced the scale factor to 5. The results are
depicted in Fig. 6. They show that, on average, the execu-
tion inside the enclave reaches only 4% of the throughput
outside of the enclave without Gramine.

Reasons for Performance Overhead We investigated the is-
sue using the perf record functionality integrated into debug
builds of Gramine. This feature stores the current call stack
on every asynchronous enclave exit, effectively sampling
which functions are executed inside the enclave. Figure 7
summarizes the runtime percentage estimations from the
sampling. As shown, 60 to 70% of the application runtime
is spent in the libOS, of which most of the time is spent
in memory management functions (not shown in the fig-
ure). This hints at a highly problematic interaction between
Hyrise and Gramine.

Analyzing the Root Cause The source of the issue is a very
high amount of mmap and munmap calls issued by the
jemalloc [35] allocator used by Hyrise. The high number of
(de-)allocations trigger a performance bug in the Gramine
memory management implementation. We identified and
fixed this bug. This significantly improves the performance

0.15

0.10

0.05 -

Relative Throughput
in Gramine SGX

0.00

DOT—ANMITOONO

T T T

()]
leleleleletelstelsle]
Query

1

— N <O © N O
clelelelelclelele)

Fig.6 Relative throughput of running TPC-H queries with Hyrise+
Gramine inside an SGX enclave compared to native execution without
Gramine. Queries are repeatedly issued for 10s by 8 clients in parallel.
TPC-H scale factor 5

100%

o 80%
ol
ES 60% N
=)
S O 40% A
¥ o 8

o 20% - N

0% - =+ ~+
LibOS Hyrise libc others
Library

Fig.7 Part of benchmark runtime spent per library. 97% of the time
spent in the 1ibOS is spent in the memory management subsystem

Datenbank-Spektrum (2025) 25:39-50

47

at TPC-H scale factor 5. However, it is still not possible to
run higher scale factors.

As such, we investigated the issue further and found that
larger TPC-H scale factors can be executed inside Gramine
without running out of memory when using the optimized
glibc malloc provided by Gramine instead of jemalloc. This
memory allocator uses fewer mmap calls and thus causes
less memory fragmentation on the libOS side. Additionally,
it replaces system calls with direct and faster library calls
to the 1ibOS. Thus, in addition to fixing the performance
bug in Gramine memory management, we suggest using
the optimized glibc malloc instead of the Hyrise default
jemalloc. We see this as a first step of co-optimization for
both systems.

Performance with Fixes With the optimizations applied, the
TPC-H benchmark can be executed at scale factor 10 in-
side the enclave and achieves a relative throughput of 56%
on average over the 22 queries when compared to Hyrise
outside the enclave (cf. Fig. 8, green bars). The percentage
of runtime of Gramine functionality during the benchmark
drops from 60 to 70% previously (cf. Fig. 7) to between
10 and 15%.

To find the source of the remaining slowdown, we ran
the TPC-H benchmark outside the TEE while enabling the
mitigation for the SSB side-channel attack, which we pre-
viously identified as a major source of in-enclave overhead
(cf. Sect. 4.1). As shown in Fig. 8 (red bars), the mitigation
decreases the throughput by 33% on average. Thus, run-
ning Hyrise inside an enclave using Gramine (green bar)
only causes an 11% performance drop when compared to
the performance of running Hyrise outside the TEE with
the mitigation enabled (red bar).

A remaining observation from Fig. 8 is that some queries
have very low relative performance (e.g. Q1 and Q21),
whereas others achieve nearly the same performance in-
side the enclave, such as Q11 and Q17. After investigating
these queries on the operator level, we conclude that Ql
and Q21 are slowed down by large aggregations (Q1) and

BN SGX

Mitigation

Relative Throughput

Fig.8 Comparison of throughput relative to normal execution outside
the enclave: Hyrise with mitigation and Hyrise in Gramine SGX with
memory management fixes applied. TPC-H at SF 10

joins (Q21), which suffer from slow random main memory
accesses and missing store position speculation. In contrast,
Q11 and Q17 reduce input data before it is used in joins or
aggregations, increasing cache-friendliness. Applying and
evaluating our previously identified optimization for joins
to further improve the Hyrise performance inside the en-
clave (cf. Sect. 4.1) is an interesting area of future work.

Summary Running Hyrise inside an SGXv2 enclave using
Gramine is possible but has unusable performance out of
the box. The main culprit is memory management inside the
enclave, which can be improved by using the malloc func-
tionality of the Gramine glibc and by fixing a bug in the
libOS. With the fixes applied, the SSB mitigation reduces
the performance of Hyrise even more than the 1ibOS. Thus,
improvements to the query execution operators are more
pressing than improvements to other performance factors.
First experiments in this work on applying SGX-specific
optimizations (cf. Sect. 4.1) to the Hyrise query execution
operators showed promising results, but we leave a compre-
hensive integration and evaluation of those optimizations
for future work.

6 Research Directions

Related work and the recent results of SGX performance
studies summarized previously already address several im-
portant questions when building high-performance and se-
cure DBMSs. Still, some open questions for future research
on SGXv2 for databases remain. We first summarize the
open research questions for purpose-built enclave-native
DBMSs and then outline research directions for database
systems in library operating systems.

6.1 Enclave-native DBMSs

For enclave-native DBMSs in SGXv2, running as much of
the DBMS inside the enclave as possible gives the best se-
curity guarantees and is now feasible due to the enlarged
PRM. While related work focused on efficient and low-
latency enclave transitions, networking, and storage (cf.
Sect. 3), we see the open challenges in efficient query exe-
cution and usage of new SGX features like Dynamic Mem-
ory Management and NUMA.

Efficient Query Execution The results of the join operator
benchmarks (Fig. 3) and running Hyrise under the effect
of the SSB mitigation (Fig. 8) have shown that the perfor-
mance gain of an optimization for the SSB mitigation can
be large. Thus, one open area of future work is designing
and implementing optimized versions of all necessary oper-
ators in a query engine. Random access operators like hash

@ Springer

48

Datenbank-Spektrum (2025) 25:39-50

join, grouping, and intersection have the highest optimiza-
tion potential. Experiments on sorting algorithms we con-
ducted did not reveal overheads. This raises the question if
efficient sort-based implementations for algorithms like ag-
gregation [36, 37] and join [38] are generally a better choice
in SGX enclaves because SGX hardware characteristics do
not slow them down. Thus, this line of work can create
operator implementations that combine principles of cache
optimization with new optimizations for missing store po-
sition speculation.

Dynamic Memory Management Depending on the situa-
tion, DBMSs that can allocate and release memory dy-
namically are required. For SGX-based DBMSs, this re-
quirement also applies to the EPC, and DBMSs should
thus be able to enlarge and shrink their enclave dynami-
cally. Although previous experiments have highlighted that
dynamically enlarging an enclave during query execution
increases query runtime by more than one order of magni-
tude [8], optimized strategies are still missing. These op-
timized strategies must explicitly manage enclave memory
to prevent synchronous allocation and shrink the enclave if
memory consumption decreases.

NUMA Database servers that scale beyond single-socket
CPUs optimize for the characteristics of NUMA to achieve
better performance. This is done by pinning threads to spe-
cific CPU cores and allocating buffers in specific NUMA
regions. Both operations are not supported inside SGX en-
claves. However, if enclave database developers trust the
OS to allocate memory in the local NUMA region and
pin threads correctly, enclave memory allocations in a spe-
cific NUMA region should be possible when using explicit
EDMM. Future work in this area should investigate (1) if
this approach works as expected, (2) if performance inside
the enclave benefits to the same degree as outside, (3) if
this approach has implications for data confidentiality, and,
(4) if required, how confidentiality can be preserved.

6.2 LibOS-based DBMSs

Due to the reduced engineering overhead, running existing
DBMSs on top of abstraction layers like Gramine remains
a valid option. In this case, we see multiple avenues for
optimizations in both the DBMS and the 1ibOS in addition
to optimizations for the query execution.

Memory Management Our experiments in Sect. 5 showed
that memory management can greatly impact performance.
On the DBMS side, choosing a memory allocator that works
well with the 1ibOS is crucial. But, as the performance issue
we discovered in the Gramine memory management shows,
libOSes can also be optimized for the memory allocation

@ Springer

patterns of DBMSs. Another known problem in memory
management is the requirement to zero the memory inside
the libOS before it can be given to the application via mmap
[26]. This is expensive compared to the copy-on-write tricks
a real OS can apply and can cause high latencies. Thus,
optimizations in the 1ibOS or the DBMS could improve
performance. Finally, a 1ibOS in SGXv2 enclaves should
enable the DBMS to optimize for NUMA and efficiently
support EDMM to achieve optimal performance.

Storage and Networking Especially for OLAP DBMSs
where storage and network latency are not the primary
performance concerns, libOSes can reduce the engineering
work required to create an enclave DBMS. Gramine allows
applications inside the enclave to access the host file system
through mounts. These mounts can be configured to auto-
matically encrypt and decrypt files in a specific directory.
This can reduce the effort required inside the DBMS, but
the generic encryption scheme of the 1ibOS is probably
subpar for DBMS usage. Regarding networking, DBMSs
can likely use the 1ibOS functionality without changes, but
the number of worker threads must be chosen carefully.
Further investigations are required to determine the validity
of these approaches.

Optimization Hurdles A downside of using libOSes for
DBMSs is that the complexity and generality of a full li-
brary operating system can make it hard to find root causes
and provide fixes as functionalities are now split between
DBMS and 1ibOS and problems occur due to non-optimal
interactions of both. For example, optimizing the DBMS
inside the enclave with specialized ECALLs and OCALLSs
or queuing techniques is impossible when a 1ibOS manages
the interface. Future research could thus investigate semi-
transparent approaches where the application inside a 1ibOS
can incrementally replace the syscall interface with its own
optimized enclave interface.

7 Conclusion

Previous research has shown that Intel SGXv2 can enable
high-performance and trusted DBMSs in the cloud. We
summarized recent work on query processing in SGXv1 and
SGXv2, investigated the viability of using library operating
systems for DBMSs in SGXv2, and laid out future research
directions to achieve practical, secure DBMSs. We see sev-
eral remaining research and engineering challenges, espe-
cially those connected to new hardware features, such as
NUMA and dynamic enclave memory management. How-
ever, we believe that with the recent generation of SGX,
secure and high-performance cloud DBMSs for OLAP and
OLTP are within reach.

Datenbank-Spektrum (2025) 25:39-50

49

Funding This work was supported by SAP SE. Additional funding
was provided by the German Federal Ministry for Economic Affairs
and Climate Action under Grant Agreement Number 01MK21002K
and by the National Research Center for Applied Cybersecurity
ATHENE.

Author Contribution All authors contributed to the study concep-
tion and design. Material preparation, data collection and analysis,
and writing of the first draft of the manuscript were performed by
Adrian Lutsch. All authors commented on previous versions of the
manuscript. All authors read and approved the final manuscript.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Conflict of interest A. Lutsch, M. El-Hindi, Z. Istvdn and C. Binnig
certify that they have no affiliations with or involvement in any organi-
zation or entity with any financial interest or non-financial interest in
the subject matter or materials discussed in this manuscript.

Open Access Dieser Artikel wird unter der Creative Commons Na-
mensnennung 4.0 International Lizenz veroffentlicht, welche die
Nutzung, Vervielfiltigung, Bearbeitung, Verbreitung und Wieder-
gabe in jeglichem Medium und Format erlaubt, sofern Sie den/die
urspriinglichen Autor(en) und die Quelle ordnungsgemill nennen,
einen Link zur Creative Commons Lizenz beifiigen und angeben, ob
Anderungen vorgenommen wurden. Die in diesem Artikel enthaltenen
Bilder und sonstiges Drittmaterial unterliegen ebenfalls der genannten
Creative Commons Lizenz, sofern sich aus der Abbildungslegende
nichts anderes ergibt. Sofern das betreffende Material nicht unter der
genannten Creative Commons Lizenz steht und die betreffende Hand-
lung nicht nach gesetzlichen Vorschriften erlaubt ist, ist fiir die oben
aufgefiihrten Weiterverwendungen des Materials die Einwilligung des
jeweiligen Rechteinhabers einzuholen. Weitere Details zur Lizenz ent-
nehmen Sie bitte der Lizenzinformation auf http://creativecommons.
org/licenses/by/4.0/deed.de.

References

1. Pritchard S (2024) Trends in the cloud database market. https://
www.computerweekly.com/feature/Trends-in-the-cloud-database-
market. Accessed 2024-10-14

2. Cyber Safety Review Board (2024) Review of the summer 2023
Microsoft exchange online intrusion. https://www.cisa.gov/
resources-tools/resources/CSRB-Review-Summer-2023-MEO-
Intrusion

3. CLOUD Act. Wikipedia (2024). Accessed 2024-10-07

4. Costan V, Devadas S (2016) Intel SGX Explained. https://eprint.
iacr.org/2016/086.pdf

5. Johnson S, Makaram R, Santoni A, Scarlata V (2021) Support-
ing Intel SGX on Multi-Socket Platforms. Intel Corporation.
https://www.intel.com/content/www/us/en/content-details/843058/
supporting-intel-sgx-on-multisocket-platforms.html. Accessed
2025-01-08

6. Gramine Project (2025) Gramine—a Library OS for Unmodified
Applications. https://gramineproject.io/. Accessed 2025-01-08

7. El-Hindi M, Ziegler T, Heinrich M, Lutsch A, Zhao Z, Binnig C
(2022) Benchmarking the second generation of intel SGX hard-
ware. In: Data management on new hardware DaMoN’22. Asso-
ciation for Computing Machinery, New York, pp 1-8 https://doi.
org/10.1145/3533737.3535098

8. Lutsch A, El-Hindi M, Heinrich M, Ritter D, Istvan Z, Binnig C
(2025) Benchmarking Analytical Query Processing in Intel SGXv2.
In: Simitsis A, Kemme B, Queralt A, Romero O, Jovanovic P (eds)
Proceedings 28th International Conference on Extending Database

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Technology EDBT 2025, Barcelona, March 25-28, 2025 Open-
Proceedings.org, Konstanz, pp 516-528 https://doi.org/10.48786/
EDBT.2025.41

. McKeen F, Alexandrovich I, Anati I, Caspi D, Johnson S, Leslie-

Hurd R, Rozas C (2016) Intel® Software Guard Extensions (Intel®
SGX) Support for Dynamic Memory Management Inside an En-
clave. In: Proceedings of the Hardware and Architectural Support
for Security And Privacy 2016 HASP *16. Association for Comput-
ing Machinery, New York, pp 1-9 https://doi.org/10.1145/2948618.
2954331

McKeen F, Alexandrovich I, Berenzon A, Rozas CV, Shafi H,
Shanbhogue V, Savagaonkar UR (2013) Innovative instructions
and software model for isolated execution. In: Proceedings of
the 2nd International Workshop on Hardware and Architectural
Support for Security and Privacy HASP ’13. Association for Com-
puting Machinery, New York, p 1 https://doi.org/10.1145/2487726.
2488368

Priebe C, Vaswani K, Costa M (2018) EnclaveDB: A Secure
Database Using SGX. In: 2018 IEEE Symposium on Security and
Privacy (SP). IEEE, San Francisco, pp 264-278 https://doi.org/10.
1109/SP.2018.00025

Maliszewski K, Quiané-Ruiz J-A, Traub J, Markl V (2021) What is
the price for joining securely? benchmarking equi-joins in trusted
execution environments. Proc VLDB Endow 15(3):659-672.
https://doi.org/10.14778/3494124.3494146

Tsai C-C, Porter DE, Vij M (2017) Graphene-SGX: A Practical Li-
brary OS for Unmodified Applications on SGX. In: 2017 USENIX
Annual Technical Conference (USENIX ATC 17). USENIX
Association, Santa Clara, pp 645-658 (https://www.usenix.org/
conference/atc17/technical-sessions/presentation/tsai)

Gramine Project (2025) Gramine Documentation—Gramine Fea-
tures. https://gramine.readthedocs.io/en/stable/devel/features.html.
Accessed 2025-01-08

Gramine Project (2025) Gramine Documentation. https://gramine.
readthedocs.io/en/stable/. Accessed 2025-01-08

Bailleu M, Thalheim J, Bhatotia P, Fetzer C, Honda M, Vaswani K
(2019) SPEICHER: Securing LSM-based Key-Value Stores using
Shielded Execution. In: 17th USENIX Conference on File and Stor-
age Technologies FAST 19, pp 173-190 (https://www.usenix.org/
conference/fast19/presentation/bailleu)

Kim T, Park J, Woo J, Jeon S, Huh J (2019) ShieldStore: Shielded
In-memory Key-value Storage with SGX. In: Proceedings of the
Fourteenth EuroSys Conference EuroSys ’19. Association for
Computing Machinery, New York, pp 1-15 https://doi.org/10.
1145/3302424.3303951

Sun Y, Wang S, Li H, Li F (2021) Building enclave-native stor-
age engines for practical encrypted databases. Proc VLDB Endow
14(6):1019-1032. https://doi.org/10.14778/3447689.3447705
Vinayagamurthy D, Gribov A, Gorbunov S (2019) StealthDB:
A Scalable Encrypted Database with Full SQL Query Support.
Proc Priv Enhancing Technol 2019(3):370-388. https://doi.org/10.
2478/popets-2019-0052

Antonopoulos P, Arasu A, Singh KD, Eguro K, Gupta N, Jain R,
Kaushik R, Kodavalla H, Kossmann D, Ogg N, Ramamurthy R,
Szymaszek J, Trimmer J, Vaswani K, Venkatesan R, Zwilling M
(2020) Azure SQL Database Always Encrypted. In: Proceedings of
the 2020 ACM SIGMOD International Conference on Management
of Data SIGMOD ’20. Association for Computing Machinery, New
York, pp 1511-1525 https://doi.org/10.1145/3318464.3386141
Fuhry B, Jayanth Jain HA, Kerschbaum F (2021) EncDBDB:
Searchable Encrypted, Fast, Compressed, In-Memory Database Us-
ing Enclaves. In: 2021 51st Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN), pp 438-450
https://doi.org/10.1109/DSN48987.2021.00054

@ Springer

http://creativecommons.org/licenses/by/4.0/deed.de
http://creativecommons.org/licenses/by/4.0/deed.de
https://www.computerweekly.com/feature/Trends-in-the-cloud-database-market
https://www.computerweekly.com/feature/Trends-in-the-cloud-database-market
https://www.computerweekly.com/feature/Trends-in-the-cloud-database-market
https://www.cisa.gov/resources-tools/resources/CSRB-Review-Summer-2023-MEO-Intrusion
https://www.cisa.gov/resources-tools/resources/CSRB-Review-Summer-2023-MEO-Intrusion
https://www.cisa.gov/resources-tools/resources/CSRB-Review-Summer-2023-MEO-Intrusion
https://eprint.iacr.org/2016/086.pdf
https://eprint.iacr.org/2016/086.pdf
https://www.intel.com/content/www/us/en/content-details/843058/supporting-intel-sgx-on-multisocket-platforms.html
https://www.intel.com/content/www/us/en/content-details/843058/supporting-intel-sgx-on-multisocket-platforms.html
https://gramineproject.io/
https://doi.org/10.1145/3533737.3535098
https://doi.org/10.1145/3533737.3535098
https://doi.org/10.48786/EDBT.2025.41
https://doi.org/10.48786/EDBT.2025.41
https://doi.org/10.1145/2948618.2954331
https://doi.org/10.1145/2948618.2954331
https://doi.org/10.1145/2487726.2488368
https://doi.org/10.1145/2487726.2488368
https://doi.org/10.1109/SP.2018.00025
https://doi.org/10.1109/SP.2018.00025
https://doi.org/10.14778/3494124.3494146
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://gramine.readthedocs.io/en/stable/devel/features.html
https://gramine.readthedocs.io/en/stable/
https://gramine.readthedocs.io/en/stable/
https://www.usenix.org/conference/fast19/presentation/bailleu
https://www.usenix.org/conference/fast19/presentation/bailleu
https://doi.org/10.1145/3302424.3303951
https://doi.org/10.1145/3302424.3303951
https://doi.org/10.14778/3447689.3447705
https://doi.org/10.2478/popets-2019-0052
https://doi.org/10.2478/popets-2019-0052
https://doi.org/10.1145/3318464.3386141
https://doi.org/10.1109/DSN48987.2021.00054

50

Datenbank-Spektrum (2025) 25:39-50

22.

23.

24.

25.

26.

217.

28.

29.

30.

Wang Y, Shen Y, Su C, Ma J, Liu L, Dong X (2020) Crypt-
SQLite: SQLite With High Data Security. IEEE Trans Comput
69(5):666—678. https://doi.org/10.1109/TC.2019.2963303
Maliszewski K, Quiané-Ruiz J-A, Markl V (2023) Cracking-Like
Join for Trusted Execution Environments. Proc VLDB Endow
16(9):2330-2343. https://doi.org/10.14778/3598581.3598602
Arnautov S, Trach B, Gregor F, Knauth T, Martin A, Priebe C,
Lind J, Muthukumaran D, O’Keeffe D, Stillwell ML, Goltzsche D,
Eyers D, Kapitza R, Pietzuch P, Fetzer C (2016) SCONE: Secure
Linux Containers with Intel SGX. In: 12th USENIX Sympo-
sium on Operating Systems Design and Implementation OSDI 16,
pp 689-703 (https://www.usenix.org/conference/osdil6/technical-
sessions/presentation/arnautov)

Orenbach M, Lifshits P, Minkin M, Silberstein M (2017) Eleos:
ExitLess OS Services for SGX Enclaves. In: Proceedings of the
Twelfth European Conference on Computer Systems EuroSys *17.
Association for Computing Machinery, New York, pp 238-253
https://doi.org/10.1145/3064176.3064219

Battiston I, Felius L, Ansmink S, Kuiper L, Boncz P (2024)
DuckDB-SGX2: The Good, The Bad and The Ugly within Confi-
dential Analytical Query Processing. In: Proceedings of the 20th
International Workshop on Data Management on New Hardware
DaMoN ’24. Association for Computing Machinery, New York,
pp 1-5 https://doi.org/10.1145/3662010.3663447

El-Hindit et al (2022) second_gen_sgx_benchmark. https://github.
com/DataManagementLab/second_gen_sgx_benchmark. Accessed
2025-01-10

Lutsch et al (2024) sgxv2-analytical-query-processing-bench-
marks. https://github.com/DataManagementLab/sgxv2-analytical-
query-processing-benchmarks. Accessed 2025-01-10

Willhalm T, Popovici N, Boshmaf Y, Plattner H, Zeier A, Schaffner J
(2009) SIMD-scan: Ultra fast in-memory table scan using on-chip
vector processing units. Proc VLDB Endow 2(1):385-394. https://
doi.org/10.14778/1687627.1687671

Intel Corporation (2018) Speculative Store Bypass / CVE-2018-
3639 / INTEL-SA-00115. https://www.intel.com/content/www/us/
en/developer/articles/technical/software-security-guidance/advisory-
guidance/speculative-store-bypass.html. Accessed 2024-05-10

@ Springer

31

32.

33.

34.

35.
36.

37.

38.

Weisse O, Bertacco V, Austin T (2017) Regaining Lost Cycles with
HotCalls: A Fast Interface for SGX Secure Enclaves. In: Proceed-
ings of the 44th Annual International Symposium on Computer Ar-
chitecture ISCA *17. Association for Computing Machinery, New
York, pp 81-93 https://doi.org/10.1145/3079856.3080208

Tian H, Zhang Q, Yan S, Rudnitsky A, Shacham L, Yariv R, Mil-
shten N (2018) Switchless Calls Made Practical in Intel SGX. In:
Proceedings of the 3rd Workshop on System Software for Trusted
Execution SysTEX ’18. Association for Computing Machinery,
New York, pp 22-27 https://doi.org/10.1145/3268935.3268942
Lutsch et al (2025) full-DBMS-in-SGX-experiments. https://
github.com/DataManagementLab/full-DBMS-in-SGX-experiments.
Accessed 2025-01-10

Dreseler M, Kossmann J, Boissier M, Klauck S, Uflacker M,
Plattner H (2019) Hyrise Re-engineered: An Extensible Database
System for Research in Relational In-Memory Data Management.
In: Herschel M, Galhardas H, Reinwald B, Fundulaki I, Binnig C,
Kaoudi Z (eds) Advances in Database Technology 22nd Inter-
national Conference on Extending Database Technology, EDBT
2019, Lisbon, March 26-29, 2019 OpenProceedings.org, Kon-
stanz, pp 313-324 https://doi.org/10.5441/002/EDBT.2019.28
Jemalloc (2024) https://jemalloc.net/. Accessed 2024-12-28
Miiller I, Sanders P, Lacurie A, Lehner W, Farber F (2015) Cache-
Efficient Aggregation: Hashing Is Sorting. In: Proceedings of the
2015 ACM SIGMOD International Conference on Management of
Data SIGMOD ’15. Association for Computing Machinery, New
York, pp 1123-1136 https://doi.org/10.1145/2723372.2747644

Do T, Graefe G, Naughton J (2023) Efficient sorting, duplicate
removal, grouping, and aggregation. ACM Trans Database Syst
47(4):16-11635. https://doi.org/10.1145/3568027

Albutiu M-C, Kemper A, Neumann T (2012) Massively parallel
sort-merge joins in main memory multi-core database systems.
Proc VLDB Endow 5(10):1064—-1075. https://doi.org/10.14778/
2336664.2336678

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/TC.2019.2963303
https://doi.org/10.14778/3598581.3598602
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://doi.org/10.1145/3064176.3064219
https://doi.org/10.1145/3662010.3663447
https://github.com/DataManagementLab/second_gen_sgx_benchmark
https://github.com/DataManagementLab/second_gen_sgx_benchmark
https://github.com/DataManagementLab/sgxv2-analytical-query-processing-benchmarks
https://github.com/DataManagementLab/sgxv2-analytical-query-processing-benchmarks
https://doi.org/10.14778/1687627.1687671
https://doi.org/10.14778/1687627.1687671
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/speculative-store-bypass.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/speculative-store-bypass.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/speculative-store-bypass.html
https://doi.org/10.1145/3079856.3080208
https://doi.org/10.1145/3268935.3268942
https://github.com/DataManagementLab/full-DBMS-in-SGX-experiments
https://github.com/DataManagementLab/full-DBMS-in-SGX-experiments
https://doi.org/10.5441/002/EDBT.2019.28
https://jemalloc.net/
https://doi.org/10.1145/2723372.2747644
https://doi.org/10.1145/3568027
https://doi.org/10.14778/2336664.2336678
https://doi.org/10.14778/2336664.2336678

	Towards High-performance and Trusted Cloud DBMSs
	Abstract
	Introduction
	Background
	State of the Art
	Enclave-Native DBMSs
	Analyzing OLAP
	Analyzing OLTP

	Full DBMSs in SGXv2
	Research Directions
	Enclave-native DBMSs
	LibOS-based DBMSs

	Conclusion
	References

