
Reflex: Faster Secure Collaborative Analytics via
Controlled Intermediate Result Size Disclosure

Long Gu
Systems Group, TU Darmstadt, Germany

Shaza Zeitouni
Systems Group, TU Darmstadt, Germany

Carsten Binnig
Systems Group, TU Darmstadt, Germany

Zsolt István
Systems Group, TU Darmstadt, Germany

Abstract
Secure Multi-Party Computation (MPC) enables collabora-
tive analytics without exposing private data. However, OLAP
queries under MPC remain prohibitively slow due to oblivi-
ous execution and padding of intermediate results with filler
tuples. We present Reflex, the first framework that enables
configurable trimming of intermediate results across different

query operators—joins, selections, and aggregations—within
full query plans. At its core is the Resizer operator, which can
be inserted between any oblivious operators to selectively
remove filler tuples underMPC using user-defined probabilis-
tic strategies. To make privacy trade-offs interpretable, we
introduce a new metric that quantifies the number of obser-
vations an attacker would need to infer the true intermediate
result sizes. Reflex thus makes the performance–privacy
space of secure analytics navigable, allowing users to bal-
ance efficiency and protection. Experiments show substantial
runtime reductions while maintaining quantifiable privacy
guarantees.

1 Introduction
The analysis of internal data is a critical component of strate-
gic decision-making in large organizations. Since most of
these organizations operate globally, transferring and pro-
cessing data across countries and jurisdictionswithout strong
cryptographic protection introduces risks and may even be
restricted by regulations such as the GDPR [19]. As a result,
there is a growing effort [4, 31, 42, 44] to combine analyti-
cal data processing with Secure Multi-Party Computation
(MPC) in order to provide stronger security and privacy
guarantees. MPC allows several parties with private data,
e.g., company branches, to jointly compute a function, e.g.,
a database query, without any party learning more in the
process than the final result.

However, performing computations under MPC is several
orders of magnitude more expensive than in plaintext [4, 23,
31, 37]. In addition to the per-operation computation over-
head, there is a compounding factor for OLAP-like work-
loads: algorithms in MPC must execute obliviously, i.e., with-
out revealing any information about the underlying data.
For queries, this means that intermediate results passed be-
tween operators of a query plan must be padded with filler
tuples to the maximum possible size, preventing attackers

𝑶𝝈 𝑶𝝈

𝑶 ⋈

𝑶𝜸

𝟏𝟎𝟎𝟎 𝟏𝟎𝟎𝟎

100/1000100/1000

1000/1𝑀

𝟏𝟎𝟎𝟎

𝑶 ⋈

100𝐾/1𝐵

𝟏𝟎𝟎𝟎

𝑶 ⋈

10𝑀/1𝑇

(a) 3-join Query Plan, with
(red) and without (green)
oblivious output sizes

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

0

0.5

1
·1012

Fully Oblivious

Reflex: navigate
the space

Existing point solutions [4, 17, 31]

Ex
po
ne
nt
ia
l b
lo
w
-u
p

Revealed

Amount of Filler Tuples (%𝑁)

To
ta
lT

up
le
st
o
Pr
oc
es
s

(b) 3-join’s total tuples processed
under varying strategies.

Figure 1.Motivating 3-join example: all operator selectivi-
ties are fixed at 10%, and the total number of tuples to pro-
cess (sum of all intermediate result sizes) is a function of
the amount of oblivious filler tuples included in each inter-
mediate result. The trend is exponential when going from
no fillers (green) to fully oblivious intermediate sizes (+90%𝑁
filler tuples at each operator, red)– this explains the severe
performance penalty under fully-oblivious MPC.

from inferring information based on the selectivity of the
operators. For example, selection operators must return an
output of the same size as the input, and joins must produce
an output with the size of the Cartesian product of both
tables. Overall, for query plans with multiple operators, this
can lead to result size exploitation as shown in Figure 1a.

In this paper, we present Reflex, a novel approach that ac-
celerates private query processing for OLAP workloads.The
key idea behind Reflex is to make the performance–privacy

trade-off in query execution both visible and controllable. It
is the first method that allows even non-experts to quanti-
tatively explore how much performance can be gained for
a given level of privacy protection. At the heart of Reflex
is a new query operator called the Resizer. This operator
can be placed between any pair of oblivious operators in
a query plan. It reduces the size of intermediate results by
randomly trimming filler tuples—dummy records added for
privacy. The trimming amount is determined through secure

ar
X

iv
:2

50
3.

20
93

2v
2

 [
cs

.D
B

]
 2

3
O

ct
 2

02
5

https://arxiv.org/abs/2503.20932v2

Long Gu, Shaza Zeitouni, Carsten Binnig, and Zsolt István

sampling under MPC, guided by user-defined probability dis-
tributions that capture different performance–privacy pref-
erences. To measure the amount of privacy each distribution
provides, we introduce a new metric that quantifies how
many repeated observations of the trimmed intermediate
result sizes an attacker would need to accurately infer the
true intermediate result size.

The concept of trimming intermediate results has been ex-
plored in several recent works. However, existing approaches
have primarily focused on the join operator [5, 9] and do not
integrate all mechanisms into a single unified framework to
make privacy quantifiable at the query plan level. To the best
of our knowledge, there is currently no general mechanism

that applies uniformly across different query operators (e.g.,
join, selection, aggregation), integrates seamlessly into query
plans without modifying existing oblivious operators, and
enables fine-grained control over the performance–privacy
trade-off at the operator level. Moreover, prior works typi-
cally employ fixed trimming strategies tailored to specific pri-
vacy assumptions, such as differentially private resizing [5].
We argue that a practical analytics framework should instead
provide both flexibility and a unified means to quantify the
privacy guarantees of user-defined trimming strategies for
intermediate result sizes.

To achieve the goals of Reflex, we address two key chal-
lenges in this paper. First, it requires a generic, configurable,
and efficient resizing mechanism that can be integrated into
diverse query plans. The Resizer must yield tangible perfor-
mance gains by reducing upstream computation, without
introducing overheads that offset these benefits. Achieving
both configurability and efficiency across heterogeneous
operators demands careful algorithmic and system-level co-
design. Second, Reflex must address a usability challenge:
how to provide non-security experts with an intuitive means
to quantify and navigate the performance–privacy trade-off
introduced by trimming filler tuples. To this end, we develop
a practical metric that abstracts away cryptographic complex-
ity while capturing how resizing choices affect both system
efficiency and potential leakage of intermediate result sizes.
Addressing these challenges within a unified framework

enables a principled exploration of the performance–privacy
space, moving beyond static, one-size-fits-all oblivious exe-
cution. As illustrated later in Figure 11, different placements
and configurations of the Resizer yield predictable trade-offs
between runtime and privacy. Our experiments show that
trimming can reduce query runtimes by up to an order of
magnitude, while an attacker would still require multiple
rounds of observation to infer the true intermediate sizes.
Ultimately, this line of work can pave the way forMPC-aware

query optimizers that jointly explore the space of oblivious
query plans and resizing strategies to find configurations that
maximize performance while meeting certain user-defined
security guarantees. Building such an optimizer, however, is

beyond the scope of this paper. To summarize, our contribu-
tions are as follows:

• Afirst framework for privacy–performance trade-
offs. We present Reflex, a framework that provides
fine-grained, user-controlled trade-offs between per-
formance and privacy for Secure collaborative ana-
lytics (SCA). The central primitive is the Resizer, a
lightweight operator that can be inserted after any
oblivious operator to selectively remove filler tuples
according to user-specified trimming strategies while
preserving obliviousness. Resizer’s MPC-friendly de-
sign increases parallelism and reduces communication
rounds, enabling efficient and flexible reduction of in-
termediate result sizes. We implement a prototype and
release the code as open-source; see Section 6.
• A statistically grounded metric. To enable princi-

pled comparison between different user-defined trim-
ming approaches, we propose a metric grounded in
statistical methods that quantifies how many observa-
tions of trimmed intermediate result sizes an attacker
would need to recover the true intermediate result size
with high probability. The metric supports direct, in-
terpretable comparisons between different trimming
strategies and can be used to place points in the pri-
vacy–performance design space.
• A comprehensive evaluation. We thoroughly eval-

uate Reflex through micro-benchmarks, reimplemen-
tation & comparison with related methods [5, 17],
as well as full query experiments using analytical
queries from prior work. Our study characterizes run-
time across multiple points in the trade-off space, and
demonstrates the practical gains and limits of differ-
ent trimming strategies under both performance and
privacy metrics.

2 Background and Related Work
2.1 Secure Collaborative Analytics
Secure collaborative analytics (SCA) [31] is a set of dis-
tributed data statistics protocols designed to protect private
datasets provided byData Owners. LetDO = {𝐷𝑂1, . . . , 𝐷𝑂ℓ }
be a set of ℓ Data Owners, where each 𝐷𝑂𝑖 holds a private
database 𝐷𝑖 . Secure Collaborative Analytics protocols en-
able joint data analysis on the union of all private datasets
D = {𝐷1, . . . , 𝐷ℓ } while safeguarding against privacy vio-
lations. Let P = {𝑃1, . . . , 𝑃𝑚} denote a set of𝑚 computing
nodes or parties that are responsible for executing secure
collaborative analytics protocols on D. The Data Analyst

sends the query𝑄 to be executed over the union of all private
datasets D to P and collects the final result 𝑅. Overall, SCA
is a growing field with numerous real-world applications,
including market analysis, autonomous driving, agriculture,
and the Internet of Things. These applications benefit from

Reflex: Faster Secure Collaborative Analytics via Controlled Intermediate Result Size Disclosure

efficient query execution amongmultiple data owners, which
also preserves data privacy [41].

2.2 Related Work using MPC
To the best of our knowledge, there is no related work that
presents a flexible framework for balancing the trade-off
between revealing information about intermediate result
sizes in query execution in a semi-honest setting. The re-
lated work in SCA using MPC can be grouped into one of
three groups: first, those that aim to optimize the underlying
oblivious operators given metadata about the query, second,
those that offer point solutions in terms of relaxing security
guarantees, and third, those that aim to protect against a
much stronger, malicious attacker.

Relatedwork, such as SMCQL [4], Secrecy [31], Senate [44],
and Alchemy [40], aims to increase performance by leverag-
ing relations’ metadata and redesigning actual computation
(hence also query execution) under MPC or applying algo-
rithmic changes to the MPC protocols without loosening
security/privacy guarantees. One of the most recent works
in this direction is Alchemy [40]. Alchemy optimizes queries
through rewrite rules, cardinality bounds, bushy plan gen-
eration, and a fine-grained cost model, minimizing circuit
complexity while maintaining security guarantees. Such op-
timizations are orthogonal to our work and can be adopted
in Reflex to further improve performance.

Other relatedwork, such as Secretflow [17], Shrinkwrap [5],
and SAQE [6], improves performance by relaxing the pri-
vacy guarantees, such as information about the intermediate
result size of operators [5, 17], or the tuples that form the
intermediate result [17]. Some works even allow for relaxing
correctness of query results [5, 6]. Closest to the approach
of Reflex is Shrinkwrap [5], which introduces a point solu-
tion that reduces fully-oblivious intermediate result sizes to
differentially private sizes. This is achieved with a “sort&cut”
approach, which couples trimming with a potential reduc-
tion in query accuracy (no guarantee of correctness). In the
context of analytics within an enterprise, this is not desir-
able – in Reflex, queries always produce the same results,
regardless how many filler tuples have been removed from
the intermediate result.

SAQE [6] employs a private sampling algorithm that trades
correctness for performance, providing a scalable and fast
approximate query processing platform.

Finally, there is also related work that focuses not on per-
formance improvements but on protecting against a stronger
attacker in the malicious security model, e.g., Senate [44] and
Scape [22]. Since protocols that are secure against amalicious
attacker are yet again orders of magnitude slower than those
for semi-honest systems [13, 18], and since these systems
introduce restrictive assumptions about how data can be pro-
cessed, they are not a perfect match for the enterprise-level
analytics we are focusing on.

2.3 Related Work using TEEs
In case the security model permits a trusted third party,
Trusted Execution Environments (TEEs), such as Intel SGX [11,
34] or AMD SEV [26], can be used to perform fast analytics
on shared data. Sensitive data is encrypted and only de-
crypted and processed within the TEE. There is rich related
work, such as EnclaveDB [36], ObliDB [16], and benchmark-
ing papers [33], showing that TEEs can be used for data ana-
lytics tasks withminimal performance overhead compared to
plaintext execution. Compared to MPC, TEE-based methods
are orders of magnitude faster. However, their adoption is re-
stricted to the use of specialized hardware and vulnerabilities
such as side-channel attacks [8, 12, 30, 39].

2.4 Related Work using FHE
There are also related works based on Fully Homomorphic
Encryption (FHE), such as HE3DB [7]. It allows multiple
data owners to encrypt their private input and conduct col-
laborative analytics in the cloud server without exposing
intermediate results. HE3DB [7] utilizes the latest advance-
ments in FHE [21] and allows for server-side elastic ana-
lytical processing of requested FHE ciphertexts, including
private decision tree assessment, unlike previous encrypted
DBMS that only provide aggregated information retrieval.
While FHE provides stronger security guarantees than MPC,
sparking growing interest, its significant performance over-
head currently renders it impractical for complex operations,
such as secure sorting or joins, which are at the core of SCA.

3 Reflex: Assumptions and Threat Model
In SCA, the goal is to protect the privacy of input datasets
and computation. Ideally, no party should learn more about
the data than what can be inferred from the final query result.

In the deployment model as described in Section 2.1, each
data owner, 𝐷𝑂𝑖 , distributes secret shares of their dataset,
𝐷𝑖 , to the computing nodes. A query 𝑄 is translated into a
set of MPC protocols 𝜋 , which are executed by all computing
nodes P on the secret shares of the union of all datasets
D. It is a common assumption that under MPC, all parties,
i.e., data owners, computing nodes, and the data analyst, are
assumed to know the database schema and the queries to
be executed. During the execution of 𝜋 on input data shares
of D, each computing node 𝑃𝑖 has a view that includes the
following:

• 𝑃𝑖 ’s secret share of D and any locally generated ran-
dom values required by the protocol,
• messages received during protocol execution,
• 𝑃𝑖 ’s secret shares of intermediate results,
• trimmed sizes of intermediate results. These are some
values between true intermediate result size and fully-
oblivious result size, and
• 𝑃𝑖 ’s secret shares of the final response 𝑅.

Long Gu, Shaza Zeitouni, Carsten Binnig, and Zsolt István

SELECT DISTINCT d.pid
FROM Diagnoses d JOIN Medications m
ON d.pid = m.pid
WHERE m.med= ‘Aspirin’
AND d.icd9 = '414’
AND d.stmp <= m.stmp

pid icd9 stmp

101 414 2010-01-05

102 414 2010-01-10

103 250 2010-01-12

104 320 2010-01-20

D
ia

gn
o

se
s

M
ed

ic
at

io
n

s

pid Med stmp

101 Aspirin 2010-01-06

102 Aspirin 2010-01-15

103 Insulin 2010-01-13

104 Apixaban 2010-01-25

(a) Example Query

𝑂𝜎m.med = ′Aspirin’ 𝑂𝜎d.icd9 = ′414’

𝑂 ⋈d.pid = m.pid

𝑂𝜎d.stmp <= m.stmp

𝑂𝜋d.pid

𝑁1 𝑁2

𝑁2𝑁1

𝑁1 × 𝑁2

𝑁1 × 𝑁2

(b) Fully Oblivious Query Plan

𝑂𝜎m.med = ′Aspirin’ 𝑂𝜎d.icd9 = ′414’

𝑂 ⋈d.pid = m.pid

𝑂𝜎d.stmp <= m.stmp

𝑂𝜋d.pid

𝑂 ↓↑𝜂1
𝑂 ↓↑𝜂1

𝑂 ↓↑𝜂2

𝑁1 𝑁2

𝑁2𝑁1

𝑆1 × 𝑆2

𝑆2𝑆1

𝑆3

𝑆3

(c) Oblivious Query Plan with Resizer (↓↑)

Figure 2. A Query Example and its Plans. 𝑂 indicates oblivious operators, 𝑁𝑖 is input/output sizes, and 𝑆𝑖 refers to re-sized
output after ↓↑ operator with (𝑆𝑖 < 𝑁𝑖).

We assume a semi-honest trust model, where computing
nodes follow the protocol honestly but may attempt to infer
information from their local view about the input datasets,
intermediate results, or the sizes of intermediate results of
query operators. This trust model is suitable for protecting
against accidental data leaks, such as logs exposed to sys-
tem administrators or lost disks. and it aligns well with the
context of a large corporation (similar to the use cases pre-
sented in [17, 41]), where data owners and computing nodes
belong to branches or departments within the same large
corporation. The goal of using secure MPC in this context is
to protect the privacy of computation and data in motion, to
contribute to data protection by design [10].
On top of the semi-honest trust model, we adopt the fol-

lowing adversary model, where: (i) at most one computing
node may be corrupted, and (ii) parties do not collude. There-
fore, it is reasonable to assume an attacker can only observe,
without invasive interference, the trimmed intermediate re-
sult sizes of all operators due to the insertion of Resizer op-
erators across queries executed in the system and use these
observations of trimmed intermediate result sizes to learn
the true output size of an operator.
As a way to quantify the information leakage as a result

of trimming filler tuples from intermediate results, we intro-
duce the Rounds to Recover metric (detailed in Section 4.4)
that determines the number of equivalent repetitions of an
operator required to infer its true result size with high prob-
ability. An equivalent repetition refers to any execution, pos-
sibly across different queries, where the operator processes
the same input and produces the same intermediate result.
This metric provides non-security experts with an intuitive
way to compare the trade-off between performance and pri-
vacy of different strategies that Reflex allows them to define.
Note that in this work, we do not study the effect of revealing
trimmed intermediate result sizes on the privacy of datasets.

Therefore, in the remainder of the paper, by ‘privacy’ we
mean the privacy of intermediate result sizes.

4 Reflex: Design and Implementation
In the following, we provide an overview of Reflex before
delving into the details of its core mechanisms and the metric
used to quantify the security gains.

4.1 Overview of Reflex
Reflex is a framework that provides fine-grained, user-controlled
trade-offs between performance and privacy for SCA. This
is achieved with the help of Resizer operators that can be
inserted after any oblivious operator to remove filler tuples
according to a user-specified trimming strategy. Resizer has
been implemented in a way that can take advantage of com-
munication batching optimizations in MPC, with a runtime
comparable to oblivious filter, join, and group by operators.
See Section 4.2 for more details.
One of the major novelties in Reflex is the flexibility of

deciding how many filler tuples are kept, without having
to change the underlying Resizer implementation. Figure 2
illustrates a simple query where Resizer operators are in-
serted to reduce the output size of the filters following a
scan and the output size of a join. Flexibility in configura-
tion and placement enables Reflex to achieve significant
performance improvements.

This flexibility of placement is achieved by plugging in a
user-defined strategy into each Resizerinstance. The strategy
is, at its core, a pre-defined probability distribution for deter-
mining how many filler tuples to keep in the intermediate
result passed to the next operator. Note that the distribution
can be re-configured as often as needed to fulfill performance
or privacy requirements. In Section 4.3, we discuss the prop-
erties a distribution should have to ensure some protection of

Reflex: Faster Secure Collaborative Analytics via Controlled Intermediate Result Size Disclosure

the intermediate result size, and present concrete examples
of distributions and how they are sampled.
Without a straightforward way to compare user-defined

distributions, it is not really possible to argue for specific
ones. To this end, in Section 4.4 we present the metric we
propose to compare distributions in terms of how much
information they leak.
Our Implementation: For our implementation, we uti-

lize MP-SPDZ [27], a powerful framework for secure MPC,
which compiles applications written in a Python-like code
into MPC protocols. In addition to offering state-of-the-art
performance, MP-SPDZ enables the selection of different
threat models and underlying cryptographic primitives with-
out requiring changes to the code.
To achieve efficient and secure computation, we choose

Replicated Secret Sharing (RSS) [2] as the underlying secret
sharing scheme. RSS is highly efficient because it requires
only a single round of communication for basic arithmetic
operations, offering low latency compared to other proto-
cols. Its integration within MP-SPDZ allows for seamless
deployment and execution. MP-SPDZ employs a mixed do-
main execution model. This allows the system to seamlessly
convert secret shares between the arithmetic and binary
(Boolean) domains using edaBits [14]. The internal compil-
er/optimizer automatically determines which domain is most
efficient for executing a given function.

In addition to the Resizer operator, our prototype provides
independent implementations of the following operators:

• Scan: This operator reads private data into a secret
shared matrix using for loop in MP-SPDZ [27]. It as-
sumes a known, fixed size for the dataset, allowing
secure access and processing of each element. Note
that a scan is always coupled with one of the other
operators.
• Filter: It applies a condition (multiple equality tests)

to the entire table in a for loop, creating a new secret
shared column marking matches.
• Join: Implemented as a nested-loop join (NLJ), this

operator uses two nested loops to compare every row
from the first table (size n) with every row from the
second table (size m). The column on which to eval-
uate the join predicate in each table is configurable.
Joins produces an output of size 𝑛 ∗𝑚 and an extra
secret column that marks true join result tuples.
• Group By: Similarly to the related work [4, 31], we use
a sorting-based method. We first order rows by the
group key. Then, iterates row by row, comparing ad-
jacent keys over secrets to identify group boundaries,
marking them accordingly for subsequent aggregation
operations.

Queries are hand-assembled trees of SQL operators and
instances of Resizer. Automated translation of plaintext SQL
queries into MPC protocols remains future work.

Trim

Shuffle

Mark

𝓞𝒊, 𝑵𝒊, 𝒄𝒊

𝒌𝒊

𝒌′𝒊, 𝓞′𝒊, 𝒄′𝒊

𝓞′𝒊, 𝒄′𝒊

pre-configured
distribution

ℱ 𝜃

𝒑𝒊

Figure 3. Resizer operator. Inputs: oblivious output O𝑖 , obliv-
ious output size 𝑁𝑖 , true output column 𝑐𝑖 of operator 𝑂𝑖 .
Outputs: shuffled output O′𝑖 and 𝑐′𝑖 indicating true tuples.

4.2 Resizer: A Helper Operator
A Resizer operator can be inserted after any oblivious op-
erator to reduce its output size by discarding filler tuples
partially, without requiring query rewrites. It is built as a
sequence of three processing steps: Mark, Shuffle and Trim
(see Figure 3), which we detail in their own subsections.
The Resizer runs under MPC and reveals no information
about the contents of the output of the operator it runs after,
apart from the final trimmed output size 𝑆𝑖 =𝑇𝑖 + 𝜂𝑖 where
𝑇𝑖 ≤ 𝑆𝑖 ≤ 𝑁𝑖 and 𝜂𝑖 is the amount of filler tuples retained by
the Resizer.
The amount of filler tuples to keep at each instance of

Resizer is decided at run-time (under MPC) using a pre-
configured user-defined function (i.e., a distribution) that
leverages both publicly-available information, e.g., input
sizes and the operator trees, and secret information.

4.2.1 How we modify the output of oblivious opera-
tors? An oblivious operator 𝑂𝑖 in a query plan produces an
oblivious output O𝑖 =𝑂𝑖 (D) of size 𝑁𝑖 (𝑖 indexes the opera-
tor in the query tree, e.g., Figure 2c). By construction, this
output comprises 𝑇𝑖 tuples that are genuine output (called
interchangeably “true matches”) of the operator, while the
remaining 𝑁𝑖 −𝑇𝑖 tuples are indistinguishable fillers that are
retained as part of the output to satisfy obliviousness; we
refer to these as filler tuples.
The Resizer (see Figure 3) takes as input the oblivious

output O𝑖 =𝑂𝑖 (D), the oblivious output size 𝑁𝑖 = |O𝑖 |, and
the column 𝑐𝑖 , which indicates whether a tuple is part of𝑂𝑖 ’s
true output. Resizer takes also as an input a probability, 𝑝𝑖 ,
sampled from a pre-configured distribution. 𝑝𝑖 will be used to
determine which filler tuples to retain in the operator output.
As output, Resizer returns the shuffled oblivious output O′𝑖
and the shuffled column 𝑐′𝑖 , both trimmed to size 𝑆𝑖 =𝑇𝑖 + 𝜂𝑖 .

Based on 𝑝𝑖 , the Resizer marks tuples to be retained from
O𝑖 – note that true tuples are always marked. The marking
is stored in column 𝑘𝑖 , which is added to O𝑖 . In Figure 4,

Long Gu, Shaza Zeitouni, Carsten Binnig, and Zsolt István

Join on Patient ID (d.pid = m.pid)
Filter (m.med = ‘Aspirin’)

Filter (d.icd9 = '414’)

Oblivious Filter

Mark Shuffle

Oblivious Join Oblivious Resizer
Oblivious
Distinct

… m.med m.c1

… Aspirin 1

… Aspirin 1

… Insulin 0

… Apixaban 0

Oblivious Resizer

m.k1

1

1

1

0

m.med m.pid d.icd9 d.pid c2

Aspirin 102 414 101 0

Aspirin 102 320 104 0

Aspirin 102 414 102 1

Insulin 103 414 101 0

Insulin 103 320 104 0

Insulin 103 414 102 0

Aspirin 101 414 101 1

Aspirin 101 320 104 0

Aspirin 101 414 102 0

d.pid

… d.icd9 d.c1

… 414 1

… 414 1

… 250 0

… 320 0

d.k1

1

1

0

1

… m.med m.c’1 m.k’1

… Aspirin 1 1

… Insulin 0 1

… Aspirin 1 1

… Apixaban 0 0

… d.icd9 d.c’1 d.k’1

… 414 1 1

… 320 0 1

… 414 1 1

… 250 0 0

k2

1

0

1

0

1

0

1

1

0

… d.pid c’2 k’2

… 101 0 0

… 102 0 0

… 101 0 1

… 104 0 1

… 104 0 0

… 101 1 1

… 102 0 0

… 102 1 1

… 104 0 1

d.pid c4

101 0

104 0

101 1

102 1

104 0

Mark Shuffle

d.stmp m.stmp d.pid c3

2010-
01-05

2010-
01-15

101 0

2010-
01-20

2010-
01-13

104 0

2010-
01-05

2010-
01-06

101 1

2010-
01-10

2010-
01-15

102 1

2010-
01-20

2010-
01-06

104 0

Oblivious Filter

Filter (d.stmp <= m.stmp)

Figure 4. Privacy-preserving query execution with Resizer operator. Retained filler tuples are shown in red.

filler tuples shown in red will be retained in the intermediate
results: in columns 𝑑.𝑘1 and𝑚.𝑘1 for the two Resizer oper-
ators after the Filters, and in 𝑘2 for the one after the join.
The output O𝑖 , including all tuples, is then shuffled by 𝑘𝑖
to mitigate linkage attacks. Finally, tuples with 𝑘 ′𝑖 = 0 are
discarded, and O′𝑖 contains only true and filler tuples of size
𝑆𝑖 = 𝑇𝑖 + 𝜂𝑖 . As discussed before, 𝑝𝑖 is sampled obliviously
and Resizer operations are executed obliviously; therefore,
𝑇𝑖 and 𝑝𝑖 remain concealed, and only 𝑆𝑖 is revealed.

In the following, we focus on how filler tuples are marked,
describing how this step is optimized for efficient MPC execu-
tion. The choice of the distribution is deferred to Section 4.3.

4.2.2 Marking Filler Tuples Before Trimming. The
Mark step (Figure 3) takes as additional input the 𝑝𝑖 sampled
from the user-defined distribution attached to the instance of
the Resizer, the oblivious output size𝑁𝑖 of the preceding SQL
operator 𝑂𝑖 , and the column 𝑐𝑖 , which identifies true tuples.
Mark step outputs a column 𝑘𝑖 , indicating tuples to keep
from trimming. In the following, we present our approach
to efficiently carrying out the marking step.
The marking of tuples to keep is done stochastically: a

secret weighted coin (with 𝑝𝑖) is flipped 𝑁𝑖 times, with each
flip determining whether a tuple is marked for keeping. This
method offers a significant advantage in its highly paral-
lelizable nature, as the coin flips for each tuple can occur
independently. For each tuple 𝑗 in the oblivious output O𝑖 of
the preceding operator𝑂𝑖 , the following steps are performed
(Algorithm 1):

1. A weighted coin is tossed.
2. If the tuple is part of the true output (i.e., 𝑐𝑖 [𝑗] = 1),

its corresponding bit 𝑘𝑖 [𝑗] is set to 1, regardless of the
coin toss result.

3. Else, i.e., the tuple is not part of the true output (
𝑐𝑖 [𝑗] = 0), the outcome of the coin toss probabilisti-
cally determines its inclusion in the output. A success-
ful toss sets 𝑘𝑖 [𝑗] = 1, while a failure excludes it by
setting 𝑘𝑖 [𝑗] = 0.

Algorithm 1:Marking of Filler Tuples
Input:

• Sampled success probability 𝑝𝑖 .
• Oblivious output size 𝑁𝑖 and Column 𝑐𝑖 , indicating true tuples, of

the preceding SQL operator𝑂𝑖 .
Output: Column 𝑘𝑖 indicating tuples to retain.

Step 1: Initialize Data Structures
𝑘𝑖 ← [] // Initialize an empty column.

𝑟𝑎𝑛𝑑 ← [] // Initialize a data structure for sampling

random values.

Step 2: Coin Tossing for Random Selection of Filler Tuples
for 𝑗 ← 0 to 𝑁𝑖 − 1 do

𝑟𝑎𝑛𝑑 [𝑗] ∼ 𝑈 (0, 1) // Flip a coin.

𝑘𝑖 [𝑗] ← ((𝑟𝑎𝑛𝑑 [𝑗] < 𝑝𝑖) ∨ 𝑐𝑖 [𝑗]) // Compute 𝑘𝑖 [𝑗].

Step 3: Return Updated Column
return 𝑘𝑖

With the success probability 𝑝𝑖 sampled from the pre-
configured distribution 𝑝𝑖 ∼ F (𝜃), the output after the Re-
sizer satisfies 𝑆𝑖 =𝑇𝑖+𝐸 (𝜂𝑖) ≤ 𝑁𝑖 , where 𝐸 (𝜂𝑖) = 𝑝𝑖×(𝑁𝑖−𝑇𝑖),
as dictated by the Binomial distribution.

Tuple-level independence enables natural parallelism, greatly
reducing the Resizer’s performance overhead. This makes
the method well-suited for MPC execution (Section 5.2) by
requiring fewer synchronization rounds. Furthermore, its
stochastic nature strengthens the privacy guarantees, as dis-
cussed in Section 5.3.

Comparison, logic-or, and sampling uniform random num-
bers of the tuple marking step (Algorithm 1) are directly
mapped to their MPC counterparts. The coin flipping, i.e.,
sampling from the uniform distribution, can be performed
in the pre-processing phase of the MPC protocol, and secret
shares of the 𝑁 random numbers are distributed among the
parties. In the online phase, the parties compute jointly over
the secret shares of both the random values and the inputs.
Since the marking step in Algorithm 1 exhibits natural

parallelism, i.e., its loop rounds are independent of each other,

Reflex: Faster Secure Collaborative Analytics via Controlled Intermediate Result Size Disclosure

it can benefit from the batching mechanism in MP-SPDZ 1

for improved efficiency. For our setup, we select a batching
size of 100, 000.

4.2.3 Shuffle and Trim. A linkage attack occurs when
an adversary attempts to exploit information from the inter-
mediate results (in our case, 𝑘𝑖), thereby inferring sensitive
connections between secret shares and the corresponding
real database values. For instance, if 𝑘𝑖 is revealed without
shuffling, the attacker can correlate the positions of true
negative matches with false positive matches by leveraging
memory from a previous execution. If the attacker can iden-
tify all true negative matches, they can also determine the
true positive data layout.
To prevent linkage attacks [15], shuffling is performed

after the Resizer marked the filler tuples (i.e., column 𝑘 has
been created) and before actually trimming the intermediate
results. This ensures that no adversary can link secret shares
by observing the outputs of different oblivious operators
or repeating the same or similar queries multiple rounds.
MP-SPDZ [27] implements state-of-the-art shuffling [3, 28]
protocol using the Waksman network [38].
In trim, the computing nodes send their shares of 𝑘 to

reconstruct 𝑘 and discard tuples with 𝑘 [𝑗] = 0.

4.2.4 Complexity Analysis. The computational and com-
munication complexities of the Resizer steps vary by opera-
tion in terms of its input size, 𝑁 , number of oblivious tuples,
and 𝑀 , the tuple width in bytes, and output size 𝑆 . Tuple
marking scales linearly with the number of tuples 𝑁 , yield-
ing𝑂 (𝑁) complexity in both dimensions. Although the algo-
rithm theoretically requires 𝑂 (𝑁) synchronization rounds,
the tuple-level independence of parallel tuple marking re-
duces the cost through the unrolling and batching mecha-
nism used in MP-SPDZ [27], thereby improving practical
performance under MPC. In the RSS protocol, shuffling [29]
is not computationally expensive compared to sorting, with
a per-party cost of 𝑂 (𝑀𝑁 log𝑁) for data of length𝑀 , and
communication cost of 𝑂 (𝑁). Finally, the trim step com-
bines𝑂 (𝑁) and𝑂 (𝑆) computation, where 𝑆 is the size of the
trimmed result, but requires only 𝑂 (1) communication. In
our three-party setting, it is expected that the runtime will
be dominated by the communication cost.

4.2.5 Placement Strategies. In addition to the flexibility
in defining a distribution to sample from for the number
of filler tuples to keep, Reflex creates the opportunity to
flexibly decide which operators to include a Resizer after.
while clearly beneficial in cases when it leads to significant
trimming of intermediate results sizes, depending on the
expected selectivity and location of the operator in the query
tree, including a Resizer can even lead to slowdowns. We
explore this question in detail in Section 5.3.

1
https://mp-spdz.readthedocs.io/en/latest/runtime-options.html

4.3 User-defined Distributions
The role of this distribution is to dictate the amount of filler
tuples 𝜂𝑖 marked to be kept from trimming. Ideally, 𝜂𝑖 should
not be greater than 𝑁𝑖 −𝑇𝑖 , i.e., in the range of [0, 𝑁𝑖 −𝑇𝑖].
This is inherently enforced through the loop of Algorithm 1
in Section 4.2.2. By construction, the Resizer will always
maintain true tuples, regardless of the outcome of the coin
flip. In Reflex, the output of the distribution is actually a
probability 𝑝𝑖 which determines 𝜂𝑖 as the expected value of
flipping a 𝑝𝑖 weighted coin 𝑁𝑖 −𝑇𝑖 times.
The shape and parameters of the distribution strongly

affect both performance and privacy. The former is public
knowledge, so distributions which produce only a single
value (e.g., 𝑝𝑖 = 0.1) make inferring the true intermediate
result size trivial. A distribution biased toward smaller 𝑝𝑖
values results, on average, in fewer filler tuples being re-
tained in O𝑖 , which improves performance. Conversely, a
distribution with less bias (i.e., closer to uniform) may result
in more filler tuples being retained; however, it increases the
uncertainty of intermediate result sizes, thereby making it
harder for an attacker to recover the true intermediate size
𝑇𝑖 , as more observations of 𝑆𝑖 values (i.e., more query execu-
tions) would be required. In Section 4.4, we present a metric
that computes how many observations of 𝑆𝑖 are needed by
the attacker to recover𝑇𝑖 under specific conditions and show
how different distribution parameters affect the number of
observations required to recover 𝑇𝑖 in Section 5.3.

The objective is to select a distribution shape and param-
eters that jointly satisfy the performance and privacy re-
quirements of data analysts and data owners. Because the
distribution must be determined during query planning, its
configuration is limited to the information available at that
stage, such as the input size and, when available, operator
selectivity. This decision can be further guided by our metric
in conjunction with an estimate of the system’s performance
cost, expressed as the total estimated number of tuples to be
processed per query (as shown in Figure 1b).

Overall, the design space of distributions is very large, and
it is beyond the scope of this work to automate the process of
defining or tuning them for specific workloads. That being
said, we provide two example strategies: general distribution
and a distribution that can be used to satisfy 𝜖-differential pri-
vacy (DP) on intermediate results sizes, that is, the truncated
Laplace distribution as deployed in Shrinkwrap [5].

4.3.1 Example Distribution: Beta. An intuitive choice
for sampling the success probability 𝑝𝑖 for the tuple-marking
step is the Beta distribution, 𝐵𝑒𝑡𝑎(𝛼𝑖 , 𝛽𝑖). Combined with the
Binomial distribution 𝐵(𝑁𝑖 −𝑇𝑖 , 𝑝𝑖) representing the tuple
marking step, this yields a Beta-Binomialmodel,𝐵𝑒𝑡𝑎𝐵𝑖𝑛(𝑁𝑖−
𝑇𝑖 , 𝛼𝑖 , 𝛽𝑖). This formulation allows 𝑝𝑖 to be drawn directly
from [0, 1] and then applied as the coin-flip probability over
𝑁𝑖 tuples. For each inserted Resizer, the parameters 𝛼𝑖 and 𝛽𝑖
can be pre-configured independently at the query planning

https://mp-spdz.readthedocs.io/en/latest/runtime-options.html

Long Gu, Shaza Zeitouni, Carsten Binnig, and Zsolt István

phase. The expected number of filler tuples 𝐸 (𝜂𝑖) can be
computed as 𝛼𝑖

𝛼𝑖+𝛽𝑖 × (𝑁𝑖 −𝑇𝑖).
To improve the overall query performance, the number

of (expected) filler tuples 𝐸 (𝜂𝑖) should be minimized. Since
𝑁𝑖 −𝑇𝑖 cannot be controlled at the query planning phase, 𝛼𝑖
and 𝛽𝑖 should be chosen carefully. The larger the difference
between 𝛽𝑖 and 𝛼𝑖 , with 𝛽𝑖 > 𝛼𝑖 , the stronger the tendency
toward smaller 𝑝𝑖 values and thus smaller 𝐸 (𝜂𝑖). For instance,
a Beta distribution with 𝛼𝑖 = 2 and 𝛽𝑖 = 6 represents a
skewed distribution where the probability 𝑝𝑖 is more likely
to be closer to 0 than to 1 and the average number of filler
tuples 𝐸 (𝜂𝑖) = 0.25 × (𝑁𝑖 −𝑇𝑖).

4.3.2 Example Distribution: DP-based. To provide 𝜖-
differential privacy guarantees for the intermediate results
sizes, distributions such as the truncated Laplace distribu-
tion or the exponential distribution can be deployed. For
example, in Shrinkwrap [5], truncated Laplace distribution
𝑇𝐿𝑎𝑝 (𝜖𝑖 , 𝛿𝑖 ,Δ𝑐𝑖) is deployed and pre-configured for each op-
erator 𝑂𝑖 during the query planning phase:
• Sensitivity (Δ𝑐𝑖) of operator 𝑂𝑖 quantifies how much
an SQL operator’s output can change when a single
database record is modified.
• Privacy budget (𝜖𝑖) reflects the total privacy loss in-
curred by a mechanism, often expressed using an
(𝜖𝑖 , 𝛿𝑖)-differential privacy guarantee.

• Scale parameter (𝑏𝑖) is derived from the sensitivity
and privacy budget as 𝑏𝑖 = Δ𝑐𝑖/𝜖𝑖 .
• Location parameter (𝜇𝑖) defines the center of the Laplace

distribution and is set to a positive value to favor non-
negative samples.

Under DP rules, a privacy budget must be maintained, and
upon repeated executions of queries, the privacy parameters
need to be adjusted accordingly. The effect of this is that,
over time, 𝑆𝑖 will grow. After exhausting the privacy budget,
operators must behave fully oblivious.
DP-based distributions can be deployed with our tuple

marking approach by computing 𝑝𝑖 from 𝜂𝑖 : This is done
by trimming 𝜂𝑖 at runtime to𝑚𝑖𝑛(𝑁𝑖 −𝑇𝑖 , 𝜂𝑖) and dividing
by 𝑁𝑖 − 𝑇𝑖 to ensure the success probability of 𝑝𝑖 ∈ [0, 1].
The expected number of filler tuples value 𝐸 (𝜂𝑖) is again
𝑝𝑖 × (𝑁𝑖 −𝑇𝑖).

4.4 Proposed Metric: Rounds to Recover
To better understand the effect of Reflex on the privacy of
intermediate results sizes, we define a conservative metric
that computes the number of equivalent repetitions of an

operator required to recover the operator’s true result size 𝑇

(in short, Rounds to Recover). An equivalent repetition of an
operator’s execution occurs when, even in different queries,
the operator is executed with the same input and yields the
same true intermediate result size. This definition could be
further refined to account for adversarially crafted queries
designed to exploit repetitions of an operator, which take

slightly different inputs and produce slightly different output
sizes. However, such considerations fall outside the scope
of this work, as we focus on enterprise settings where data
analysts are not assumed to act maliciously.
The metric quantifies how often a pre-configured Re-

sizer placed after some operator can execute on a dataset D
before the size of the true intermediate result of the opera-
tor has to be considered as revealed. Note that this metric
does not quantify the privacy loss of individual tuples in the
intermediate results due to deploying Reflex. Assuming a
passive attacker (see Section 3) collects 𝑟 observations (sam-
ples) of the operator 𝑂 trimmed output size over 𝑟 queries:
𝑆1, 𝑆2 . . . 𝑆𝑟 , where 𝑘 = 0 . . . 𝑟 −1 and each 𝑆𝑘 =𝑇 +𝜂𝑘 and 𝜂𝑘
is the amount of filler tuples that is independently sampled

from a distribution F (𝜇𝜂, 𝜎2
𝜂) with a finitemean value 𝜇𝜂 and

a finite variance value 𝜎2
𝜂 , and added to 𝑇 , our secret value.

We assume the distribution characteristics to be known.
The trimmed output size 𝑆 follows the same distribution

of 𝜂 with a mean value 𝜇𝑠 = 𝜇𝜂 + 𝑇 and a variance value
𝜎2
𝑠 = 𝜎2

𝜂 .
After sufficient observations, the attacker can compute

the average of observations 𝑆 = 1
𝑟

∑𝑟
𝑘=1 𝑆𝑘 to approximate/es-

timate the mean value 𝜇𝑠 . That is:

𝑆 =𝑇 +
∑𝑟

𝑘=1 𝜂𝑘

𝑟
=𝑇 + 𝜂 ≈ 𝑇 + 𝜇𝜂 .

Hence, the attacker can estimate the true output size: 𝑇 ≈
𝑆 − 𝜇𝜂 . Based on the Central Limit Theorem (CLT), 𝑆 fol-
lows a normal distribution, with a mean value 𝜇𝑠 and a
variance value 𝜎2

𝑠 /𝑟 , for large enough 𝑟 . Using confidence
intervals 𝑃 (|𝑆 − 𝜇𝑠 | ≤ err) ≥ 𝛼 , we can set an error margin,
err ≤ 𝑧𝛼/2 × 𝜎𝑠√

𝑟
, where (𝑧𝛼/2 is the z-score corresponding to

the desired confidence level. For example, for 𝛼 = 99.9%,
(𝑧𝛼/2 = 3.291).
Therefore, the number of rounds 𝑟 , representing our RtR

metric, can be computed as

𝑅𝑡𝑅 ≥ 𝑧2
𝛼/2 ×

𝜎2
𝑠

err2 (1)

5 Evaluation
We describe our setup and objectives in Section 5.1. Next, we
analyze the cost of Resizer and compare it to SQL operators
in Section 5.2, examine the performance–privacy trade-off
in Section 5.3, evaluate the runtime of HealthLnk and TPC-
H queries, and finally compare Reflex to related work in
Section 5.4.

5.1 Setup and Goals
Weevaluate Reflex on three physicalmachines, each equipped
with 256 GBx2 of RAM and two with Intel(R) Xeon(R) Gold
5220 CPU @ 2.20 GHz, another one with Intel(R) Xeon(R)
Gold 5120 CPU @ 2.20 GHz, providing a robust and scalable
environment for secure computation. Data for the queries

Reflex: Faster Secure Collaborative Analytics via Controlled Intermediate Result Size Disclosure

is loaded locally from each machine, and an additional ex-
ternal client starts the execution. We evaluated each query
individually over three computing nodes in a local area net-
work (LAN) environment with an average round-trip time
(RTT) latency of 0.25 ms, averaging the results across five
independent runs. Overall, our experimental evaluation sets
out to provide answers to three sets of questions:
𝑄1: How expensive is a Resizer compared to oblivious SQL

operators? How does its runtime scale with more and wider

tuples? – We provide answers in Section 5.2 and show that a
Resizer is comparable in runtime cost to the operators and
gracefully scales with increasing data sizes.
𝑄2:What is the practical implication of the performance–

privacy trade-off when revealing intermediate result sizes?

How easily can an attacker learn the true intermediate result

sizes? – This trade-off is explored in Section 5.3, where we
show that there is no silver bullet – but there is a large space
to explore and, with Reflex, future query optimizers will be
able to decide where to use how much protection in order to
reach a performance target.
𝑄3: How much faster are queries when Reflex is used to

trim the intermediate result sizes? Are the speedups similar

to expectations based on related works? – We explore this in
Section 5.4 using HealthLnk and TPC-H queries. We demon-
strate that Reflex enables orders of magnitude faster query
execution than fully oblivious and other related work ap-
proaches, while maintaining at least the same level of secu-
rity as other related work that discloses trimmed intermedi-
ate result sizes.

5.2 Runtime Cost of Resizer
Resizer vs. other approaches. In Figure 5, In Figure 5, we
examine how the runtime of Resizer scales with increasing
input size, measured by the number and width of tuples.
We compare Resizer against two alternatives: (1) A counter-
based Resizer that has the same steps as Resizer (mark, shuf-
fle, and trim). For this approach, the number of filler tuples
to retain is sampled directly, 𝜂𝑖 ∼ F (𝜃), and 𝜂𝑖 is assumed to
be some value between [0, 𝑁𝑖]. In counter-based Resizer ’s
mark step, the tuples are processed sequentially in order. For
each tuple 𝑗 of O𝑖 , the following is executed: If the counter
has not reached the 𝜂𝑖 value, or if the tuple belongs to the
true output (i.e., 𝑐𝑖 [𝑗] = 1), its corresponding bit 𝑘𝑖 [𝑗] is set
to 1. Otherwise, the tuple is excluded, and 𝑘𝑖 [𝑗] is set to 0.
This step is followed by shuffling and trimming.

(2) A sort&cut approach as presented in [5]. Here, the
tuples of O𝑖 are first sorted in descending order based on
column 𝑐𝑖 , after which some filler tuples are trimmed from
the bottom. The number of filler tuples retained in O𝑖 is
determined by sampling the truncated Laplace distribution.
Note that the selectivity and the number of filler tuples

have no effect on the Resizer’s runtime since all tuples must
be processed by the Resizer. Figure 5a shows the behavior of
Resizer with increasing number of tuples, where each tuple

102 103 104 105 106
10−3

100

103

Best performance and
highest privacy

𝑂 (𝑁)

Resizer Input Size [Rows]

Ti
m
e
[s
ec
on

ds
]

Sort&Cut
Counter-based Resizer

Resizer

(a) Runtime with increasing row count and fixed row width of
16 bytes (plaintext)

22 23 24 25 26
0

2

4

6

8

𝑂 (𝑙𝑜𝑔2 (𝑀))

Number of Columns in Resizer Input (4 bytes per column)
Ti
m
e
[s
ec
on

ds
]

Sort&Cut
Counter-based Resizer

Resizer

(b) Runtime with increasing row width and fixed row count of
10000

Figure 5. Resizer demonstrates linear scalability with the
number of rows and logarithmic scalability with the number
of columns. It outperforms the counter-based version and
sort&cut by more than an order of magnitude.

has a fixed width of 4 columns, and each column is 4 bytes
in plaintext, resulting in a tuple width of 4 × 4 = 16 bytes.
We compare the runtime of Resizer with the counter-based
Resizer and our implementation of the sort&cut method [5]
in MP-SPDZ.

As expected, Resizer runtime scales linearly with the num-
ber of rows in its input, still an order of magnitude faster
than the counter-based Resizer. Although the counter-based
Resizer is simple to implement, its inherently sequential na-
ture renders it inefficient for MPC execution. It requires a
secure counter to be checked in each iteration, to determine
whether the count of filler tuples marked so far has reached
the limit 𝜂𝑖 , thereby creating a loop dependency. In contrast,
for the Resizer each iteration is independent, enabling paral-
lelism and thus more efficient execution.

Furthermore, as illustrated in Figure 5a, both Resizer and
counter-based Resizer outperform the sorting-based solution.
This improvement arises because secure shuffling is less
computationally expensive than secure sorting [5].

We also conducted an experiment to show that the width
of tuples plays a less critical role in the runtime of the Re-
sizer. We fixed the number of tuples at 𝑁 = 10, 000. As the
table width increases from 2 to 64 columns (with 10, 000

Long Gu, Shaza Zeitouni, Carsten Binnig, and Zsolt István

102 103 104 105 106

10−2

100

102

Oblivious Operator Result Size [Rows]

Ti
m
e
[s
ec
on

ds
] GroupBy+Resizer

GroupBy
Join𝐵+Resizer

Join𝐵
Filter1+Resizer

Filter1

Figure 6.Adding Resizer after an operator increases runtime,
but reducing the output size will speed up the next operator.

rows fixed), the Resizer runtime rises gradually, exhibiting a
logarithmic growth. Tuple width does not affect the mark or
trim steps of the Resizer, both steps operate purely row-wise,
acting on the 𝑐𝑖 and 𝑘𝑖 columns. However, the shuffle step
involves a copy operation, which can be slightly impacted by
the width of the tuples being copied. As shown in Figure 5b,
increasing the number of columns results in only a sublinear
increase in cost. Overall, the runtime of Resizer is both the
lowest compared to the other variants.

Combining Oblivious Operators with Resizer. In this
experiment, we compare the runtime overhead of Resizer to
other database operators under different intermediate result
sizes (before trimming). In the context of a single operator
followed by a Resizer, the number of rows that are being
trimmed away plays no role in the runtime of either the
operator or the Resizer. Its effect is only visible for the next
operator, with less input data to process. For this reason,
in Figure 6 and Figure 7, we do not show operator selectivity
or the count of filler tuples.
Figure 6 shows the runtime of oblivious operators with

andwithout a Resizer.We focused here on (1) a filter with one
equality condition (Filter1), (2) a join that has two balanced
tables as input, each has a size equal to the square root of
the output size (Join𝐵), and (3) a group by operator that
groups based on one column. Thanks to the linear runtime
of Resizer, which is independent of the type of operator
executing before it, the results in Figure 6 are predictable, as
performance does not degrade significantly.

In Figure 7, we show how expensive a Resizer is relative to
the actual operators, with a fixed 1M intermediate result size
(i.e., the oblivious output of the operator and the input to the
Resizer has 1M rows). We compared Filter with one equality
condition (Filter1) and four equality conditions (Filter4), a
balanced join (Join𝐵) with two input tables of size 𝑠𝑞𝑟𝑡 (𝑁),
an unbalanced join (Join𝑆) of 1 : 𝑁 , and a group by. As
seen in Figure 7, we tested each step of Resizer separately.
The mark step of Resizer is more expensive than Filter1 but
cheaper than the GroupBy. This is because for each tuple, the
Resizer needs to conduct an online comparison and a logical

𝐹𝑖𝑙
𝑡𝑒𝑟

1
𝐹𝑖𝑙

𝑡𝑒𝑟
4

𝐽𝑜
𝑖𝑛𝐵 𝐽𝑜

𝑖𝑛𝑆

𝐺𝑟
𝑜𝑢
𝑝𝐵
𝑦

20

40

60

80

100

Re
la
tiv

e
ru
nt
im

e
fo
r1

M
ro
w
s[
%]

Trim
Shuffle
Mark

Operator

Figure 7.Depending on the oblivious operator, Resizer could
be relatively cheap compared to the operator itself. Filter1
is a filter with 1 equality condition, Filter4 is a filter with 4
equality conditions, Join𝐵 has two balanced tables, each with
a size equal to the square root of the output size, as input,
and Join𝑆 has two unbalanced tables as input.

OR gate over secret shares. However, Filter1 only requires
one equality check. Similarly, if the operator is more complex,
such as GroupBy (which includes sorting as a pre-operation),
the mark step of Resizer will seem relatively cheap. The
shuffle step is performed in constant rounds, with the final
trim step being cheaper than the previous operations.

5.3 Privacy vs. Performance
In this evaluation, we use the Rounds to Recover (RtR) in
Equation (1) derived in Section 4.4. RtR shows how often
an attacker needs to observe the MPC execution of equiv-
alent repetitions to recover the true intermediate size 𝑇𝑖 of
an operator 𝑂𝑖 , within a given error margin when Reflex is
deployed. Recall 𝑅𝑡𝑅 ≥ 𝑧2

𝛼/2 × 𝜎
2
𝑠 /𝑒𝑟𝑟 2. In our experiments,

we fix 𝑧𝛼/2 = 3.291, i.e., to compute RtR that achieves a con-
fidence level of 99.9%, and examine the effect of different
distributions, represented by their variances and error mar-
gins. Furthermore, we examine the performance–privacy
trade-off.

Resizer vs. Counter-based Resizer. In this experiment,
we evaluate the impact of coin tossing-based mark step
on RtR. We compare the coin-tossing-based mark with the
counter-basedmark step Section 5.2.We use the 𝜖-differential
truncated Laplace distribution 𝑇𝐿𝑎𝑝 (𝜖 = 0.5, 𝛿 = 0.00005)
on the range [0,∞) [5] and fix the error margin to 1 – in
other words, the attacker “wins” if 𝑇 ± 1 can be determined
with 99.9% confidence level.

When using the Counter-based resizer, 𝜂 will be sampled
directly from 𝑇𝐿𝑎𝑝 (𝜖 = 0.5, 𝛿 = 0.00005). In case of coin-
tossing, 𝑝 is computed as 𝑚𝑖𝑛(𝑒𝑡𝑎, 𝑁)/𝑁 (with 𝜂 sampled
as mentioned above). Using the law of variance, we compute
the variance of the combined truncated Laplace and Binomial
distributions for two values of𝑇 (𝑇 = 0.1×𝑁 and𝑇 = 0.5×𝑁).
In addition, we test under different sensitivities (Δ𝑐 = 1 and

Reflex: Faster Secure Collaborative Analytics via Controlled Intermediate Result Size Disclosure

102 104 106101

102

103

N

Ro
un

ds
to

re
co
ve
rT
±1

(R
tR
)

Counter-based Resizer
Resizer,𝑇 = 0.1𝑁
Resizer,𝑇 = 0.5𝑁

(a) RtR for TLap(Δ𝑐 = 1)

102 104 106

104

106

108

N

Ro
un

ds
to

re
co
ve
rT
±1

(R
tR
)

Counter-based Resizer
Resizer,𝑇 = 0.1𝑁
Resizer,𝑇 = 0.5𝑁

(b) RtR for TLap(Δ𝑐 =
√
𝑁)

Figure 8. Coin tossing-based Resizer (in red and green)
mostly outperforms counter-based Resizer with𝑇 = 0.1𝑁 (in
blue). More observations of the operator’s noisy output size
𝑆 are needed to recover the true output size 𝑇 with an error
margin of 1 tuple. Both figures deploy a truncated Laplace
distribution from [5] 𝑇𝐿𝑎𝑝 (𝜖 = 0.5, 𝛿 = 0.00005). The left-
side figure has a narrower distribution with Δ𝑐 = 1 and a
scale 𝑏 = 1

𝜖
= 2, whereas the right-side figure has a wider

distribution with Δ𝑐 =
√
𝑁 a scale 𝑏 =

√
𝑁
𝜖

= 2
√
𝑁 .

Δ𝑐 =
√
𝑁), which affect the shape of the distribution (narrow

or wide).
For the TLap distribution with a low scale 𝑏 = 2 (Δ𝑐 = 1),

Figure 8a demonstrates that the coin tossing-based mark re-
sults in more rounds RtR than the counter-based mark, even
for larger 𝑇 values. Counter-based mark can only achieve
comparable privacy guarantees when combined with a TLap
distribution of a higher scale 𝑏 = 2

√
𝑁 (Δ𝑐 =

√
𝑁) as shown

in Figure 8b.
Impact of Distribution. In this experiment, we use Re-

sizer with two different distributions: the truncated Laplace
distribution, as defined above, and the Beta distribution
𝐵(𝛼 = 2, 𝛽 = 6, described in Section 4.3 and utilize an er-
ror margin of 𝑇 ± 1, our results in Figure 9a indicate that
Beta-binomial distribution achieves more RtR compared to
truncated Laplace, even with high scale value 𝑏 = 2

√
𝑁 .

Larger values of 𝑟 affect performance. To analyze the trade-
offs, we evaluate the runtime of Resizer with the different
distributions: 𝑇𝐿𝑎𝑝 (𝜖 = 0.5, 𝛿 = 0.00005,Δ𝑐 = 1000) and
𝐵𝑒𝑡𝑎(𝛼 = 2, 𝛽 = 6) under the same workload as in Figure 10
(right-side), with 𝑁 = 1𝑀 and 𝑇 = 10%𝑁 , for the operation
sequence Join𝐵 → Resizer→ OrderBy. Resizer configured
with 𝑇𝐿𝑎𝑝 (0.5, 0.00005, 1000), resulting in an average count
of filler tuples of approx. 2%𝑁 , achieved a runtime of 104s. In
comparison, using 𝐵𝑒𝑡𝑎(2, 6), which introduces an average
count of filler tuples of 25%(𝑁 −𝑇) = 22.5%𝑁 , resulted in a
runtime of 236s.

We analyze the impact of the error margin on the number
of rounds an attacker needs for the two distributions when

102 104 106
100

106

1012

N

Ro
un

ds
to

re
co
ve
r𝑇
±

1
(R
tR
)

Beta(𝛼 = 2, 𝛽 = 6)
TLap(Δ𝑐 =

√
𝑁)

TLap(Δ𝑐 = 1)

(a) RtR with 𝑒𝑟𝑟 = 1

102 104 106
100

102

104

NRo
un

ds
to

re
co
ve
r𝑇
±

1%
𝑁

(R
tR
)

Beta(𝛼 = 2, 𝛽 = 6)
TLap(Δ𝑐 =

√
𝑁)

TLap(Δ𝑐 = 1)

(b) RtR with 𝑒𝑟𝑟 = 1%𝑁

Figure 9. RtR highly depends on the error margin accepted
by the attacker. Combining Resizer with Beta distribution
(green plots) results in more observations required to recover
𝑇 even with the attacker tolerating accuracy (by allowing
a higher error margin in Equation (1)). Note that all plots
use 𝑇 = 0.05𝑁 . For a narrow truncated Laplace distribution
(Δ𝑐 = 1), RtR = 1, i.e., one observation, for small 𝑇 values.

combined Resizer. Relaxing the error margin allows for an
informal examination of the potential extent of information
leakage on 𝑇 . Specifically, we investigate how many rounds
an attacker would need to guess 𝑇 within a specified range
relative to 𝑁 . Our findings in Figure 9b demonstrate that
relaxing the accuracy requirement for 𝑇 can dramatically
reduce the number of rounds. For instance, with small 𝑇
values (e.g.,𝑇 = 5% × 𝑁), using a narrow distribution (𝑏 = 2)
and permitting a recovery accuracy of 𝑇 ± 1% × 𝑁 reduces
the number of rounds to 𝑅𝑡𝑅 = 1 (i.e., the attacker needs to
observe only a single repetition to discover 𝑇 = 5% × 𝑁). In
contrast, wider distributions can still offer acceptable guar-
antees, but the expected runtime will be significantly larger,
as fewer tuples are trimmed on average. We believe the RtR
metric is a crucial step towards enabling the query optimizer
to consider the privacy implications of different distributions
and balance them with their performance implications.

Resizer Placement – Micro-benchmarks. Based on the
results in Figure 7, it is clear that a Resizer incurs an ad-
ditional runtime cost, which must be balanced against the
benefits of data reduction as the query tree is traversed. In
the previous experiment, we placed a Resizer after each in-
ternal operator, but in the future, a query optimizer should
decide on a per-operator basis, based on its expected selec-
tivity and the magnitude of expected filler tuples, whether a
Resizer is worth inserting or not. To showwhat cost functions
an optimizer might use, we depict the performance of two
recurring operator combinations: a join followed by a filter
(Join𝐵 → Filter1), and a join followed by an order by (Join𝐵
→ OrderBy). We test the overall runtime with and without
a Resizer after the join in both combinations.

Long Gu, Shaza Zeitouni, Carsten Binnig, and Zsolt István

0 0.5 1
0

20

40

Join Selectivity

Ex
ec
ut
io
n
Ti
m
e
[s
]

Join𝐵+Resizer+Filter1
Join𝐵+Filter1

0 0.5 1
0

200

400

600

Join Selectivity

Ex
ec
ut
io
n
Ti
m
e
[s
]

Join𝐵+Resizer+OrderBy
Join𝐵+OrderBy

Figure 10. The left figure shows that inserting Resizer (that
adds 10% of the FO-Join output size) between Join and Filter
is not beneficial, whereas the right figure shows that between
Join and OrderBy it will be almost always beneficial.

In Figure 10, we show the performance of the query snip-
pets, assuming different selectivity of the join. Interestingly,
in Figure 10 (left-side), the runtime with Resizer is always
higher than without it. Hence, placing the Resizer before
the filter, with the filter as the last operator in the query,
would actually slow it down. For the case in Figure 10 (right-
side), the opposite is true, and inserting the Resizer speeds
up execution except for selectivity > 85%.
In fully oblivious execution, the query plans have little

space for optimization. With Reflex, query optimization is
possible. As this example shows, it is straightforward to con-
struct cost functions for future query optimizers to inform
their decisions.

Effect of Resizer Placement in a TPC-H Query. In this
experiment, we evaluate the impact of different placement
rules for Resizer on both the runtime and the Rounds to
Recovery (RtR). The three rules are: insert a Resizer after
all intermediate operators, only after joins, or only after
GroupBys (plotted as lines with marks on Figure 11). We
assume the Resizers are configured to receive 𝑝 values using
the Beta distribution. For datasets with 15% selectivity, we
used four configurations: 5%, 10%, 20%, and 30% of input size,
as the average count of filler tuples. For 85% selectivity, we
used: 5%, 10%, and 15% of the input size as the average count
of filler tuples. Although the relative RtR behavior is valid
across distributions, it is essential to note that the choice
of user-defined distribution has a significant impact on the
absolute value and, consequently, the real-world security of
the system.

We evaluate the runtime and the RtR metric of these place-
ments on TPC-H Q3, with data modified such that all opera-
tors have either around 15% or 85% selectivity – to show the
selectivity spectrum on the same query tree. The reported
RtR value reflects the minimum among RtR values of all
operators in Q3 (e.g., the weakest link in the query plan).
The red star on Figure 11 denotes the execution of Q3

without any Resizer insertions and with all intermediate
result sizes are fully revealed. This configuration yields the
best performance but no protection, as a single observation

101 104 107 1010

500

1,000

1,500

2,000

Minimum RtR across operators

Q
ue
ry

Ru
nt
im

e
[s
]

After all (s=15%)
After all (s=85%)
After GroupBy (s=15%)
After GroupBy (s=85%)
After Join (s=15%)
After Join (s=85%)
Fully Oblivious
Fully Revealed

Figure 11. Different Resizer placement rules for modified
TPC-H Q3, with average SQL operator selectivity of s=15%,
respectively s=85%, impacts RtR (depicted: minimum RtR
across operators in the query). Greedily adding a Resizer after
each oblivious operator isn’t always optimal. The Resizer in-
tegration method impacts both performance and privacy.

is sufficient to recover the true sizes of the intermediate
results of all operators (i.e., 𝑅𝑡𝑅 = 1). In contrast, the red
bar represents the execution time of Q3 in fully oblivious
mode, where no Resizer is used. This setup offers the highest
level of privacy (i.e., 𝑅𝑡𝑅 →∞), and is depicted as a bar to
indicate that any strategy with a higher execution time (i.e.,
that crosses this bar) is considered impractical.
Key insights from this experiment can be summarized

as follows: First, inserting Resizer after every operator im-
proves runtime but severely reduces privacy (low RtR), as
fewer rounds are needed to infer the true intermediate result
size of the weakest operator in the query plan. Therefore,
a more targeted placement of Resizer can yield comparable
performance gains while achieving higher RtR. For example,
the After Join rule has runtime similar to the After all rule,
but with better RtR.

Second, placing Resizer after GroupBy operators high up
the query tree results in higher RtR but worse performance
compared to placing it after Join operators. This suggests
that placing Resizer earlier in the query plan is perhaps a
generally better choice.

Third, as the average selectivity of SQL operators increases,
the effectiveness of Resizer diminishes: execution time wors-
enswhile RtR remains similar. For example, theAfter GroupBy
and After Join rules exhibit worse runtimes than the fully
oblivious baseline under high selectivity.

Finally, the choice of distribution, i.e., the number of filler
tuples added to the true intermediate result, clearly has a
significant impact on performance. Adding more filler tuples
has a super-linear increase in runtime. However, in most
cases, it does not always lead to proportionally better RtR.
For all plotted placement rules, beyond a certain point, re-
taining more filler tuples no longer meaningfully increases
the number of rounds required to infer true intermediate
result sizes.

Reflex: Faster Secure Collaborative Analytics via Controlled Intermediate Result Size Disclosure

System Security MPC Framework (Domain) IRS Protection (Operators) Configurable Protection Select Algorithm Join Algorithm Group By Algorithm
SMCQL [4] Semi-Honest Oblivm [32] (Boolean) Fully Oblivious (All) Sequential NLJ Sort-based
Shrinkwrap [5] Semi-Honest EMP-toolkit [43] (Boolean) DP-based Trimming (All) Sequential NLJ Sort-based
Secretflow [17] Semi-Honest SCQL [1] (Boolean) Fully Oblivious or Revealed (Join, Group by) Sequential PSI-Join Sort-based
Secrecy [31] Semi-Honest Self-implemented (Hybrid) Fully Oblivious (All) Sequential NLJ Sort-based
Reflex (this work) Semi-Honest MP-SPDZ [27] (Hybrid) Flexible Trimming (All) Sequential NLJ Sort-based

Table 1. Comparison to related work. Reflex is the only system offering a flexible and efficient Resizer, enabling users to
balance privacy and performance.

Com
orb

idit
y

Dos
age

Stu
dy

Asp
irin

Cou
nt

3-Jo
in10−1

103

107

Estimated

1.38x1.71x2.1x
6.67x
19.8x

1400x

8.1x
27.4x

1646x

7.5x
24.2x

Ex
ec
ut
io
n
Ti
m
e
[s
]

Fully Oblivious IRS

𝐸 (𝜂) = 30%𝑁
𝐸 (𝜂) = 10%𝑁
Revealed IRS

Figure 12. We apply Resizer to the HealthLnK queries (syn-
thetic data with table sizes of 1000 and fixed selectivity of
10% per operator) and show that, when trimming filler tu-
ples, performance is dramatically increased. If no fillers are
trimmed, query runtimes increase by more than 1000x.
5.4 Analytical Queries from Related Work
HealthLnk Queries in Reflex. We investigate the run-
time of HealthLnk queries [35] used in related work [4–
6], that are indicative of clinical data research methodolo-
gies [24]. In Figure 12 we present the execution times of the
Comorbidity Study, Dosage Study, Aspirin Count, and 3-join
queries. Unless otherwise specified, each table has been pop-
ulated with 𝑁 = 1000 synthetic tuples, in a way that filter
and join selectivities are 10%𝑁 per operator.

Figure 12 compares the runtimes (in seconds) of Reflex
in the following settings: (i) fully oblivious execution with-
out intermediate trimming (red diamonds), resulting in fully
oblivious intermediate result sizes (IRS), (ii) Reflex using
Resizer operators with a probability distribution that in ex-
pectation keeps 𝜂 = 30%𝑁 filler tuples (orange triangles),
(iii) Reflex with 𝜂 = 10%𝑁 (blue squares), and (iv) oblivious
execution of operators but trimming all filler tuples (green
circles), effectively revealing the IRS. We placed a Resizer op-
erator after each operator in the query, except for the last
operator.
The results show that reducing IRS leads to significantly

reduced runtime for queries with joins (Dosage Study, As-
pirin Count, 3-Join). Since the Comorbidity query does not
involve a join operation, it is less affected by ballooning data
sizes, benefiting only modestly from trimming. Note that the
runtime of the 3-Join query under a fully oblivious setting
is estimated (it could not be executed on our platform due
to memory limitations). We estimate the runtime by mea-
suring its runtime with smaller table sizes and extrapolating
using the trend shown in Figure 1a. Overall, depending on

the complexity of the queries to be executed – and in partic-
ular the number of joins – Reflex can substantially boost
performance when trimming away fillers.
Comparison to Related Work. Table 1 compares Re-

flex with representative semi-honest analytics systems that
use MPC. The table shows i) choice of MPC Framework and
computational domain, which has an important effect on
overall performance, ii) a summary of how these frameworks
protect intermediate result size and whether they expose
some user-facing parameters for relaxing these protections,
and iii) the underlying algorithms used for filter, join, and
group by. Due to the numerous design differences across
frameworks and variations in implementation, it is relatively
challenging to provide an apples-to-apples comparison of
these systems. The goal of this table is to provide an overview
and show that Reflex is based on a comparable foundation
to the state of the art. In terms of baseline performance of
the MPC frameworks, given the analytics use-case, those
that operate in an arithmetic or hybrid model are expected
to be significantly faster than those using solely binary: SM-
CQL [4] and Shrinkwrap [5] rely on Boolean-circuit frame-
works (Oblivm [32] and EMP-tookit [43]). SecretFlow [17]
also uses a Boolean domain in SCQL [1]. Secrecy and Reflex
execute in hybrid mode, combining arithmetic and Boolean
domains for improved efficiency.
In terms of protecting the intermediate result size, SM-

CQL [4] and Secrecy [31] enforce full obliviousness, incur-
ring a high cost on operations such as joins and group by.
Shrinkwrap [5] introduces a differentially private (DP) mech-
anism to reduce overhead. The user can influence the trim-
ming behavior indirectly through the privacy budget and
other parameters of the DP mechanism. Secretflow [17] can
operate in two modes: either keeping IRS oblivious, without
performance benefits, or exposing it fully. As the table shows,
Secretflow offers additional security relaxations that users
can choose, allowing, for instance, parties to learn something
about the contents of a join result. However, this results in
semi-oblivious execution of core operators, which no other
system compromises on. Reflex is the only system with
flexible IRS protection based on user-defined distributions.
These distributions could even be used to provide the DP
guarantees from related work.
Query processing happens in a similar fashion in all sys-

tems: they employ sequential selection and sort-based group-
by [20]. For joins, most use a nested-loop join (NLJ), which

Long Gu, Shaza Zeitouni, Carsten Binnig, and Zsolt István

iteratively compares each pair of tuples from the input rela-
tions, whereas SecretFlow [17] adopts a PSI-join, i.e., a join
based on private set intersection [25] that securely identifies
matching join keys between two datasets – this algorithm,
while only usable for key-to-key joins, has the better asymp-
totic complexity than NLJ. Overall, Reflex uses algorithms
similar to the state of the art and leverages the maturity and
efficiency of the underlying MP-SPDZ framework.

6 Summary
We presented Reflex, an efficient and flexible approach for
trimming oblivious intermediate results in MPC-based query
execution.

At the core of Reflex is the Resizer that can be inserted af-
ter any oblivious operator to trim its intermediate result size,
without requiring query rewrites or changes to upstream
operators. The decision of how many filler tuples to trim
is taken using user-defined probability distributions. These
allow capturing different points in the trade-off space. To
enable a statistically-grounded comparison between distri-
butions, we introduce the Round to Recover (RtR) metric,
which applies to any distribution and helps planners select
the most secure strategy within a given time budget.

We evaluated Reflex using the queries from relatedwork [4–
6] and achieved runtime reduction thanks to trimmed inter-
mediate results in similar orders of magnitude to related
work. Generally, Reflex is even faster thanks to its efficient
implementation in MP-SPDZ. Reflex paves the way for fu-
ture query optimizers that consider both privacy and per-
formance, as it allows future query optimizers to compile
SQL queries with Resizer included, and, from our results,
cost models can be derived on the effect of filler tuples on
operator runtime.

Artifacts
The source code and data used in this paper are available at:
https://github.com/DataManagementLab/reflex-smpc-analytics

References
[1] 2024. SecretFlow-SCQL: A Secure Collaborative Query pLatform.

Published in Proc. VLDB Endow. 17, 12 (2024), 3987–4000. https://

github.com/secretflow/scql

[2] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma
Ohara. 2016. High-throughput semi-honest secure three-party compu-
tation with an honest majority. In Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security. 805–817.
[3] Gilad Asharov, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Ariel Nof,

Benny Pinkas, Katsumi Takahashi, and Junichi Tomida. 2022. Efficient
Secure Three-Party Sorting with Applications to Data Analysis and
Heavy Hitters. In Proceedings of the 2022 ACM SIGSAC Conference

on Computer and Communications Security (Los Angeles, CA, USA)
(CCS ’22). Association for Computing Machinery, New York, NY, USA,
125–138. https://doi.org/10.1145/3548606.3560691

[4] Johes Bater, Gregory Elliott, Craig Eggen, Satyender Goel, Abel Kho,
and Jennie Rogers. 2016. SMCQL: Secure Querying for Federated
Databases.

[5] Johes Bater, Xi He, William Ehrich, Ashwin Machanavajjhala, and
Jennie Rogers. 2018. Shrinkwrap: efficient sql query processing in
differentially private data federations. Proceedings of the VLDB En-

dowment 12, 3 (2018).
[6] Johes Bater, Yongjoo Park, Xi He, Xiao Wang, and Jennie Rogers. 2020.

Saqe: practical privacy-preserving approximate query processing for
data federations. Proceedings of the VLDB Endowment 13, 12 (2020),
2691–2705.

[7] Song Bian, Zhou Zhang, Haowen Pan, Ran Mao, Zian Zhao, Yier Jin,
and Zhenyu Guan. 2023. HE3DB: An Efficient and Elastic Encrypted
Database Via Arithmetic-And-Logic Fully Homomorphic Encryption.
In Proceedings of the 2023 ACM SIGSAC Conference on Computer and

Communications Security. 2930–2944.
[8] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen,

Srdjan Capkun, and Ahmad-Reza Sadeghi. 2017. Software grand
exposure:SGX cache attacks are practical. In 11th USENIX workshop

on offensive technologies (WOOT 17).
[9] Zhao Chang, Dong Xie, ShengWang, and Feifei Li. 2022. Towards prac-

tical oblivious join. In Proceedings of the 2022 International Conference

on Management of Data. 803–817.
[10] European Commission. [n.d.]. https://commission.europa.eu/law/law-

topic/data-protection/rules-business-and-organisations/

obligations/what-does-data-protection-design-and-default-

mean_en.
[11] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. https:

//eprint.iacr.org/2016/086.pdf

[12] Jesse De Meulemeester, David Oswald, Ingrid Verbauwhede, and Jo
Van Bulck. 2026. Battering RAM: Low-Cost Interposer Attacks on
Confidential Computing via Dynamic Memory Aliasing. In 47th IEEE

Symposium on Security and Privacy (S&P).
[13] Tassos Dimitriou and Antonis Michalas. 2014. Multi-party trust com-

putation in decentralized environments in the presence of malicious
adversaries. Ad Hoc Networks 15 (2014), 53–66.

[14] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Pe-
ter Scholl. 2020. Improved primitives for MPC over mixed arithmetic-
binary circuits. In Annual international cryptology conference. Springer,
823–852.

[15] Saba Eskandarian and Dan Boneh. 2021. Clarion: Anonymous com-
munication from multiparty shuffling protocols. Cryptology ePrint

Archive (2021).
[16] Saba Eskandarian and Matei Zaharia. 2017. Oblidb: Oblivious query

processing for secure databases. arXiv preprint arXiv:1710.00458

(2017).
[17] Wenjing Fang, Shunde Cao, Guojin Hua, Junming Ma, Yongqiang Yu,

Qunshan Huang, Jun Feng, Jin Tan, Xiaopeng Zan, Pu Duan, et al. 2024.
SecretFlow-SCQL: A Secure Collaborative Query pLatform. (2024).

[18] Jun Furukawa and Yehuda Lindell. 2019. Two-Thirds Honest-Majority
MPC for Malicious Adversaries at Almost the Cost of Semi-Honest.
In Proceedings of the 2019 ACM SIGSAC Conference on Computer and

Communications Security (CCS ’19). Association for Computing Ma-
chinery.

[19] General Data Protection Regulation GDPR. 2016. General data protec-
tion regulation. Regulation (EU) 2016/679 of the European Parliament

and of the Council of 27 April 2016 on the protection of natural persons

with regard to the processing of personal data and on the free movement

of such data, and repealing Directive 95/46/EC (2016).
[20] Goetz Graefe. 1993. Query evaluation techniques for large databases.

ACM Computing Surveys (CSUR) 25, 2 (1993), 73–169.
[21] Antonio Guimarães, Edson Borin, and Diego F Aranha. 2021. Revisit-

ing the functional bootstrap in TFHE. IACR Transactions on Crypto-

graphic Hardware and Embedded Systems (2021), 229–253.
[22] Feng Han, Lan Zhang, Hanwen Feng, Weiran Liu, and Xiangyang Li.

2022. Scape: Scalable collaborative analytics system on private data-
base with malicious security. In 2022 IEEE 38th International Conference

https://github.com/DataManagementLab/reflex-smpc-analytics
https://github.com/secretflow/scql
https://github.com/secretflow/scql
https://doi.org/10.1145/3548606.3560691
https://commission.europa.eu/law/law-topic/data-protection/rules-business-and-organisations/obligations/what-does-data-protection-design-and-default-mean_en
https://commission.europa.eu/law/law-topic/data-protection/rules-business-and-organisations/obligations/what-does-data-protection-design-and-default-mean_en
https://commission.europa.eu/law/law-topic/data-protection/rules-business-and-organisations/obligations/what-does-data-protection-design-and-default-mean_en
https://commission.europa.eu/law/law-topic/data-protection/rules-business-and-organisations/obligations/what-does-data-protection-design-and-default-mean_en
https://eprint.iacr.org/2016/086.pdf
https://eprint.iacr.org/2016/086.pdf

Reflex: Faster Secure Collaborative Analytics via Controlled Intermediate Result Size Disclosure

on Data Engineering (ICDE). IEEE, 1740–1753.
[23] Xi He, Jennie Rogers, Johes Bater, Ashwin Machanavajjhala,

Chenghong Wang, and Xiao Wang. 2021. Practical security and pri-
vacy for database systems. In Proceedings of the 2021 International

Conference on Management of Data. 2839–2845.
[24] Adrian F Hernandez, Rachael L Fleurence, and Russell L Rothman.

2015. The ADAPTABLE Trial and PCORnet: shining light on a new
research paradigm. , 635–636 pages.

[25] Bernardo AHuberman, Matt Franklin, and Tad Hogg. 1999. Enhancing
privacy and trust in electronic communities. In Proceedings of the 1st

ACM conference on Electronic commerce. 78–86.
[26] David Kaplan, Jeremy Powell, and Tom Woller. 2016. AMD memory

encryption. White paper 13 (2016), 12.
[27] Marcel Keller. 2020. MP-SPDZ: A versatile framework for multi-party

computation. In Proceedings of the 2020 ACM SIGSAC conference on

computer and communications security. 1575–1590.
[28] Marcel Keller and Peter Scholl. 2014. Efficient, oblivious data structures

for MPC. In Advances in Cryptology–ASIACRYPT 2014: 20th Interna-

tional Conference on the Theory and Application of Cryptology and

Information Security, Kaoshiung, Taiwan, ROC, December 7-11, 2014,

Proceedings, Part II 20. Springer, 506–525.
[29] Marcel Keller and Peter Scholl. 2014. Efficient, oblivious data structures

for MPC. In International Conference on the Theory and Application of

Cryptology and Information Security. Springer, 506–525.
[30] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim,

and Marcus Peinado. 2017. Inferring fine-grained control flow in-
side SGX enclaves with branch shadowing. In 26th USENIX Security

Symposium (USENIX Security 17). 557–574.
[31] John Liagouris, Vasiliki Kalavri, Muhammad Faisal, and Mayank Varia.

2023. SECRECY: Secure collaborative analytics in untrusted clouds.
In 20th USENIX Symposium on Networked Systems Design and Imple-

mentation (NSDI 23). 1031–1056.
[32] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine

Shi. 2015. Oblivm: A programming framework for secure computation.
In 2015 IEEE Symposium on Security and Privacy. IEEE, 359–376.

[33] Adrian Lutsch, Muhammad El-Hindi, Matthias Heinrich, Daniel Ritter,
Zsolt István, and Carsten Binnig. 2025. Benchmarking Analytical
Query Processing in Intel SGXv2. In Proceedings 28th International

Conference on Extending Database Technology, EDBT 2025, Barcelona,

Spain, March 25-28, 2025, Alkis Simitsis, Bettina Kemme, Anna Queralt,
Oscar Romero, and Petar Jovanovic (Eds.). OpenProceedings.org, 516–
528. https://doi.org/10.48786/EDBT.2025.41

[34] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas,
Hisham Shafi, Vedvyas Shanbhogue, and Uday R. Savagaonkar. 2013.
Innovative Instructions and Software Model for Isolated Execution.
In Proceedings of the 2nd International Workshop on Hardware and

Architectural Support for Security and Privacy (HASP ’13). Association
for Computing Machinery, New York, NY, USA, 1. https://doi.org/10.

1145/2487726.2488368

[35] Patient-Centered Outcomes Research Institute (PCORI). 2015. Ex-
changing de-identified data between hospitals for city-wide health
analysis in the Chicago Area HealthLNK data repository (HDR).

[36] Christian Priebe, Kapil Vaswani, and Manuel Costa. 2018. EnclaveDB:
A secure database using SGX. In 2018 IEEE Symposium on Security and

Privacy (SP). IEEE, 264–278.
[37] Amrita Roy Chowdhury, Chenghong Wang, Xi He, Ashwin

Machanavajjhala, and Somesh Jha. 2020. Crypt𝜖 : Crypto-assisted
differential privacy on untrusted servers. In Proceedings of the 2020

ACM SIGMOD International Conference on Management of Data. 603–
619.

[38] Sajin Sasy, Aaron Johnson, and Ian Goldberg. 2023. Waks-on/waks-off:
Fast oblivious offline/online shuffling and sorting with waksman net-
works. In Proceedings of the 2023 ACM SIGSAC Conference on Computer

and Communications Security. 3328–3342.

[39] Alex Seto, Oytun Kuday Duran, Samy Amer, Jalen Chuang, Stephan
van Schaik, Daniel Genkin, and Christina Garman. 2025. WireTap:
Breaking Server SGX via DRAM Bus Interposition. In 2025 SIGSAC

Conference on Computer and Communications Security (CCS ’25). Asso-
ciation for Computing Machinery. https://wiretap.fail

[40] Donghyun Sohn, Kelly Jiang, Nicolas Hammer, and Jennie Rogers.
2025. Alchemy: A Query Optimization Framework for Oblivious SQL.
Proceedings of the VLDB Endowment 18, 9 (2025), 3021–3034.

[41] Sven Trieflinger. 2020. Trustworthy computing – data sovereignty

while connected. https://www.bosch.com/research/research-

fields/digitalization-and-connectivity/research-on-security-

and-privacy/trustworthy-computing-data-sovereignty-while-

connected/

[42] Nikolaj Volgushev, Malte Schwarzkopf, Ben Getchell, Mayank Varia,
Andrei Lapets, and Azer Bestavros. 2019. Conclave: secure multi-party
computation on big data. In Proceedings of the Fourteenth EuroSys

Conference 2019. 1–18.
[43] Xiao Wang, Alex J Malozemoff, and Jonathan Katz. 2016. EMP-toolkit:

Efficient MultiParty computation toolkit.
[44] Rishabh Poddar Sukrit Kalra Avishay Yanai, Ryan Deng, and Raluca

Ada Popa Joseph M Hellerstein. 2021. Senate: A maliciously-secure
MPC platform for collaborative analytics. In 30th USENIX Security

Symposium (USENIX Security 21), Vancouver, BC.

https://doi.org/10.48786/EDBT.2025.41
https://doi.org/10.1145/2487726.2488368
https://doi.org/10.1145/2487726.2488368
https://wiretap.fail
https://www.bosch.com/research/research-fields/digitalization-and-connectivity/research-on-security-and-privacy/trustworthy-computing-data-sovereignty-while-connected/
https://www.bosch.com/research/research-fields/digitalization-and-connectivity/research-on-security-and-privacy/trustworthy-computing-data-sovereignty-while-connected/
https://www.bosch.com/research/research-fields/digitalization-and-connectivity/research-on-security-and-privacy/trustworthy-computing-data-sovereignty-while-connected/
https://www.bosch.com/research/research-fields/digitalization-and-connectivity/research-on-security-and-privacy/trustworthy-computing-data-sovereignty-while-connected/

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Secure Collaborative Analytics
	2.2 Related Work using MPC
	2.3 Related Work using TEEs
	2.4 Related Work using FHE

	3 Reflex: Assumptions and Threat Model
	4 Reflex: Design and Implementation
	4.1 Overview of Reflex
	4.2 Resizer: A Helper Operator
	4.3 User-defined Distributions
	4.4 Proposed Metric: Rounds to Recover

	5 Evaluation
	5.1 Setup and Goals
	5.2 Runtime Cost of Resizer
	5.3 Privacy vs. Performance
	5.4 Analytical Queries from Related Work

	6 Summary
	References

