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ABSTRACT

In this paper, we present ELEET, a novel execution engine that al-
lows one to seamlessly query and process text as a first-class citizen
along with tables. To enable such a seamless integration of text and
tables, ELEET leverages learned multi-modal operators (MMOps)
such as joins and unions that seamlessly combine structured with
unstructured textual data. While large language models (LLM) such
as GPT-4 are interesting candidates to enable such learned multi-
modal operations, we deliberately do not follow this trend to enable
MMOps, since it would result in high overhead at query runtime.
Instead, to enable MMOps, ELEET comes with a more efficient small
language model (SLM) that is targeted to extract structured data
from text. Thanks to our novel architecture and pre-training proce-
dure, the ELEET-model enables high-accuracy extraction with low
overheads. In our evaluation, we compare query execution based
on ELEET to baselines leveraging LLMs such as GPT-4 and show
that ELEET can speed up multi-modal queries over tables and text
by up to 575X without sacrificing accuracy.
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1 INTRODUCTION

More than Tables. Decades of research have turned relational
databases into highly optimized systems for managing tabular data.
However, modern data applications need to deal with other data
modalities as well that are often used in addition to tabular data,
such as texts or image data [8, 23, 57]. Unfortunately, traditional
relational databases are not well-equipped to handle these multi-
modal scenarios. Instead, practitioners are forced to process modal-
ities other than tables outside the database or integrate them by
manually transforming such modalities into tabular form first.

Query Execution over Multi-modal Data. At the same time,
rapid advancements in natural language processing and computer
vision have made it easier to extract insights from texts, images, as
well as other modalities. In light of these developments, we believe
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SELECT patients.age, examinations.diagnosis
FROM patients JOIN examinations
o0

patients N examinations = result
name | age | gender | path age |diagnosis
" " Alice was
Alice | 42 f alice.txt diagnosed 42 fever
Bob 23 m bob.txt with fevi 23 cough

alice.txt

Figure 1: Example of a query that executes a multi-modal
join between a patient table and examination reports. ELEET
analyzes the texts and extracts values for each queried at-
tribute, such as the diagnosis from each examination report.

it is time to bring these innovations to the world of databases and
enable users to seamlessly query multi-modal data. Although some
extensions have been integrated into commercial database systems
such as full-text search or pattern matching for textual data [22],
modalities such as text do by far not allow for the same level of
querying as tabular data. Our work aims to fill this gap. Hence, we
propose ELEET, an approach that leverages query plans with learned
operators that allow us to seamlessly process data of modalities
other than tables as if they were available in tabular form.

A Simple Example. Figure 1 illustrates how we envision how ELEET
can be used by applications. In the example, the database stores
structured patient information (using a table) alongside textual
patient reports that contain additional diagnostic information per
patient. If the diagnostic information were stored in tabular form
as well, a SQL query, as shown at the top of Figure 1, could easily
be used to analyze the correlation between the patient’s age and
her diagnosis. If the information is, however, stored inside textual
reports, today a data scientist would need to write many lines of
code to create a data extraction pipeline that retrieves the diagnos-
tic information from text. Only after extraction would it then be
possible to query this information at a similar level to tabular data.
Learned Multi-Modal Operators. The goal of our work is to chal-
lenge this need for a “special treatment” for modalities other than
tables, allowing users to query them seamlessly and declaratively
as if they were tables. To enable seamless querying of multi-modal
data, we propose to extend relational query plans with so-called
learned multi-modal operators (MMOps). The basic idea of MMOps
is that they extend the set of operators used in traditional query
engines by new operators that can natively process data sources of
other modalities. As shown in Figure 1, for example, a multi-modal
join operator for tables and texts allows users of ELEET to join the
patient table directly with the linked patient reports. As such, the
data analyst can correlate the relationship between the patient’s
age and their diagnoses in a simple and efficient manner.
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Figure 2: Overview of ELEET. In an offline phase, the ELEET-model can be fine-tuned for unseen domains (1. Fine-tuning the
ELEET-model for an unseen domain is a one-time effort and requires a small sample of a few labeled texts. (2) For query
execution, ELEET uses multi-modal query plans that contain traditional (white) and multi-modal database operators (purple).
To compute the result of a multi-modal operation such as a join over texts, the ELEET-model is used (see (@ to (¢)): During the
execution of a multi-modal operation, the ELEET model first computes embeddings of the query attributes, texts, and table input
(@), using its encoder (b). Afterwards, the ELEET-model matches text token embeddings to query attribute embeddings to extract
the output table from the text using its extractive decoder (¢), which decides which tokens qualify for a given query attribute.

Multi-Modal Query Plans. The rationale behind MMOps, such
as the multi-modal join, is that they can accept data sources of
other modalities as input and produce tables as an output. Thus,
MMOps nicely integrate with the existing query processing ca-
pabilities of traditional databases since MMOps can be composed
into query plans along with relational operators to enable complex
analytical queries. For example, after the multi-modal join operator
shown in Figure 1, other relational operators, such as a projection
or a filter, can be applied to provide rich query functionality to
users. Moreover, as we elaborate later in the paper, in addition to
multi-modal joins, ELEET implements a wide spectrum of different
MMOps, including multi-modal scans, unions, and aggregations.
Realizing Multi-Modal Operators using LLMs? The key idea in
realizing such multi-modal operators for text and tables is to build
on recent advances in the area of language models. In fact, recent
language models (e.g., GPT-3 [4], GPT-4 [41], LLaMA [58, 59], PaLM
[2, 9] or Gemini [56]) have shown remarkable results on a wide
range of text-processing tasks. While it has been shown that recent
language models can be used out-of-the-box to transform a text into
a table, we argue that such language models are not readily usable
for efficient query execution. In particular, due to their immense
size (i.e., GPT-4 has more than a trillion parameters), they are very
computationally expensive. Each call for a single text can take
several seconds, leading to query runtimes of multiple minutes
even for small text collections as we show in our experiments.
Small Language Models to the Rescue? Therefore, in this paper,
we take a different route: instead of building ELEET on large lan-
guage models (LLMs) such as GPT, we instead base multi-modal
operators on a small language model (SLM) to achieve a more ef-
ficient execution of multi-modal operators. A key to this SLM is
that we use a model architecture that targets table extraction from
text and pre-train the model to learn the essential skills to perform
MMOps. Thanks to this pre-training, the ELEET-model can provide
high accuracy and efficiency at the same time. For example, our
model architecture avoids using costly autoregressive decoding,
which is prominent in LLMs and requires many passes through the
model to construct the output rows from texts. Instead, our model

uses an extractive approach using embeddings of text and query
attributes, which can extract data from text in a single model pass.
More than table extraction from text. Finally, a last important
property of our model is that it can incorporate additional signals
from tabular data sources when extracting structured data from
text, which can improve the extraction quality. For example, when
executing a multi-modal join between a table and a text collection,
as discussed before in our example, the multi-modal join can take
structured data (e.g., the name of a patient) as input to extract the
correct diagnosis from the text. This might be particularly helpful
in scenarios where the text contains information about multiple
patients. Moreover, providing such signals from structured data can
also reduce the runtime of multi-modal joins, as we discuss later.

Contributions. To summarize, in this paper, we present three
major contributions: (1) As the core contribution, we present the
ELEET-model. For realizing the ELEET-model we use a novel SLM
that targets table extraction from text. For pre-training the SLM, we
construct a new parallel pre-training corpus of tables and texts. (2)
As a second contribution, we show how MMOps can be realized us-
ing a pre-trained ELEET-model. We present a wide range of different
MMOps such as a multi-modal scan that can turn text collections
into tables or more complex operations like joins, unions, selec-
tions, and aggregations operating on texts and tables. (3) Finally, we
provide an extensive evaluation using four data sets to challenge
our approach and evaluate how accurate and efficient multi-modal
query plans are executed with ELEET. The evaluation uses data sets
from different domains and a wide range of multi-modal query
plans. Using these workloads, we compare ELEET against strong
baselines, including some that leverage LLMs such as GPT-3 or 4.

Outline. We first provide an overview of ELEET in Section 2, before
we define its data model and algebra in Section 3. Then, we explain
the details of the ELEET-model in Section 4 and how it can be used
to realize MMOps in Section 5. Finally, we present our evaluation
in Section 6, related work in Section 7 and conclude in Section 8.



2 OVERVIEW OF ELEET

In the following, we first explain the overall procedure of executing
queries with ELEET. After that, we discuss its key design principles.

2.1 Overall Procedure

ELEET executes a multi-modal query plan containing traditional
database operators and MMOps. Such a multi-modal query plan con-
sumes data from tables and text collections that can be seamlessly
treated as tables (called latent tables) using our ELEET-model. ELEET
supports different MMOps in multi-modal query plans. For instance,
the query mname diagnosis ((patients > to_reports)sdiagnoses) in
Figure 2 uses a multi-modal join to combine text with table data. In
the following, we sketch how this join can be realized by using our
ELEET-model in Figure 2 (2).

A Sketch of a Multi-Modal Join. The join in Figure 2 needs to
extract the diagnosis for each patient tuple coming from the first
join of the patients and to_reports table (i.e., each patient can have
multiple reports). For executing this query, we feed the attributes
to extract from text (i.e., diagnosis; called latent attribute) together
with the patient data from the first join and the text documents to
be joined into the ELEET-model. For example, for joining the patient
tuple of Bob with his patient report in Figure 2 (@), ELEET feeds
the patient tuple (containing name, height, ...), the latent attribute
diagnosis, and the patient report of Bob into the ELEET-model. For
extracting the diagnosis, the encoder of our ELEET-model maps
all inputs into a joint latent space (b). Afterwards, the decoder
identifies spans of texts in the report that qualify as diagnosis, such
as the text span sore throat in Figure 2 (¢). Finally, the result row
{name - Bob, diagnosis + sore throat} with the extracted values
from the text is materialized. One assumption we make in ELEET is
that there exists a foreign key relationship between the tuples in
the relational table and the text collection, i.e., patient reports are
linked to a patient tuple. In Section 3 we discuss the data model of
ELEET more formally.

Fine-Tuning for unseen Domains. While the ELEET model is
pre-trained to learn table extraction from text, it clearly benefits
from fine-tuning on texts of domains unseen during pre-training
(see D in Figure 2). To do so, in a model preparation phase (offline),
the user labels a few example texts by marking text spans that are
extractions for potential query attributes. Based on a pre-trained
ELEET-model, only a few fine-tuning samples are necessary. In our
evaluation, we show that only a small number of labeled documents
are typically sufficient to achieve high accuracy for unseen domains.

2.2 Key Design Principles

Efficiency of Extraction. The efficiency of query execution is a
major concern for ELEET. We tackle this using three key design
principles for the ELEET-model: (1) Firstly, regarding the ELEET-
model, we use a small language model with only 140 million pa-
rameters that we optimize for performing query operations. The
ELEET-model is multiple orders of magnitudes smaller than recent
LLMs (e.g., GPT-3 has 175 billion and GPT-4 has 1.76 trillion pa-
rameters) and thus provides much lower inference latencies. (2)
Secondly, in our model architecture as we discuss next, we avoid
costly autoregressive decoding that LLMs typically use, which re-
quires many passes through a transformer-based decoder and thus

leads to high inference times as shown in Section 6.6. Instead, the
ELEET-model uses an extractive approach that computes its output
in a single pass through the model. (3) Finally, beyond the model
itself, optimal physical operator implementations of MMOps in
ELEET can help to improve the efficiency of query execution further.
For example, for a multi-modal selection that applies a filter on
attributes from the texts, we leverage an index-based implemen-
tation to avoid the high scan cost of scanning the full text for all
documents in the collection.

Accuracy without Regrets. Another key design principle of ELEET
is that we do not trade efficiency for accuracy. Instead, as we spe-
cialize our model for the task of extracting structured data from
text, it is highly accurate on this task and often even more accurate
than much larger general-purpose language models such as GPT-4.
We achieve this through our pre-training procedure, which teaches
the model the necessary skills to perform table extraction from text.
This allows ELEET to be highly accurate while being more efficient
than LLMs, as we show in our evaluation.

Online and Offline Execution While this paper aims to enable
online execution of multi-modal query plans, ELEET can also be
used to pre-compute extractions from text offline (i.e., constructing
a materialized view of a multi-modal query). However, we think
there are many scenarios where the ability to execute multi-modal
query plans online is crucial. For example, in a setting where text
collections are continuously updated, online query execution is im-
portant to provide up-to-date query results and can avoid the high
cost of view maintenance. Moreover, online query execution can
also be attractive in a setting where queries only need to process a
few texts, and materializing a table of a potentially huge text collec-
tion would cause high overheads. In these cases, online processing
saves the additional high storage and pre-processing overheads of
materialization. Finally, materialization prevents ad-hoc queries
where query attributes are not known in advance.

3 DATA MODEL AND ALGEBRA DEFINITION

In this section, we explain which types of queries are supported by
ELEET by formally defining its data model and ELEET’s algebra.

3.1 Data Model of ELEET

The data model of ELEET builds upon the relational data model and
extends it by text collections and latent tables.

Table 1: Overview of ELEET’s data model.

Symbol Name
Ta Table with attributes A
D Text collection
D.LT; 4 | Latent table with latent attributes LA

Text collections. A text collection D = {dy,...,d|p|} is a set of
text documents. Similar to how different rows in database tables
follow the same schema defining a set of attributes A per table, we
assume that different documents d of a text collection D also expose
the same attributes. For instance, in a text collection of patient
reports, each document contains information about the patient’s
name and the diagnosis. Furthermore, each document is uniquely



identified by its file path path(d) and can contain an arbitrary
number of tokens: d = wy ... w|g|. In ELEET, text collections can
be queried standalone but can also be linked to traditional tables.
Traditional tables can be linked to text collections by storing their
file paths as an additional attribute in the tables, essentially creating
a foreign key relationship between tables and text collections. In
fact, many real-world datasets today already use this model to link
text documents and tables. For example, we analyzed the GitTables
corpus [24], a collection of 1M tables, and found that 15k tables
already contain paths to externally stored text files.
Latent Tables. In ELEET, users register latent tables over a text
collection D to make it available for query processing. Similar to reg-
ular tables, the user has to define a schema LA = {lay, ..., laj 4|}
for a latent table D.LT. We assume that the user knows the data
well and can specify a reasonable schema. We denote such a latent
table as D.LT; 4. The schema defines the attributes that can be ex-
tracted from text (e.g., name and diagnosis of medical reports). A
tuple ¢t € D.LT thus contains a value v = w7 ... W|vu\ that can be
v W|vy‘ ... wp, for each attribute
in LA. Furthermore, each tuple contains the file path to the doc-
ument d. Importantly, defining a latent table does not yet extract
any values from the text. Instead, a latent table is merely a handle
that can be used in query plans. The values are extracted on the fly
during query execution as explained in Section 2.2.
Single-row and Multi-row Latent Tables. Finally, in ELEET we
distinguish between single-row and multi-row latent tables. A single-
row latent table is where the user knows that each document d € D
contributes exactly one tuple ¢ to a latent table D.LT (e.g., each
patient report always contains a single diagnosis and treatment).
On the other hand, a multi-row latent table is the general case where
each document can contribute an arbitrary number of tuples to
a latent table. In case of a multi-row latent table, the user has to
define a document-level key lay,, € LA such that each latent tuple ¢
coming from the same document d is uniquely defined by the values
for lag,,. For example, if a medical report contains information
about multiple diagnoses, the diagnosis name would be a sensible
document-level key. Note that defining the schema, the type of latent
table (single-row vs. multi-row) and the document-level key needs
to be done only once per latent table and not per document, thus
causing the same overhead as creating a schema for a normal table.
Moreover, we found that some of the decisions mentioned above,
like choosing the type of latent table or choosing the document-
level key can be automated using LLMs. For example, to decide
whether a latent table is multi-row, we prompt an LLM with a few
example texts together with the schema of the latent table and ask
it whether each text contributes one or multiple rows to the latent
table. Since choosing the type of latent table is done only once per
latent table, as explained before, using a costly LLM is reasonable.
See our experiments in Section 6.7 for details on the prompts and
our findings.

extracted from textd = wy ... w

3.2 Algebra of ELEET

ELEET uses an algebra to compose multi-modal query plans. The
algebra of ELEET extends the traditional relational algebra with
multi-modal operators summarized in Table 2 and formally defined
in Section 3.4.

Table 2: Summary of the multi-modal operators.

Name ‘ Expression ‘ Output Type
Scan Scan(D.LTp ) TL AU{path}
Join Ta 51 D.LTr A TaurLa

Union TA U D.LTLA TA

Projection sirarcra(D.LT) D.LTy o/
g D.LT; D.LT;

Selection Ocond ( L) LA
Geond(Ta) Ta
Aggregation | ¥parca(Ta) Ta

Multi-modal Scan. The most important operator is the multi-
modal scan operator. A multi-modal scan takes a latent table D.LT} 4
as input and materializes a normal table Ty sy {path) as output by
extracting values v = wy ... W|UZ) for each latent attribute from all

text documents. The output table of a multi-modal scan can thus be
used as input to normal relational operators such as joins and filters.
Important is that the multi-modal scan is sufficient for expressing
all possible multi-modal queries in ELEET. As such, the other multi-
modal operators in Table 2 do not enrich the expressivity of queries
in ELEET but instead improve the quality of query results or the
efficiency of query execution (or both). In the following, we briefly
explain each multi-modal operator’s interface, its role, and how
it can optimize a multi-modal query plan. More details about the
individual operators can be found in Section 5.

Multi-modal Join. The second operator is a multi-modal join
TD.LT, which can replace a combination of a scan with a tradi-
tional join T ™7 path=D.LT path Scan(D.LT). For the multi-modal
join, the table T must be linked to the document collection D by
storing file path as an additional attribute in T, which is used as
a join key. The task of the multi-modal join is to extract values
from text linked to a tuple in T by leveraging attribute values from
the tuple. The multi-modal join patients 5 reports.examinations,
for example, extracts for each patient (stored in a table) values for
the latent attributes of the latent examinations table (e.g., diagnosis,
treatment, etc.) from the textual reports.

The multi-modal join is an optimization over using patients

Scan(reports.examinations) as the multi-modal join can use the
data in the patients table during extraction from the textual reports.
For example, the patient table containing the patient name can
help extract the relevant parts of the medical report text, which
is particularly helpful if the reports contain information about
multiple patients.
Multi-modal Union. The third multi-modal operation is the union
TUD.LT, which can be used to replace a traditional union and a
scan TUScan(D.LT). For instance, when a hospital stores its patient
information in tabular form, while another stores it as reports, one
could combine both with a multi-modal union. Important is that the
attributes exposed by the normal and latent table are compatible in
types, meaning they store the same type of information (e.g., both
store patient name and diagnosis). Again, the difference to a scan is
that the union can use the tabular data T as additional context for
the model. In the case of a union, this additional context is example
values (e.g., example names and diagnoses) for each latent attribute,
which can help extract values from the text.



Multi-modal Projection & Selection. The multi-modal projection
jipar(D.LT) projects the columns from a latent table without mate-
rializing it. As such, it is an optimization over using traditional pro-
jection after a multi-modal scan 7; 4- (Scan(D.LT)), which would
need to materialize values for all columns. In contrast, the multi-
modal selection &,,,4(D.LT) as shown in Table 2 (first variant)
reduces the number of texts using a filter condition cond on a la-
tent attribute. Important is that the text documents are filtered
without materializing them as output table. As such, it is an opti-
mization over using traditional selection after a multi-modal scan
Geond(Scan(D.LT)) which would first need to extract rows for all
documents before filtering. Moreover, another feature of the multi-
modal selection is that it improves selection quality since it can
detect matches of text values similar to the value used by the filter
condition cond (e.g., diagnosis=fever can also match the synonym
high temperature in text). The second variant of the multi-modal
selection &,,,g5can(T) is different since it uses a normal table as
input. However, it can still detect matches of similar values in filter
predicates and table values. This selection can be used in case a
selection can not be pushed down to the text. An example is a
disjunctive selection on the output of a multi-modal join, which
filters based on attributes of the table and the latent table (e.g.,
patient.age=18 OR reports.examinations.diagnosis="fever’).
Multi-modal Aggregation. Finally, similar to the second selection,
multi-modal aggregation jr 4/ (T) operates on a normal table but
can group similar values for attributes coming from text extractions.
It replaces a traditional aggregation over a multi-modal scan or join,
which is less robust if extracted values contain synonyms. Like
traditional aggregation, multi-modal aggregation takes parameters
F for the aggregation function over one of the attributes in T and
A’ for the group-by attributes.

3.3 Algebraic Rewrites in ELEET

As discussed before, interfaces of multi-modal operators are de-
signed so they can often be used to optimize query execution of
multi-modal query plans both in terms of runtime and accuracy.
More specifically, we imagine a query compiler that, given a user
query (e.g., in SQL), will first instantiate a query plan that only
contains multi-modal scans and traditional operators. Since the
scan output is a normal table, and afterwards traditional operators
can be composed arbitrarily, the system supports arbitrarily com-
plex SQL queries where data sources can be text exposed as latent
tables and normal tables. However, in an optimization step, the
query compiler can look for patterns in the query plan where the
plan can be optimized by inserting another multi-modal operation
(e.g., multi-modal joins, unions, filters, etc.). For instance, if the
user inputs the SQL query from Figure 1, the query compiler would
first instantiate the multi-modal query m,ge diagnosis (patients
Scan(examinations)), that contains a multi-modal scan on the la-
tent table examinations. Afterwards, the compiler would notice that
using the data in the patients table helps extract the diagnoses of the
correct patients from the text. Moreover, materializing all columns
of the examinations table using the scan is also unnecessary because
the user is only interested in diagnoses. Hence, the compiler replaces
the join and the scan with a multi-modal join that extracts values

from text while leveraging the context from the tabular operand. Af-
terwards, it pushes down the projection and replaces it with a multi-
modal projection, preventing all columns from being materialized.
Hence, the result query plan that is optimized with multi-modal op-
erators is: myge diagnosis (Patients B fgiagnosis (examinations)). Sim-
ilarly, multimodal unions could be inserted when users try to union
a table with a latent table, and the quality of extractions can be
improved with example values; multi-modal selections could be in-
serted if the user filters based on values extracted from text, and so
on, as explained above. This example illustrates that ELEET supports
arbitrary queries, and multi-modal operators can be used in many
cases for optimization. However, while this shows the potential of
using multi-modal operators to enhance the accuracy and efficiency
of multi-modal plans, building an optimizer for multi-modal plans
that uses cost models for estimating performance (and accuracy)
is beyond the scope of this paper but represents an interesting
opportunity for future research on multi-modal databases.

3.4 Formal Definition of Multi-Modal Operators

So far, we have restricted the formal definitions of the operators
to their input and output sets (i.e., the domain and co-domain of
the underlying function). In this section, we formally define the
expected result of a multi-modal operator given its input data.
Multi-modal Scan (Single-row Latent Table). For the scan of
a single-row latent table, the scan extracts for all latent attributes
la € LA, the "correct" values (i.e., as given by the ground truth)
from each text d € D. The output table R contains one output tuple
per input text document d:

R= {path +— path(d)}
| U {la extract(d,la)|la € LA}

deD}

In this definition, a single output tuple t € R is extracted from
each document d € D by extracting a value v = extract(d, la) for
all latent attributes la € LA. The expression extract(d, la) denotes
the extraction of a value v for the latent attribute la € LA (e.g.,
diagnosis) from document d and is a sequence of tokens
—_ 0 0
V=W Wy

(e.g. v =sore throat, wf =sore, wé’ = throat). The values are extracted
directly from text d, meaning the token sequence of v appears in d
as explained before:

— 0 0
d—wl...wl,..wlvl...wn

Moreover, all result tuples ¢ € R contain the special path attribute
that contains the file path path(d) of document d. The file path
of a document d indicates where d is stored in the file system
and uniquely identifies each document. This allows for further
operations on the scan output, such as selections based on the file
path. Another important property enabled by the file path is that
we can join the output with a relevant table. As explained in Section
3.1, a table T can contain links to a text collection D by explicitly
storing the file paths of text documents in one of its columns. For
example, a patient table could store the file path to each patient’s
patient report. That way, a traditional table T (e.g., the patient table)
can be joined with the output of a scan on a text collection (e.g.,
patient reports),



by joining on the path column using a traditional join opera-
tor: T ™7 path=D.LT path Scan(D). However, ELEET also offers the
multi-modal join as a more accurate and efficient alternative, which
we define later.

Multi-modal Scan (Multi-row Latent Table). The definition is
different for a multi-row latent table as each document can con-
tribute multiple tuples to the output table. To enable this, the user
has to define a document-level key lay.,, as explained in Section 3.

The document-level key is a special latent attribute that allows
us to define an output table that consists of arbitrarily many tuples
per input text. The document-level key can have multiple values for
a single input text, and each of those values represents a different
output tuple. For example, in a document collection of patient
reports, where the same report can contain the diagnosis of multiple
patients, lay,, = patient_name is a sensible document-level key. In
this example, if three patients with patient_name Alice, Bob, and
Carol were mentioned in a single text, this would result in three
output tuples for that text according to the definition below:

In this case, extract(d, patient_name) = {Alice, Bob, Carol} is a
set of all patients mentioned in the one document d. Moreover,
since each patient has their own diagnosis, we also need to define
extract(d, Okeys la), which is the value for latent attribute la given
the value vy, for the document-level key. For instance, if the di-
agnosis of Bob is fever, then extract(d, Bob, diagnosis) = fever. As
such, we can define the expected scan output R as:

{path +— path(d)}

u {lakey g Ukey}

U{la — extract(d, vg,y, la)
| la € LA\ {lagey}}

Like before, as we can see in the expression left of the vertical bar,
each tuple ¢ € R contains the special path attribute that contains the
file path path(d) of the document d. Additionally, it also contains
the document-level key lay, as one of its attributes (e.g., lage, =
patient_name) and one of its potential values vg., (e.g., Alice or
Bob or Carol from the example before) is assigned to it. Finally,
the output tuple contains values for all other latent attributes la €
LA\ {lagey} extracted from text d. However, different from before,
we can see in the predicate right of the vertical bar that for a single
document d, the expected output contains multiple output tuples,
one for each vg., mentioned in the document (e.g., one tuple for
each patient if multiple patients are contained in the report).
Multi-Modal Join. As described in Section 3, the multi-modal
operators beyond the multi-modal scan do not make multi-modal
queries more expressive. Instead, they are optimizations to improve
accuracy of the extractions. For example, a multi-modal join im-
proves the extraction accuracy by using the tabular context of the
structured table in the input.

To be more formal, the expected output of a multi-modal join
is defined to be equivalent to the combination of a scan and a
traditional join:

deD A
Ukey € extract(d, lag,,)

TRD.LT = T %7 path=p LT path Scan(D.LT)

As such, the formal definition of the multi-modal join is based on
the formal definition of the multi-modal scan and it is not necessary
to provide a separate formal definition.

Multi-Modal Union. Similarly, the expected output of a multi-
modal union is equivalent to a traditional union with the output of
a scan:

TUD.LT = T U Scan(D.LT)

Again, the formal definition of the multi-modal union is based on
the formal definition of the multi-modal scan and thus it is not
necessary to provide a separate formal definition.

Multi-Modal Selection and Aggregation. As explained in Sec-
tions 5.3 and 5.4, the multi-modal selection and the multi-modal
aggregation operator operate on normal tables as input (and not
text documents). These operators aim to make the selection and
aggregation more robust than their traditional counterparts by
considering semantic synonyms. For instance, if a user selects all
tuples with diagnosis fever, we also want to return patients with
diagnosis high body temperature. Similarly, if the user aggregates
with the group-by key diagnosis, we want to place fever and high
body temperature in the same group. As such, the definition of the
multi-modal aggregation and the multi-modal selection is equiva-
lent to their traditional counterparts and again does not require an
additional formal definition.

4 THE ELEET-MODEL

At the core of ELEET is the ELEET-model which is used for extracting
structured tuples from text. In the following, we show the model
architecture and how the model is pre-trained.

4.1 Model Architecture

Our ELEET-model uses an encoder-decoder architecture as depicted
in Figure 3 that follows the design principles outlined in Section 2.2.
In our model, the encoder first computes embeddings from the input.
The decoder then consists of several lightweight decoder heads
that use these embeddings to perform the different subtasks for
transforming texts to tables (e.g., value extraction, deduplication).
For the sake of presentation, we explain the design of our model
and how it can be used to execute multi-modal joins or unions
on a single-row latent table. For single-row latent tables, for each
text document, we only need to extract a single value for each
latent attribute (i.e., for each patient report, we need to extract one
diagnosis, one treatment, etc.). More details about all operations
and multi-row latent tables are explained in Section 5.

Encoder. The encoder computes embeddings for the inputs re-
quired to extract values from text documents. Figure 3 () and
Algorithm 1 shows an example of a multi-modal join. The input to
the encoder consists of the text tokens coming from a text docu-
ment (orange) and the latent attributes LA for which values need to
be extracted from text (purple), which is the diagnosis attribute in
Figure 3. Additional non-latent context can be fed into the model
(yellow) that comes from the tabular operand of a multi-modal
join or union (this is generally optional). For the multi-modal join
example, the additional context is the tuples linked to the textual
report. In Figure 3, we see two tuples (e.g., Alice and Bob) and two
separate reports shown as text input (i.e., one per patient) from
which we aim to extract the diagnoses. For unions, we use two
rows randomly picked from the tabular operand of the union. The
ELEET-model can use the additional values from the table as context
for extractions, as we explain below. We use the same linearization
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Input Each decoder head consists of 1-2 Column
for learned matrices and a threshold Pooling
Decoder - - 5 |
Heads: sore diagnosis i is|
throat fever | [IMASK] || | Alice diagnosis
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Figure 3: Model architecture. After encoding a batch of se-
quences that each contain an input text, the latent attributes,
and traditional table values (1) using 12 (11+1) transformer
layers 2) @), all embeddings corresponding to the same cells
or latent attributes are pooled, before vertical attention lets
signal flow between groups of k rows (p). A separate final
transformer layer computes a second set of text embeddings
optimized for detecting duplicates (¢). The decoder (3) con-
sists of several heads for the different sub-tasks for extracting
table data from texts. For instance, the row-detect head is
used to find extractions in the text. For this, it pairs the em-
bedding of each text token with the embedding of a masked
cell (i.e., the attribute to be extracted) and classifies whether
the token is part of the attribute or not. The tokens that are
marked to be extracted are inserted into the output table (@.

of name | type | value for the latent attributes and non-latent
table values but use a MASK token for latent attributes to indicate
that a value needs to be extracted for them, as shown in Figure 3 @.
As shown in Figure 3 (), after linearization, the inputs are fed into
the 12 transformer layers (see (@) to compute their representations
(i.e., embeddings). Multiple input sequences are fed into the model
in a batch to increase efficiency. After running the input through
11 transformer layers, there are different paths for different decoder
subtasks. In particular, the paths use different final transformer
layers:

For extracting values, after running the individual rows through
the transformer layers and obtaining embeddings for all input to-
kens, we pool all token embeddings belonging to the same table cell
(i.e., the embeddings for attribute name, type, and value / MASK)
into one cell embedding (cell pooling). For unions, it is important
that signal flows from the rows containing example values to the
embeddings of the masked cells to compute optimal embeddings

Algorithm 1 (D) Encoder of ELEET for a multi-modal join. Scans and
union differ in the table data that is fed in the model as explained
in Section 4.

Require: texts dj ...d, latent attributes LA, table tuples t; ...t
(table tuples come from the tabular operand of the join; ¢; is
linked to d; via the file path)

1: Feed the tuple-text pairs into 11 Transformer layers ()

E « Transformer[x11](d; ||[SEP] || linearized(LA) || linearized(t1),

di ||[SEP] || linearized(LA) || linearized(t;))

2. EPD  Transformer[x1]pp (E) > Embeddings for DD (©
3 > Discard non-text token embeddings

4: (Wll sy kDJ?),_<—EADD

5. E Transformer[x1]rp Ap (E) » Embeddings for RD, AD
6: > Separate in text and table embeddings
7. (wl1,...,wgf),(él,l,...ék,m) —E

8: > Take the mean of all embeddings belonging to the same cell
9: (61’1, e ék,m) «— Cell - POOl((él’l, ces ék,m)) > @
10: (1,1, &, m) — Vertical Attention((élsl,...ék,m))

11: return (w1 Doeees ) (w11 ,~~-,WD,?),(51,1,--~ék,m)

for extraction. Hence, we apply vertical self-attention [71] across
different rows, i.e., across the cell embeddings of the same column
(see @ in Figure 3). In ELEET, we feed the sequences in groups of
k = 3 into vertical self-attention [71]. Hence, for unions, we pair
all sequences with MASK tokens and text with both sequences
containing example values, meaning we extract values for a single
text per vertical self-attention call.

The second path is for detecting duplicates, which is needed if
text mentions the same extraction multiple times (e.g., fever and
high body temperature for the same patient). For this, we use a
final transformer layer that is separate from the one for extract-
ing values (see (¢ in Figure 3). This is because the two decoder
subtasks benefit from embeddings of different characteristics. For
value extraction, embeddings of text-tokens should be similar to
those of the latent attributes for which they are a value. For detect-
ing semantic duplicates, however, embeddings of text tokens that
belong to different semantic concepts should be dissimilar, even
though they are a value for the same latent attribute. Hence, this
separate final transformer layer produces embeddings that the de-
coder can use to detect duplicate values more easily. To summarize,
the encoder computes two embeddings per text token w (one for

VE and one for duplicate detection wPP) and

value extraction w
one embedding ¢; j per cell, where 1 <i < kand1 < j < [LA|
Decoder. The decoder (Figure 3 (3)) generates the output table by
extracting a value for each latent attribute per text. It uses three
lightweight decoder heads and the embeddings from the encoder.
For materializing the output of a join, for example, it is important
to extract only values for the entities described by the tuple linked to
each text. For instance, when we join a patient tuple (e.g., Bob) with
a textual report of this patient, we typically only want to extract



Algorithm 2 (2) Decoder of ELEET: Row Detect. The actual im-
plementation computes I-O-B tags for all input sequences at once
using matrix multiplication instead of a loop. Attribute Detect
works analogously, using d; = Zi?:l ¢;,j instead of attribute embed-

ding ¢ and weights Wt’:é) . threshAD instead of thé) ,threshRD.

Require: text d = wj...wp, token embeddings WYE oWy E

masked cell embedding ¢
1 (tagsy,...,tags,) < (O,...,0) > Initialize tags
2: for all tokens w; € wy ... wy with embedding w; do

5

argmax VAVIT . V\/tgg - ¢ if tag € {B, I}
3: tags; «— RD
tage{L,O,B} |thresh else
4: end for

5. return I-O-B-decode(d, tags) ~ » Return a tag for extraction

the diagnosis of Bob from the text, even when other patients are
mentioned in the text. To do that, we use the row-detect (RD) head
that is pre-trained to extract only values for the particular entity
mentioned in the input of the model (e.g., Bob) as given by the tuple
from the table. For extracting the output of a union, we want to use
example values and use attribute-detect (AD) as we discuss below.

Both the RD and the AD head extract values from the text to
fill in values for latent attributes (e.g., diagnosis) and thus use the
embeddings for extracting values w'E (). The RD head pairs
the embedding of each text token w"F (orange in Figure 3) with
the embedding of a masked cell ¢ of a latent attribute (purple)
and classifies whether the token is part of a value for the cell. It
consists of matrices WIRD , W]§D and a learned threshold threshRP
to perform the classification according to Algorithm 2. We employ
so-called I-O-B (Inside-Outside-Beginning) classification to extract
potentially multiple tokens for each attribute. With I-O-B tags, the
first text token for a value is marked with a B-tag, and subsequent
tokens belonging to the same value receive an I-tag. Otherwise,
tokens are marked with an O-tag. The AD head works identically
as the RD head but first pools all cell embeddings ¢; j of the same
latent attribute into an attribute embedding d; = % Zf:l ¢i,j. Then,
it classifies based on this embedding, learned weights WIAD , W;D
and learned threshold threshP which tokens are a value for that
latent attribute, independent of the entity.

Finally, to avoid extracting the same value twice (e.g., to avoid
duplicate rows in a multi-row latent table, as we explain later), it
is necessary to check whether multiple extracted spans (i.e., all
tokens extracted for a latent attribute) refer to the same concept.
For this, we compute span embeddings ¢ according to Lee et al. [29]
from the text token embeddings coming from the final transformer
layer for deduplication wPP (©) and then classify which spans
are duplicates using the duplicate-detect (DD) head. The DD head
consists of a learned matrix WP and a learned threshold threshPP
and considers two spans v4 and vg as duplicates if the learned
similarity @T‘ -WPP 4 is larger than threshpp. The procedure to
find duplicates is shown in Algorithm 3.

After the values for all latent cells have been extracted and dedu-
plicated, they can be inserted into the latent table to produce the

Algorithm 3 (2) Decoder of ELEET: Duplicate Detect.

Require: Spans V = {v4,vp, ...}, token embeds. \?ulDD ...wDhD
1: 64,0p, - < span_embeddings[29](va, vp,...; WP ... wDP)

n
2: similarities = [04, 0p, . ..]T .wbD. [04,0B,...] = threshPP
3. > We use agglomerative clustering with a distance threshold to
find groups (clusters) of semantically equivalent values.
4 V « Agglom.cluster(spans=V, dist=-similarites, dist_thresh=0)
5 > Return longest span per cluster.

6: return {argmax,c juster|0| | cluster € V}

materialized output. However, in the general case of multi-row la-
tent tables, where each text can contribute multiple tuples to the
latent table, only value extraction is insufficient. We explain the
algorithm to support multi-row latent tables in Section 5.

4.2 Pre-training

The functionality of each of the three decoder heads represents
a skill of the ELEET model that is necessary to perform MMOps
as specified in the algebra in Section 3. These skills are indepen-
dent of concrete data sets and thus should be taught to the model
during pre-training. For pre-training the ELEET model, we pair the
encoder with our decoder heads and train them end-to-end. How-
ever, we do not start pre-training from scratch but start with the
pre-trained weights of TaBERT [71] for the transformer and ver-
tical self-attention layers. These are the model components that
also exist in TaBERT. For the decoder layers, which do not have a
counterpart in TaBERT, we start with randomly initialized weights.
During TaBERT’s pre-training, the model sees pairs of texts and
tables. Hence, the resulting weights are a good starting point for
ELEET. We show this and the additional importance of our pre-
training in our ablation study in Section 6.5.

Skill 1: Align latent attributes to text (AD head). To support
that our model learns to detect all values for certain attributes, we
introduce the Attribute-Text-Alignment (ATA) task, which aligns
table attributes to text. In this task, we pair texts with tables and use
the AD head to detect segments of text that are a potential value
for each attribute. We use the labels of our pre-training corpus to
compute a cross-entropy classification loss La74.

Skill 2: Extract values for table rows (RD head). For joins, as
explained before, it is important to extract only values belonging
to a given table row (e.g., only extract values for a given patient).
To let our model learn which values correspond to which table
row (e.g., in texts about multiple entities), we introduce the Masked
Cell Reconstruction (MCR) pre-training task. In this task, we pair
table rows and texts, mask out random cell values of table rows
(that occur in both text and table row), and use the RD head to
reconstruct the masked values from the text. To do this, the RD
head leverages signals from neighboring cells, including those from
the same row. MCR thus teaches the model to extract values for a
certain row only (e.g., only the diagnoses of Bob), as required for
the RD head. For this pre-training objective, we use the labels of
our pre-training corpus to compute a cross-entropy classification
loss Lascr for classifying the I-O-B tags in Algorithm 2.



Skill 3: Detect duplicates (DD head). Finally, we introduce the
Duplicate-Detection (DD) pre-training task to let the model learn
to detect whether two spans refer to the same concept. For each
attribute, DD takes pairs of text spans as input and is trained to
predict whether they are the same. We train the DD head by classi-
fying whether pairs of spans are duplicates using the labels of our
pre-training corpus to compute a cross-entropy loss Lpp.
Combined Pre-Training. We use a combined pre-training to add
up all the losses of all objectives and train the entire model (includ-
ing the encoder) using this multi-task loss. This has also shown
benefits in other transformer-based models [11, 15] where multi-
ple pre-train objectives are used. To balance the losses, we use a
weighted sum. We choose & = 300, f = 80, y = § = 1 by examining
the performance on a development set.

L=a - Lycr+p - Lata+y-Lpp+3-Lyim

Moreover, for the pre-training, we realized that our model bene-

fits from adding the original Masked Language Model loss Ly
of BERT [15]. We thus added Ly 5 to the combined loss. Finally,
to ensure that the model also utilizes signal from the table values
during pre-training and not only the schema information (i.e., at-
tribute names) of the table, we randomly mask out attribute names
from the linearized input to our model in 15% of the cases (which is
a fraction we empirically validated to provide the best performance).
The complete procedure is shown in Algorithm 4.
A New Pre-Training Corpus To pre-train our model using the
above procedure, we created a new open-domain pre-training cor-
pus with Wikipedia abstracts as texts, tables constructed from Wiki-
data, and labels from T-REx [16]. We describe the corpus in Section
5.5.

5 MULTI-MODAL OPERATIONS

In the previous section, we introduced the ELEET-model by demon-
strating how it can be used for multi-modal joins for single-row
latent tables. In this section, we discuss how the details of all oper-
ators of the ELEET algebra can be realized using the ELEET-model.

5.1 Multi-Modal Scans

The scan is the most important operator that turns a latent ta-
ble into a normal one by extracting the values for all latent at-
tributes from each text. For implementing the scan of a single-row
latent table, we feed in each document together with the latent
attributes into our encoder: the input sequences have the form
d ||[SEP] || linearized(LA), where we use MASK tokens for lineariz-
ing the latent attributes as before.

Hence, unlike the join and union explained in Section 4, we
cannot access any tabular context. Therefore, we set k = 1 for
scans, disabling vertical signal flow between input rows via vertical
self-attention and mean pooling across rows to obtain attribute
embeddings. Hence, d; is simply set to the masked cell embed-
ding ¢y j. After feeding the sequences in the encoder, we use the
attribute-detect (AD) head to extract a value for every latent at-
tribute from each text using Algorithm 2 with matrices WIAD , WE‘;‘D

and threshold threshAP for I-O-B tagging.

Algorithm 4 Compute pre-training loss value for a single sample
of k tuple-text pairs. In practice, multiple samples are fed into the
model in a single batch, and the implementation avoids for-loops
in favor of efficient matrix multiplications.

Require: texts dj...dy, table ‘tuples t;...t;, labels
YRD yAD yDD 144 weights a, f, y, §, MLM-loss Lym
1: Feed tuple-text pairs into Encoder to get all embeddings

~VE DD .
Wil Vi1 1,1

d1 ||[SEP] || linearized(ty),
«— Encoder .

s .. >

E ~D

AV D di ||[SEP] || linearized ()
wk,n wk,n Ck,m k k

N}

: Lymcr «— Lera < Lpp < 0
: foralli e 1...k, masked cell ¢ € tj, token w € d; do
I —wl. WIRD - ¢ > Compute Lycr

oW

. lpewl WP
6: lp < threshgp
1

7: — - 1 -lo P

Lycr < Lyicr xe{IZOB} YRD =x g S e 11.0.8) P L/
8: end for
9: forallie1...k,je1...m,tokenw € d; do
10: a % Z?’:l Cirj > Compute column embedding
11: Ip —wl- WIAD -a > Compute LcTa
12: lB<—wT-W§D-d
13: lp < threshap

1

14: — - 1 -lo s

Lera < Lera XE{IZOB} YAD =x 108 3o el
15: end for
16: foralli € 1...k, values vy, 0p € d; (given by YAP) do

AL A .~DD ~DD
17: 04,0, -+ < span_embed.[29](v4, UB, .3 Wi Wiy )
18: ly « 6£ -wDPD .5 > Compute Lpp
19: IN « threshpp

. — . exp by

20 Lpp < Lpp — Xxe{y.N} lypp —x log DIy
21: end for
222 LMCR < m - LMCR > Compute mean of loss values

1
23 Leta — §o; - Lera
24: LDD «— Nll)D . -EDD
25 Le—oa-Lycr+p-Lera+y - Lop+6- Lyim
26: return £ > Train using AdamW [38] optimizer

Next, we explain the scan on a multi-row latent table. In a multi-
row latent table, a single text d € D may correspond to multiple
tuples tg 1,72, . ... For instance, a patient report can document
multiple diagnoses of a patient, resulting in multiple output tuples
of a scan. As described before, the user needs to define a document-
level key lay, for the multi-row latent table, which is required
to distinguish between the different tuples coming from the same
text. For the patient reports in the example before, we assume
the attribute lakeY =diagnosis serves as the document-level key,
meaning that all rows coming from the same text should represent
a different diagnosis. For realizing a multi-modal scan on such a
table, we use an Algorithm 5 which is composed of two phases.



Algorithm 5 Multi-row multi-modal scan for a single document.

Require: d = (wy,...,wp),LA= (lakey, lay, ..., lam)

1: 1. Get values for lake¥

2 Wi ...Wn,élakey, ¢1,...,¢m < Encoder(d ||[SEP] || lin.(LA))
3. VK€U  attribute — detect((W1, . .., Wn), élakeu)

fey, .. .,Ukey} « duplicate — detect(Vkey)
5. 2. Get values for lay, ..., lay,

6: W,C « Encoder(d ||[SEP] || hn.(v’fey) | lin.(lay, ..., lam) ,. ..

7. d|I[SEP] || hn.(ofey) in.(lay, . .., lam))
8: fori=1toldo
9: Vils-.., Vim < row — detect((Wi 1, ..., Win), Ci1) ,..-
10: row — detect((Wi1, ..., Win), ¢im)
11: {01}, ..., {vim} < duplicate — detect(Vj1) ,...
12: duplicate — detect(V; m)
13: end for
key

(< U1,1 U1,m
14: return :

Ufey 01 U m

Texts that do not have

1 PEEp o examinations e iz &
M i i< | |Alice was diagn¢ @ join partner can be
Single- path | name age: p.path path diagnosis with fever. skipped.
row : alice.txt fever 7

alice.txt | Alice 42 =

Ita;slr: e.path ‘ bob. txt ] cough [ 1 Carol was diagnosed... b]
o0 examinations e Extract multiple
2) a) patients p > path ¥ tuples per
.path Alice was diag__text and patient.
Mul. | Path [name age PPAM Fojog o fever With fevor aad sore 21
I’:’W‘ alice.txt | Alice |42 | ¢ path | alice.txt |sore throat throat. ]
aten
table .o examinations e Multiple diagnoses
b) patients p per text, but only one
=| path name | diagnosis per patient.
iti ath  name age P-Path :
additional | _P Me 208 “epath | texttxt | Alice | fover || Alicewas d’gnosed
optimi- | text.txt Alice 42~ AND with fever. Bob was
zatic_ms texttxt | Bob |23 p.name = text.txt Bob sore throat, diagnosed with sore
possible e.name | textixt | Carol cough throat. Carol was ...

Figure 4: Besides the join with a single-row latent table (),
there are two cases for multi-row latent tables (2). In the first
case, multiple tuples need to be extracted per table row of the
tabular operand (a). An interesting special case is when for

each table tuple, only a single tuple needs to be extracted (b).

Joins allow for several automatic optimizations, depending
on the case. For example, texts not having a join partner can
be skipped during extraction, which is particularly beneficial
when the table has been filtered before the join. Moreover,
in the case of (b), there is no need to run Algorithm 5.

In the first phase of the procedure, the model extracts all values
for the document-level key la, ., using our AD head in the decoder
(to extract all diagnoses; see lines 2+3 of Algorithm 5). The number
of values extracted in this step determines the number of output
rows for a given text d. Moreover, we use the duplicate-detect head
to avoid generating duplicate rows when the text mentions values
for lag, twice (e.g., when the same text mentions both fever and
high body temperature; see line 4 of Algorithm 5).

In the second phase, the extraction process is conducted on
the remaining attributes that depend on the document-level key,
denoted as lay, lay, . . .. To accomplish this, the MASK token of the
document-level key lag.,, is now replaced with the values extracted
in the first phase (line 6). For the remaining attributes (which still
have a MASK in the input), we extract the values using the ELEET
model. Here, we use the row-detect (RD) head to extract only values
corresponding to those extracted in the first phase (line 9).

To process texts longer than our model’s context window of 512
tokens, we use a sliding window to process the whole text. The
first phase is executed independently using the sliding windows
to extract all keys. Afterwards, we collect and deduplicate the ex-
tracted values for the document-level key across windows. Finally,
the second phase can process each window independently with the
extracted keys. Afterwards, all values are collected across windows
to generate the output tuples. In an experiment in Section 6.8, we
show that this approach works well even for longer texts.

5.2 Multi-Modal Joins and Unions

As introduced in Section 3, multimodal joins (T 54 D.LT) and unions
(TUD.LT) can replace the multi-modal scan followed by a tradi-
tional join (T »« Scan(D.LT)) or union (T U Scan(D.LT)). As such,
they also extract values for latent attributes from text but can lever-
age additional context given by their tabular operand for better and
faster extractions. For single-row latent tables, joins and unions are
implemented as explained in Section 4, feeding sequences as shown
in Figure 3 (D) into the model and then using the RD head for joins,
and the AD head for unions for value extraction.

Joins and unions for multi-row latent tables are implemented
using Algorithm 5. The only difference is the additional context fed
into the encoder (see lines 2 and 6 in Algorithm 5). For joins, we
feed additional table values added to each input sequence, coming
from a tuple linked to the text of the sequence (as shown in Figure
3 ). For unions, we again randomly sample two rows from the
tabular operand and feed these as example values the ELEET-model,
which can be used by vertical self-attention to improve extractions.

The join comes with opportunities for optimization as shown in
Figure 4. In the case (D, not all texts in the text collection may have
a join partner in the table, especially if the table has been filtered
beforehand (e.g., only patients with age < 18 are selected, and thus,
only texts of such patients need to be processed). As such, the path
in the table data acts as an index to the text collection to decide
which subset of text documents need to be scanned (i.e., we can
avoid scanning all text documents). For multi-row joins, there are
two cases. In Figure 4 (2) (a), we need to extract multiple diagnoses
per text document for each tuple (i.e., patient) from the normal table.
Here, we must run Algorithm 5 to first extract all diagnoses from the
text. Afterwards, the values for potential dependent columns (e.g.,
treatment) are extracted. However, case (2) (b) can be optimized
thanks to the row-detect head, as shown below. In this case, each
text is about multiple patients and we have only one diagnosis per
patient. As such, multiple tuples from the table refer to the same
text and we only need to extract a single row per patient tuple. For
this, we feed each text multiple times into the encoder, each time
paired with a different patient tuple from the table. The RD head is
pre-trained to extract only values corresponding to the table tuple
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Figure 5: The multi-modal index used for selections. When
extracting the values stored in the index from the texts (using
attribute-detect), we use the duplicate-detect head to identify
values that refer to the same concept. This allows the index
to return texts of patients that have a fever when users query
for patients with high body temperature.

(i.e. patient) it is paired with, which allows us to extract multiple
rows from a single text without Algorithm 5. The difference to case
(a) is that the tabular join partner already contains the values for the
document-level key lage, = name. Hence, we can skip extracting
these in the first phase of Algorithm 5.

5.3 Multi-Modal Selection

The multi-modal selection &, filters data based on attributes
extracted from text. For example, users might be interested only
in treatments for patients diagnosed with fever. As discussed in
Section 3, the multi-modal selection comes in two variants.

Variant 1. The first variant o,,,4(D.LT) takes a latent table as
input and produces a (filtered) latent table as output (i.e., without
materializing neither input nor output table). Important is that the
selection thus reduces the number of text documents in a collection
before using them as input (e.g., to a join). Moreover, the selection
uses semantic similarity for filtering. In ELEET, we provide an im-
plementation for this scan that uses a multi-modal index on the
selection column. The core idea of a multi-modal index is that it
maps a search key for the query attribute (e.g., diagnosis) to text
documents that contain the search key. To construct a multi-modal
index, our approach leverages the attribute-detect head to extract
all values for the search key from all texts. For building the index,
we put the extracted values and the pointers to the text documents
into a traditional index to be able to retrieve text documents quickly.
ELEET currently uses a hash index. However, unlike traditional hash
indexes, we group similar extracted values into one index entry
using the duplicate-detect head of our ELEET-model, as depicted in
Figure 5. This allows the index to return text documents containing
the diagnosis of high temperature, even if the user queries for fever.
Variant 2. As discussed in Section 3, ELEET comes with a second
variant &,,,4(T) that can be evaluated on a normal table. Here, we
might still want to select rows based on the semantic similarity of
values extracted from the text (e.g., if the selection is executed after
a multi-modal join). Given a selection condition (e.g., diagnosis
= fever), we embed it by feeding <attribute> is <value> (e.g.,
diagnosis is fever) into our encoder and compute a span-embedding
of <value> as discussed before. Then, we use the DD head of our
model to decide whether a value embedding from the table and the
selection value refer to the same semantic concept. To support this

selection, an important optimization is to keep the span embeddings
of extractions created during a scan, join or union and attach it to
the values of the respective output table. This avoids recomputing
these embeddings if a selection follows one of those operators.

5.4 Multi-Modal Aggregation

The last operation supported in ELEET is a multi-modal aggregation
XF.4’(T) that can be used for group-by aggregation based on at-
tributes extracted from text. Like the second selection variant, this
operation is designed to work on tables T created from texts (e.g.,
to aggregate the result of the output of a multi-modal join). Unlike
a normal aggregation, the operation uses the semantic similarity of
group-by values to form groups. For example, assume we only use
the patient reports as input and want to count how often a certain
diagnosis was named across all texts. The solution is first to extract
all diagnoses using a scan and then use a multi-model aggregation
to elegantly deal with cases where the same diagnosis is expressed
differently in different texts (e.g., as fever and high body tempera-
ture) but is still counted as the same diagnosis. More specifically,
for the multi-modal aggregation, we compute a similarity matrix
of the group-by values (as in line 2 in Algorithm 3). Afterwards,
we use agglomerative clustering with a distance threshold to find
all clusters (i.e., groups) for group-by (as in line 4 in Algorithm 3).
Note that computing the distance matrix is quadratic in the number
of input values, which becomes expensive for very high numbers
of table rows. Hence, in the future, we aim to replace the clustering-
based aggregation algorithm with latent-semantic-hashing-based
DBSCAN [70], which is linear in the number of input embeddings.

5.5 A New Pre-Training Corpus

Unfortunately, currently no pre-training corpus exists that allows
us to pre-train our ELEET-model as outlined in Section 4. In contrast
to existing corpora such as [5, 24, 73], we need a different parallel
corpus where the texts contain the same information (e.g., same
entities) as the tables, and where we know which cell values also
occur in a text, allowing us to mask them for pre-training. Hence,
we constructed a new parallel open-domain pre-training corpus
from Wikidata and Wikipedia for pre-training multi-modal database
models. We open-source the corpus together with our code!.

The main idea of our data set is that we make use of T-REx [16],
a large-scale alignment of Wikidata triples and Wikipedia abstracts.
The T-REx data set contains 11 million alignments of Wikidata
triples to Wikipedia abstracts. All the 3.09 million abstracts occur-
ring in T-REx are also part of our data set. T-REx itself is created
automatically using the distant supervision assumption for comput-
ing the alignment and can thus be noisy sometimes, but it allows
us to construct a large pre-training corpus with objectives aligned
to the downstream task of multi-modal database operations. It has
been used by other researchers for training their ML models [45].

Hence, we use the alignment of T-REx as a starting point to
construct our parallel corpus of texts and relational tables. T-REx
contains information about the location of mentioned entities in
the texts, which we can use as labels for our pre-training objectives.
As texts, we simply use the aligned Wikipedia abstracts and con-
struct additional tables using Wikidata, by grouping similar entities

!https://github.com/DataManagementLab/eleet
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Figure 6: Example pre-training sample consisting of three rows and texts from our pre-training data set.

together in a table and using Wikidata properties as columns. We
use several techniques to obtain a rich and diverse data set, e.g. we
randomize column names using Wikidata’s aliases or concatenate
multiple abstracts to simulate texts about multiple entities. See Fig-
ure 6 for an example training sample for pre-training. In total, our
pre-training data set consists of 8.2m such samples in its training
set and 7.8k in its development set.

6 EXPERIMENTAL EVALUATION

In this section, we present the results of our experimental evalua-
tion, which justifies the design of ELEET. To do so, we constructed
a challenging benchmark containing 70 multi-modal query plans
over four data sets that we publish along with this paper’.

6.1 Evaluation Setup

Data sets. Our benchmark consists of four data sets. Based on each
data set, we build a database consisting of 1-6 relational tables and
1-3 text collections; see Table 3 (upper part) for detailed statistics.
Note that all data sets are from different domains and include data
that ELEET has not seen during pre-training.

(1) Rotowire: The rotowire data set [68] contains a text collection
of 4850 basketball game reports with an emphasis on game statis-
tics. Hence, the values to be extracted are primarily numeric. We
complement the text collection with several tables of Basketball
Players and Teams to enable multi-modal queries. In total, this data
set has 6 structured tables and 1 text collection, while 2 latent tables
are derived from the text collection.

(2) T-REx (unseen): The second multi-modal database is built
using T-REx [16]. Importantly, this data set is composed of three
unseen domains that were not used in our pre-training: nobel
prize winners, skyscrapers, and countries. The data set uses
Wikipedia abstracts as text collections and table rows are con-
structed from Wikidata. In total, this data set has 6 structured tables
and 3 text collections, while 6 latent tables are derived from the
text collections. Importantly, T-REx is constructed automatically
and is thus too noisy to be used for evaluation. Hence, we fine-tune
the models on the three mentioned domains but evaluate only on
queries from the nobel domain, which is the least noisy.

(3) Aviation: Based on the aviation data set from [23], we con-
struct a document collection, where each document is an aviation
accident report published by the United States National Transporta-
tion Safety Board. Attributes that can be extracted from the texts
are the location of the accident, the severity of the damage, and so
on. In total, this data set has 3 structured tables and 1 text collection,
while 1 latent table is derived from the text collection.

Table 3: Statistics of our benchmark. The lower part indicates
how often each multi-modal operator is used in queries.

Data set ‘ Rotowire T-REx Aviation Corona
#text collections 1 3 1 1
#tables 6 6 3 1
#latent tables 2 6 1 1
#queries 28 12 15 15
#attributes latent tables 21, 14 8 7 7
#texts (test set) 728 221 30 30
#join 10 2 5 0
#union 4 6 5 15
#scan 14 4 5 0
#selection 6 2 3 0
#aggregation 6 2 3 0

(4) Corona: The final data set is again based on data used in
[23]. It consists of one text collection containing the daily status
reports by the German RKI. From these texts, information like the
number of persons infected by or recovered from Covid-19 can be
extracted. We pair these texts with a single table (used for multi-
modal unions only). In total, this data set has 1 structured table
and 1 text collection, while 1 latent table for the multi-modal union
with the same attributes can be derived from the text.

Query Generation. Based on these data sets, we generate 70 query
plans with 1-3 multi-modal operators and 0-1 traditional operators.
See Table 3 (lower part) for statistics of the generated queries. A
list of all queries is available in appendix A.

Baselines. We compare the ELEET to several strong LLM and SLM
baselines. Since there are no other systems so far that do joins and
unions on multi-modal table/text data, we build our baselines from
recent state-of-the-art models from the NLP community.

(1) Text-To-Table [69]: Text-To-Table is a machine learning model
based on BART (-base) [31] with a similar size as our model that
can be trained to translate texts to tables. Different from the ELEET-
model, it did not receive any special pre-training (i.e., it needs to
be trained with the BART-weights as starting point for each new
data set). Moreover, it uses an autoregressive decoder, which is less
efficient than our lightweight decoder.

(2) LLaMA-2 (7B) [59]: LLMs such as LLaMA can also be used to
translate texts to tables using few-shot prompting (i.e., in-context
learning, ic) [4, 67] or fine-tuning (ft). We evaluated several prompts
and found the following prompt to work well: “Transform the input
text into a <name of latent table> table. <= Only output the table in
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Figure 7: We plot the runtime and F1 scores of each approach on all 70 queries in our benchmark in a scatter plot. Due to the
vastly different runtimes of individual queries, the runtime is shown in log scale. The GPT-models and LLaMA (ic) use few-shot
prompting (in-context learning) and the other models are fine-tuned. We see that ELEET is always the fastest approach, while
the baselines are sometimes several orders of magnitude slower. The density plot above the scatter plot makes it easy to see
that ELEET is among the most accurate approaches for all data sets despite being a small model.

CSV-Format without explanations. If there is no information for a
cell, leave it empty. The header row is: <columns of the result table>.
« Input: <text to translate to a table>” For in-context learning, we
add as many task demonstrations as the context window of 4096
tokens allows. For fine-tuning, we use Q-LoRA [14].

(3) GPT-3.5 (gpt 3.5 turbo) [4] and GPT-4 (gpt-4-0613) [41]: GPT-3.5
and GPT-4 are even larger LLMs with 175 billion parameters and
1.76 trillion parameters respectively. We use few-shot prompting
for both models, using the same prompts as for LLaMA. GPT-4
is used by Evaporate-Direct [3] to extract information from semi-
structured documents (e.g., XML-Documents) similar to our base-
line. Unfortunately, all OpenAlI models (GPT-3.5 and GPT-4) are
closed source and thus can only be accessed via the API and not
deployed on our hardware for comparing runtimes. Nonetheless,
we compare in Experiment 1 against these models to get a basic
understanding of their accuracy. However, since these models use
many orders of magnitude more parameters than ELEET and thus
are naturally much slower, we skip these baselines in Experiments
2 and 3 and concentrate on the smaller language models such as
LLaMA-2 and investigate how fine-tuning for those smaller models
helps to achieve better accuracies compared to ELEET.

We do not compare against WannaDB [23], because it requires
user interaction for information extraction. Moreover, we do not
compare against Evaporate-Code [3], because it is designed to
extract information from semi-structured documents (e.g., XML,
JSON) and not continuous text. To run MMOps with the baselines,
we use their capability to transform texts to tables to transform all
documents in the document collection to tables. Afterwards, we
perform the corresponding traditional database operation.
Training and Fine-tuning. All experiments were executed on a
DGX A100 server. For pre-training, we used 4 GPUs, which took
approximately 8 days to train our model for 6 epochs on our pre-
training data set. For fine-tuning and inference — in particular, for
the performance measurements — we used 2 GPUs only (for all
models except GPT-3/4, which we cannot run on our hardware).
Metrics. In our experiments, we focus on two main dimensions:
(1) First, we measure the quality of the query results computed
by ELEET compared to the baselines. We use Exact Match (EM)
to evaluate the quality of query results. All datasets come with
a ground truth translation for all texts in the dataset. A value is

considered correct if it exactly matches its label. We compute an F1
score for each text and report their mean. While extractive models
will generally output the values exactly how they are mentioned
in the text (e.g., US president), generative models might output the
values in arbitrary form (e.g., President of the United States). Hence,
the datasets come with different alternatives for each value, each of
which counts as correct. For aggregations, we group-by a certain
attribute and collect for all other attributes the values for all groups.
We then compute an F1 score per group and report the mean. (2)
To compare the efficiency, we compare the runtime for each query.

6.2 Exp. 1: Runtime vs. Accuracy

Our main goal is to show that ELEET is orders of magnitude more
runtime efficient than the SLM and LLM baselines while being more
accurate. We therefore execute the full set of queries on all data sets
using ELEET and all baselines. Since the collection of training data
per text collection is expensive, we focus on a scenario where only
limited data is available for fine-tuning. Hence, in this experiment,
we limit the number to 64 labeled texts for fine-tuning per data set
(for ELEET, Text-To-Table, LLaMA). For LLaMA, GPT-3, and GPT-4,
we use few-shot prompting and include the annotated examples in
the input prompt, as explained before. We think this is a reasonable
number of texts that can be labeled manually. We later evaluate
in more detail how a different amount of labeled training data for
fine-tuning affects the accuracy of ELEET compared to the baselines.
Overall Results. In Figure 7 (lower part) we plot runtime and F1
scores for each query in our benchmark in a scatter plot. Overall,
we see that ELEET provides high accuracy (i.e., a high F1-score)
while being fast in execution (i.e., often in the order of seconds).

Runtime. As Figure 7 shows, ELEET is the fastest approach, while
other approaches are up to 575x slower. For instance, the following
query which is included in our testing set (i.e., player_info »a
player_to_reports % reports .player) takes about three minutes
with ELEET, 17 minutes using Text-To-Table, 2.5 hours using LLaMA,
1.5 hours using GPT-3, and almost 4 hours using GPT-4. This shows
how expensive in terms of runtime LLMs are when applied to many
texts. Overall, ELEET clearly outperforms the LLM-based baselines
(LLaMA, GPT-3 and GPT-4), even though the GPT-models run on
the hardware of OpenAl But even the comparatively small Text-
To-Table is significantly slower than ELEET, which we attribute to
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its use of a transformer-based autoregressive decoder that requires
many passes through the model compared to our model.
Accuracy. The density of F1 values (upper part of Figure 7) nicely
shows that ELEET usually exceeds the performance of the base-
lines despite being a small model. For aviation and corona, ELEET
achieves F1-scores of over 90% for most queries. For the other two
data sets, rotowire and T-REx, which are more challenging, the F1
scores of ELEET cluster above and around 75% and 80%, outperform-
ing the baselines. The most competitive model is GPT-4, which is
very accurate on aviation and corona. However, due to its immense
size, it is much computationally more expensive as discussed before.
Moreover, we see the effect of our pre-training when comparing the
performance to Text-To-Table and fine-tuned LLaMA, which have
F1 scores of around 25% for most queries on rotowire. 64 samples
are not enough for these models to allow for decent extractions.

6.3 Exp. 2: Varying Data Sizes for Fine-tuning

In the previous experiment, we have seen that ELEET can accurately
compute multi-modal queries with only a few fine-tuning samples.
However, users might often have different requirements on the
quality of query results and access to different amounts of labeled
texts for training. In this experiment, we show how ELEET behaves
with training sets of various sizes compared to the baselines. Here,
we use five queries on the rotowire data set for testing. The queries
used in this experiment cover all different MMOps:

Scan: Scan(reports.player)

Join: (player_info > player_to_reports)sireports.player
Union: player_stats U reports.player

Selection: Scan(Gpyinss=os(reports.player))
Aggregation: {name(Scan(reports.player))

We fine-tune several models for ELEET, Text-To-Table, and LLaMA

using a varying number of labeled texts. We vary between 4 labeled
texts up to the full training set (3398 texts) and report the mean F1
score of all queries from above for each model. As discussed before,
we limit ourselves to models that run on our hardware.
Accuracy with varying training data. Figure 8 shows the results.
With limited training data (4-16), only LLaMA using in-context-
learning and ELEET achieve accuracies of around 40%. The other
fine-tuned methods LLaMA and Text-To-Table struggle in these few-
shot scenarios due to the missing specialized pre-training. When we
increase the amount of training data for fine-tuning, the accuracies
of all fine-tuned methods increase. LLaMA using in-context learn-
ing, on the other hand, cannot use this additional training data due
to the limited context size. Overall, we see that ELEET outperforms
both fine-tuned baselines across all training set sizes. In particular,
for scans, joins, and unions, ELEET achieves a better Mean F1 score
than Text-To-Table and LLaMA even when trained on the entire
data set of rotowire. We achieve an unmatched F1 score of 87% for
joins, unions, and scans when trained on the entire data set.

6.4 Exp. 3: Runtime of Multi-modal Operators

In the next experiment, we zoom into query runtime and show
what typical query runtimes for ELEET are, and how efficient each
individual operator is. Figure 9 shows the results.

Overall results. As we have seen before, ELEET vastly outper-
forms all baselines in terms of query runtime. However, comparing
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Figure 8: Mean F1 scores for different queries and training set
sizes on rotowire. The F1 scores for all models that use fine-
tuning increase as the number of labeled texts for training
increases, but ELEET consistently outperforms all baselines.
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Figure 9: Runtime comparisons on the two latent tables of ro-
towire (reports.player and reports. team, containing Player
and Team statistics). Comparing the query runtime of ELEET
on the different queries, we see that joins are faster than
scans or unions as they do not run Algorithm 5.

the query runtime of different queries using ELEET, we see big
differences. In particular, joins are more efficient than unions or
scans, because they do not necessitate execution of Algorithm 5
as discussed in Section 5.2. The multi-modal union and scan will
extract multiple tuples per game report by first extracting the name
of the Team/Player (name is the document-level key of the latent
reports.player and reports. team tables). Only in a second iter-
ation are the statistics of each Player or Team extracted. The join on
the other hand uses the signal from the table, the document collec-
tion is joined with (player_info and team_info). These already
contain names and other information of players and teams, and
hence the first iteration can be skipped. This effect can be best seen
in Figure 9 (right), where a join with the latent teams table takes 26
seconds, while scans and unions take 70 seconds. Moreover, selec-
tion operations can reduce query runtime to the order of seconds.
This is due to the use of indexes, allowing efficient execution if only
a few texts need to be processed based on the filter predicate. A
similar effect also holds for selective join, as we show next.

6.4.1 Selective Multi-modal Join Queries. To investigate the sce-
narios of selective joins where the data in the tabular input helps



to reduce the number of texts we need to analyze, we look at such
join queries on the latent player table of rotowire:

(0cond (player_info) > player_to_reports)sireports.player

In these queries, cond is an arbitrary condition that selects a
certain amount of players. The join queries in this experiment have
different selectivities; i.e., the query only selects a few players
before executing the multi-modal join with the text collection. Since
tuples in the table are linked to the game reports (e.g., a tuple about
a player is linked to all the game reports the player participated
in), this usually results in only a few selected texts as well (i.e., the
filter on the table acts as an index into the text collection).
Runtime for different selectivities. Figure 10 (left) shows how
the different selectivities affect the overall query runtime of the
queries containing the selective multi-modal join operator. Here
we encounter another benefit of ELEET: Since ELEET only needs
to materialize those rows that have a join partner in the tabular
operand (by feeding table tuples in the model), the runtime is re-
duced to the order of a few seconds. All other approaches translate
the entire text to a table, which results in runtime overhead.

6.4.2 Multi-Modal Selection. In the second scenario, we analyze
the runtime of simple queries that only need to scan a subset of texts
in a text collection using a multi-modal selection operation (variant
1) on extracted attributes (e.g., Scan(&poinss=28 (reports.player))).
If implemented naively, this query results in a costly operation since,
independent of the selectivity, all texts need to be first transformed
to tuples to judge which texts qualify for the filter condition. Instead,
ELEET uses an index, as explained in Section 5.3.

Runtime for different selectivities. Figure 10 (right) shows
the runtime with different filter conditions resulting in different
amounts of selected texts. For queries with low selectivity, ELEET
can again compute the query results in a few seconds. The naive
solution to translate all texts into tables first and then doing the
selection afterwards would always take a few minutes, independent
of selectivity.

6.5 Exp. 4: Ablation Study for Pre-Training

In the next experiment, we show the effect of our pre-training
objectives by comparing it to other existing pre-training procedures.
Alternative pre-training procedures. To show the importance
of multi-modal pre-training that teaches the model the necessary
skills to perform MMOps, we examine whether our pre-training pro-
cedure results in better extractions compared to other pre-training
procedures. We compare against two alternative pre-training pro-
cedures: the pre-training procedure used for BERT [15] and the
pre-training procedure used for TaBERT [71]. The BERT model
aims at natural language understanding and is thus pre-trained on
plain text only, meaning it has never seen any tabular data before.
TaBERT, on the other hand, is also pre-trained on a parallel corpus
of texts and tables scraped from the web. However, in the parallel
corpus of TaBERT, texts and tables are often only vaguely related.
Moreover, the pre-training objectives are designed for tasks like
text-to-SQL and are not ideal for enabling MMOps.

Effect of different pre-training procedures. Figure 11 shows
how the different pre-training procedures affect the quality of query
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Figure 10: Runtime behavior of ELEET for selective queries on
rotowire. (Left) The query selects a subset of rows (i.e. players)
from the table before a multi-modal join, which results in
fewer texts being processed. (Right) A multi-modal selection
operation (with subsequent scan) using our secondary index.
The index reduces the number of processed texts, allowing
much faster runtimes for lower selectivities.
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Figure 11: Comparison of the query result quality when using
ELEET with different pre-trained weights. The pre-trained
weights resulting from our pre-training procedure result in
better extractions across training set sizes.

results when varying the number of samples for fine-tuning. Espe-
cially with only limited fine-tuning data, our model can consistently
extract tabular data from text more accurately. Comparing TaBERT
to BERT, we see that TaBERT can consistently outperform BERT
since it is already using a form of tabular pre-training.

6.6 Exp. 5: Architectural Design Decisions

In this section we justify the design decision of our model, in partic-
ular the use of an extractive model as well as the use of vertical-self
attention in our model.

Extractive vs. Generative Models. As explained in Section 2.2,
we chose an extractive decoder. The alternative, a generative auto-
regressive decoder generates the output tokens one-by-on and thus
requires many passes through the model. This can also be seen
in our previous experiments. In Figure 7, we show that ELEET is
much faster than Text-to-Table [69] across all queries. Text-To-
Table is an SLM with a similar number of parameters as ELEET
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Figure 12: Comparison of extractive and generative decod-
ing on the SQuAD dataset. The generative variant needs 25
percent more time than the extractive variant.

that uses autoregressive decoding. This shows that for the task
of transforming texts to tables, extractive decoding is much faster
than autoregressive decoding.

Moreover, to isolate the effect of extractive decoding versus
generative decoding using an autoregressive model, we did a micro-
benchmark, where we stripped down our model to a simplified
version, essentially consisting only of a transformer-based encoder
and either an extractive decoder or a transformer-based autore-
gressive decoder. Hence, this stripped-down model can be used to
either extract values from text (as we do) or generate them using
its autoregressive decoder (as the GPT models do). For the autore-
gressive model, we use 12 transformer layers for the Encoder (as
discussed in Section 4) and another 12 for the decoder. To make the
comparison fair, we increased the number of encoder layers of the
extractive model to 24. Hence, both variants have the same number
of transformer layers and are equivalent in size. For the evaluation,
we used the SQUAD [47] dataset, which requires extracting a single
value from each text (can be seen as a table with a single column) to
avoid the effects of different output serializations for the generative
model.

Figure 12 shows that the extractive variant is 25 percent faster

than the generative variant, which means the absolute runtime
difference scales linearly with the number of documents in the
document collection. Moreover, this effect is more pronounced
when the output sequences are longer, i.e., when the output is not
just a single value consisting of a few tokens.
Vertical Self-Attention. As explained in Section 4, one crucial
component of our model is the use of vertical self-attention [71]
to let signal flow between input sequences. Especially for unions,
letting signal flow between the different input sequences is impor-
tant. In a union, the other rows contain example values from the
tabular operand that can be used as additional context that can help
during extraction. These example values can, for example, resolve
potential ambiguities in the names of the query attributes.

To evaluate this effect in isolation, we created a new text col-
lection of ambiguous patient reports that contain two kinds of
diagnoses: First, the patient reports contain diagnoses regarding
the patients’ health problems. Additionally, technical equipment
(e.g., the equipment in the room) is also broken, and the text con-
tains diagnoses regarding their malfunctioning. We constructed the

dataset using a set of patient report templates and letting GPT-4 fill
in the blank health-related and technical diagnoses.

Hence, in a latent table with columns name and diagnosis, it is
unclear which diagnosis should be extracted, the health-related one
or the technical equipment-related one. However, this ambiguity
can be resolved when performing a union with either a health-
related diagnosis table or a technical-equipment-related diagnosis
table, if the model is able to let the signal flow from the example
rows to the row containing the mask tokens for extraction. Table 4
shows that ELEET is able to resolve this ambiguity when using the
example rows as additional context. With vertical self-attention,
ELEET is able to extract the correct diagnosis almost perfectly. With-
out vertical self-attention, the aforementioned ambiguity cannot
be resolved, causing the F1-score to drop to around 50%.

Table 4: Comparison of ELEET with and without vertical atten-
tion on a synthetic dataset with ambiguous column names.
Vertical attention allows signal flow between the input rows,
which helps resolve ambiguous column names.

Model ‘ user’s interest ‘ mean F1
ELEET technical diagnosis 0.99
ELEET health diagnosis 0.99
ELEET (w/o vertical attention) | technical diagnosis 0.41
ELEET (w/o vertical attention) health diagnosis 0.55

6.7 Exp. 6: Automatic Latent Table Registration

As explained in Section 3.1, registering a latent table comes with
some manual overhead. More specifically, in order to register a
latent table, users have to define a schema, define whether a latent
table is single-row or multi-row and in the latter case, specify the
document-level key. To reduce the manual overhead, we tried to
automate the selection of the document-level key and the decision of
whether a latent table is multi-row such that the user does not need
to make this decision by screening texts manually. We used Chat-
GPT-3.5 and prompted it to decide what the document-level key
of a latent table should be and whether a latent table is multi-row
(see prompt below). In the prompt, we put a small sample of three
example texts and the schema of the latent table. Interestingly, we
found that Chat-GPT-3.5 (gpt-3.5-turbo-0125) was able to correctly
identify the document-level key and whether a latent table is multi-
row for all latent tables of our four datasets as shown in Table 5. As
this process needs to be done only once per latent table (and not
per document) and latent table registration happens before query
execution time, we believe it is suitable to use a large language
model like Chat-GPT-3.5 for this task.

Details on prompt. We used the following prompt for the iden-
tifying attribute:

I want to transform the information stored in texts
into a table. The table should have the following
columns: <columns>. <= In a first step, please specify
one of the columns that act as a document-level key,
meaning that all extracted values should be unique per
document. Only output the name of that column without



Table 5: Chat-GPT-3.5 is able to correctly identify the
document-level key and whether a a latent table is multi-
row on all of our four datasets.

Task ‘ Accuracy
Identify document-level key per table 100%
Identify multi-row per table 100%

any explanations. «— «— Sample of texts: «— <sample
of three texts>

We used the following prompt for classifying latent tables on
multi-row texts:

I want to transform the information stored in texts
into a table. The table should have the following
columns: <columns>. «— In a first step, please determine
if one or many rows are extracted per text document.

Please only output "many" or "one" without any explanations.

«— « Sample of texts: «— <sample of three texts>

6.8 Exp. 7: Varying Text Lengths

Our work focuses on small to medium-sized texts (such as patient
reports) but can also support longer texts using a windowed ap-
proach as explained in Section 5.1. The main idea is to extract the
values from longer text by processing them using a sliding window.
We can feed each text window independently into the ELEET-model
and collect the extracted values across windows afterwards to com-
pose the output table. For multi-row texts, the procedure is slightly
more involved due to the two phases of Algorithm 5. Here, we
again process the different text windows independently for each
phase. However, after extracting the values for the document-level
key in the first phase, we need to first collect and deduplicate all
extracted values across windows, before we can continue with the
second phase. After extracting all values for all text windows in the
second phase, we can collect them to compose the output table.
We found that this windowed approach works well and does not
come with a degradation in extraction quality, as shown below. This
indicates that large context windows are not required to extract
values from text. To show that our model works well independent
of text length, we break down the extraction quality by text length
on the rotowire and T-REx datasets, which are the two datasets that
contain long texts. For this experiment, we removed all aggregations
and selections from our benchmarks to show the effects of pure
extractions. Then, we executed all queries on the datasets and
recorded the results. For each tuple in an output table, we trace
back from which text the tuple is coming (i.e., from which text have
the tuple’s values been extracted). Then, we compute an F1 score
for each text separately by only considering the tuples that were
produced from each text. Figure 7 shows the result, where we plot
the text length on the X-axis and the F1 score for each text on the
Y-axis. The lines in the background show the F1 scores of each text,
while the lines in the foreground are a smoothed version of the
results by averaging the over the last 10 texts. The dashed black
line denotes the context length of the ELEET-model (512 tokens).
We can clearly see that the performance of ELEET is stable under

increasing text length. Important is that ELEET has the best F1 score
despite having a smaller context length than the baselines, and the
accuracy does not drop for texts that are longer than the context
length of the ELEET-model (right to the dashed line).

7 RELATED WORK

Multi-Modal Data Systems. Integrating textual data into data
systems is a long-standing problem. Early work implemented a join
that retrieves the most relevant documents for each tuple without
extracting any structured data from the text [7]. Later systems al-
lowed users to write small extraction functions or UDFs to extract
structured data from text and then allowed them to easily com-
bine these extraction functions by writing SQL or datalog queries
[10, 21,50, 52]. However, these systems still require the user to write
extraction functions, which is not necessary in ELEET. Other works
focus only on filtering the multi-modal data using natural language
filters [26, 34]. Some early systems extract data from texts by using
techniques such as information extraction, named entity recogni-
tion, part-of-speech tagging, and/or hand-designed grammars or
rules [6, 20, 28, 55]. However, they typically do not consider the
multi-modal case where tabular data is available in addition to texts.
More recently, NeuralDB [57] and WannaDB [23] use pre-trained
language models to run queries directly on text documents, similar
to ELEET. Both systems, again, do not consider the multi-modal
case and do not support multi-row operations, where multiple tu-
ples are extracted from a single text document. Symphony [8] can
query multi-modal data using natural language. The setting in data
lakes differs from databases since the main concern is retrieving
data from multi-modal data sets. For retrieval, they propose an
information compression pre-training objective to embed many
modalities in the same latent space. Caesura [61] uses LLMs to
generate multi-modal query plans similar to ours. Plugging ELEET
into Caesura is an interesting avenue for future work.

Extraction of Tabular Data. GIO [17] and Evaporate [3] tackle the
related problem of translating custom data formats (e.g., machine
logs) or semi-structured documents (e.g., XML), respectively, into
tables using code generation. While GIO uses template-based code
generation, Evaporate uses LLMs such as GPT-4. However, we found
that code generation is hard with free-form text, as in our setting.
Text-to-Table [69] and STable [46] are sequence-to-sequence models
trained to transform tables into text. Both introduce several model
adjustments to ensure that the model outputs a correctly structured
table. Different from Text-To-Table, STable can output table cells in
arbitrary order. Unlike our work, both are trained in a supervised
manner from scratch for every new data set.

LLMs for Data Management. By now, many research groups
have integrated language models into data systems to tackle various
data management tasks. Language models have been used to tune
databases [60], solve data engineering tasks like entity matching,
entity resolution, or missing value imputation [1, 18, 35, 40, 65], or
augment databases with knowledge stored inside of LLMs [49, 63].
Moreover, Foundation Models for data management promise to be
a solution for many different data management problems [33, 64].
Pre-training Models. Large pre-trained language models [4, 15, 37,
44] are by now dominating NLP and are quickly adapted for multi-
modal [32, 39, 53, 54] and tabular data [13, 25, 66]. To reduce the
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overhead of adaption to downstream tasks, pre-training objectives
began to be more aligned with the downstream task for many
core-NLP [19, 27, 30, 48] and also structure-aware tasks [36, 42,
51, 72]. Most similar to our pre-training objectives are those pre-
training procedures that rely on weak or distant supervision to
align pre-training more to the downstream task. ReasonBERT [12]

uses a pre-training objective inspired by distant supervision for the
downstream task of multi-hop hybrid question answering. StruG’s
[11] pre-training data set designed for the text-to-SQL task is based
on the table-to-text data set ToT To [43], which was extracted from
Wikipedia using heuristics and is much smaller than our data set.

8 CONCLUSIONS AND FUTURE WORK

We presented ELEET, a new execution engine that allows users
to seamlessly query textual and tabular data. The cornerstone of
ELEET is the concept of multi-modal database operators, which are
realizable using a small pre-trained language model. As a result,
multi-modal queries containing multi-modal database operators
can be executed on new data sets with only minimal fine-tuning
overhead and high performance. Clearly, there are still many chal-
lenges when integrating ELEET into a real database system. The
query parser must be able to instantiate the multi-modal query
plans containing multi-modal and traditional operators. The query
optimizer must reason about the effects of replacing traditional
operators with multi-modal ones. Moreover, an extension to other
modalities like images is also an interesting avenue for future work.

ACKNOWLEDGMENTS

This research is supported by the Hochtief project AICO (Al in Con-
struction), the German Federal Ministry of Education and Research
(BMBF), and the state of Hesse through the NHR Program. This
work was also partially funded by the LOEWE Spitzenprofessur of
the state of Hesse. Additional support was provided by hessian.AI
and DFKI Darmstadt. We are also grateful to Torsten Gallen and
Kelvin Chui for the insightful discussions.

REFERENCES

[1] Naser Ahmadi, Hansjorg Sand, and Paolo Papotti. 2022. Unsupervised Matching

of Data and Text. In 38th IEEE International Conference on Data Engineering,
ICDE 2022, Kuala Lumpur, Malaysia, May 9-12, 2022. IEEE, 1058-1070. https:

//doi.org/10.1109/ICDE53745.2022.00084

[2] Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin,
Alexandre Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen,
Eric Chu, Jonathan H. Clark, Laurent El Shafey, Yanping Huang, Kathy Meier-
Hellstern, Gaurav Mishra, Erica Moreira, Mark Omernick, Kevin Robinson, Sebas-
tian Ruder, Yi Tay, Kefan Xiao, Yuanzhong Xu, Yujing Zhang, Gustavo Hernandez
Abrego, Junwhan Ahn, Jacob Austin, Paul Barham, Jan Botha, James Bradbury,
Siddhartha Brahma, Kevin Brooks, Michele Catasta, Yong Cheng, Colin Cherry,
Christopher A. Choquette-Choo, Aakanksha Chowdhery, Clément Crepy, Shachi
Dave, Mostafa Dehghani, Sunipa Dev, Jacob Devlin, Mark Diaz, Nan Du, Ethan
Dyer, Vlad Feinberg, Fangxiaoyu Feng, Vlad Fienber, Markus Freitag, Xavier
Garcia, Sebastian Gehrmann, Lucas Gonzalez, Guy Gur-Ari, Steven Hand, Hadi
Hashemi, Le Hou, Joshua Howland, Andrea Hu, Jeffrey Hui, Jeremy Hurwitz,
Michael Isard, Abe Ittycheriah, Matthew Jagielski, Wenhao Jia, Kathleen Kenealy,
Maxim Krikun, Sneha Kudugunta, Chang Lan, Katherine Lee, Benjamin Lee, Eric
Li, Music Li, Wei Li, YaGuang Li, Jian Li, Hyeontaek Lim, Hanzhao Lin, Zhong-
tao Liu, Frederick Liu, Marcello Maggioni, Aroma Mahendru, Joshua Maynez,
Vedant Misra, Maysam Moussalem, Zachary Nado, John Nham, Eric Ni, Andrew
Nystrom, Alicia Parrish, Marie Pellat, Martin Polacek, Alex Polozov, Reiner Pope,
Siyuan Qiao, Emily Reif, Bryan Richter, Parker Riley, Alex Castro Ros, Aurko Roy,
Brennan Saeta, Rajkumar Samuel, Renee Shelby, Ambrose Slone, Daniel Smilkov,
David R. So, Daniel Sohn, Simon Tokumine, Dasha Valter, Vijay Vasudevan, Kiran
Vodrahalli, Xuezhi Wang, Pidong Wang, Zirui Wang, Tao Wang, John Wieting,
Yuhuai Wu, Kelvin Xu, Yunhan Xu, Linting Xue, Pengcheng Yin, Jiahui Yu, Qiao
Zhang, Steven Zheng, Ce Zheng, Weikang Zhou, Denny Zhou, Slav Petrov, and
Yonghui Wu. 2023. PaLM 2 Technical Report. arXiv:2305.10403 [cs]

Simran Arora, Brandon Yang, Sabri Eyuboglu, Avanika Narayan, Andrew Hojel,
Immanuel Trummer, and Christopher Ré. 2023. Language Models Enable Simple
Systems for Generating Structured Views of Heterogeneous Data Lakes. Proc.
VLDB Endow. 17, 2 (2023), 92-105. https://www.vldb.org/pvldb/vol17/p92-arora.
pdf

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
In Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/
hash/1457c0d6bfcb4967418bfb8ac142f64a- Abstract.html

Michael J. Cafarella, Alon Y. Halevy, Daisy Zhe Wang, Eugene Wu, and Yang
Zhang. 2008. WebTables: exploring the power of tables on the web. Proc. VLDB
Endow. 1, 1 (2008), 538-549. https://doi.org/10.14778/1453856.1453916

Michael J. Cafarella, Christopher Ré, Dan Suciu, and Oren Etzioni. 2007. Struc-
tured Querying of Web Text Data: A Technical Challenge. In Third Bien-
nial Conference on Innovative Data Systems Research, CIDR 2007, Asilomar,
CA, USA, January 7-10, 2007, Online Proceedings. www.cidrdb.org, 225-234.
http://cidrdb.org/cidr2007/papers/cidr07p25.pdf

Surajit Chaudhuri, Umeshwar Dayal, and Tak W. Yan. 1995. Join Queries with
External Text Sources: Execution and Optimization Techniques. SIGMOD Rec.
24, 2 (May 1995), 410-422. https://doi.org/10.1145/568271.223856

Zui Chen, Zihui Gu, Lei Cao, Ju Fan, Samuel Madden, and Nan Tang. 2023.
Symphony: Towards Natural Language Query Answering over Multi-modal

[5

G


https://doi.org/10.1109/ICDE53745.2022.00084
https://doi.org/10.1109/ICDE53745.2022.00084
https://arxiv.org/abs/2305.10403
https://www.vldb.org/pvldb/vol17/p92-arora.pdf
https://www.vldb.org/pvldb/vol17/p92-arora.pdf
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.14778/1453856.1453916
http://cidrdb.org/cidr2007/papers/cidr07p25.pdf
https://doi.org/10.1145/568271.223856

[10]

(11

[12]

[13

[14]

[15]

[16

[17

[18]

[19

Data Lakes. In 13th Conference on Innovative Data Systems Research, CIDR 2023,
Amsterdam, The Netherlands, January 8-11, 2023. www.cidrdb.org. https://www.
cidrdb.org/cidr2023/papers/p51-chen.pdf

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Se-
bastian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua
Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar
Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Brad-
bury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke,
Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier
Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ip-
polito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan
Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai, Thanu-
malayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang,
Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-
Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. 2023. PaLM:
Scaling Language Modeling with Pathways. J. Mach. Learn. Res. 24 (2023), 240:1—
240:113. http://jmlr.org/papers/v24/22-1144.html

Eric Chu, Akanksha Baid, Ting Chen, AnHai Doan, and Jeffrey F. Naughton. 2007.
A Relational Approach to Incrementally Extracting and Querying Structure in
Unstructured Data. In Proceedings of the 33rd International Conference on Very
Large Data Bases, University of Vienna, Austria, September 23-27, 2007, Christoph
Koch, Johannes Gehrke, Minos N. Garofalakis, Divesh Srivastava, Karl Aberer,
Anand Deshpande, Daniela Florescu, Chee Yong Chan, Venkatesh Ganti, Carl-
Christian Kanne, Wolfgang Klas, and Erich J. Neuhold (Eds.). ACM, 1045-1056.
http://www.vldb.org/conf/2007/papers/research/p1045-chu.pdf

Xiang Deng, Ahmed Hassan Awadallah, Christopher Meek, Oleksandr Polozov,
Huan Sun, and Matthew Richardson. 2021. Structure-Grounded Pretraining for
Text-to-SQL. In Proceedings of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2021, Online, June 6-11, 2021, Kristina Toutanova, Anna Rumshisky,
Luke Zettlemoyer, Dilek Hakkani-Tiir, Iz Beltagy, Steven Bethard, Ryan Cotterell,
Tanmoy Chakraborty, and Yichao Zhou (Eds.). Association for Computational
Linguistics, 1337-1350. https://doi.org/10.18653/v1/2021.naacl-main.105
Xiang Deng, Yu Su, Alyssa Lees, You Wu, Cong Yu, and Huan Sun. 2021.
ReasonBERT: Pre-trained to Reason with Distant Supervision. In Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November,
2021, Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-
tau Yih (Eds.). Association for Computational Linguistics, 6112-6127. https:
//doi.org/10.18653/v1/2021.emnlp-main.494

Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. 2022. TURL: Table
Understanding through Representation Learning. SIGMOD Rec. 51, 1 (2022),
33-40. https://doi.org/10.1145/3542700.3542709

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. 2023.
QLoRA: Efficient Finetuning of Quantized LLMs. CoRR abs/2305.14314 (2023).
https://doi.org/10.48550/ARXIV.2305.14314 arXiv:2305.14314

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In Proceedings of the 2019 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), Jill
Burstein, Christy Doran, and Thamar Solorio (Eds.). Association for Computa-
tional Linguistics, 4171-4186. https://doi.org/10.18653/v1/n19-1423

Hady ElSahar, Pavlos Vougiouklis, Arslen Remaci, Christophe Gravier, Jonathon S.
Hare, Frédérique Laforest, and Elena Simperl. 2018. T-REx: A Large Scale
Alignment of Natural Language with Knowledge Base Triples. In Proceedings
of the Eleventh International Conference on Language Resources and Evaluation,
LREC 2018, Miyazaki, Japan, May 7-12, 2018, Nicoletta Calzolari, Khalid Choukri,
Christopher Cieri, Thierry Declerck, Sara Goggi, Koiti Hasida, Hitoshi Isahara,
Bente Maegaard, Joseph Mariani, Hélene Mazo, Asuncién Moreno, Jan Odijk,
Stelios Piperidis, and Takenobu Tokunaga (Eds.). European Language Resources
Association (ELRA). http://www.Irec-conf.org/proceedings/Irec2018/summaries/
632.html

Saeed Fathollahzadeh and Matthias Boehm. 2023. GIO: Generating Efficient
Matrix and Frame Readers for Custom Data Formats by Example. Proc. ACM
Manag. Data 1, 2 (2023), 120:1-120:26. https://doi.org/10.1145/3589265

Bar Genossar, Roee Shraga, and Avigdor Gal. 2023. FlexER: Flexible Entity
Resolution for Multiple Intents. Proc. ACM Manag. Data 1, 1 (2023), 42:1-42:27.
https://doi.org/10.1145/3588722

Michael R. Glass, Alfio Gliozzo, Rishav Chakravarti, Anthony Ferritto, Lin Pan,
G. P. Shrivatsa Bhargav, Dinesh Garg, and Avirup Sil. 2020. Span Selection Pre-
training for Question Answering. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, Dan
Jurafsky, Joyce Chai, Natalie Schluter, and Joel R. Tetreault (Eds.). Association
for Computational Linguistics, 2773-2782. https://doi.org/10.18653/v1/2020.acl-
main.247

[20

[21

[22]

(23]

[24

[25

[26]

[27

[28

[29]

(31]

[32

(33]

(34

[35

(37]

Michael Gubanov and Philip Bernstein. 2006. Structural text search and compar-
ison using automatically extracted schema.

Michael Gubanov, Michael Stonebraker, and Daniel Bruckner. 2014. Text and
structured data fusion in data tamer at scale. In 2014 IEEE 30th International
Conference on Data Engineering. 1258-1261. https://doi.org/10.1109/ICDE.2014.
6816755

James R. Hamilton and Tapas K. Nayak. 2001. Microsoft SQL Server Full-Text
Search. IEEE Data Eng. Bull. 24, 4 (2001), 7-10. http://sites.computer.org/debull/
A01DEC-CD.pdf

Benjamin Hattasch, Jan-Micha Bodensohn, Liane Vogel, Matthias Urban, and
Carsten Binnig. 2023. WannaDB: Ad-hoc SQL Queries over Text Collections.
In Datenbanksysteme fiir Business, Technologie und Web (BTW 2023), 20. Fach-
tagung des GI-Fachbereichs ,Datenbanken und Informationssysteme" (DBIS), 06.-
10, Mdrz 2023, Dresden, Germany, Proceedings (LNI), Birgitta Konig-Ries, Ste-
fanie Scherzinger, Wolfgang Lehner, and Gottfried Vossen (Eds.), Vol. P-331.
Gesellschaft fiir Informatik eV., 157-181. https://doi.org/10.18420/BTW2023-08
Madelon Hulsebos, Cagatay Demiralp, and Paul Groth. 2023. GitTables: A Large-
Scale Corpus of Relational Tables. Proc. ACM Manag. Data 1, 1 (2023), 30:1-30:17.
https://doi.org/10.1145/3588710

Hiroshi lida, Dung Thai, Varun Manjunatha, and Mohit Iyyer. 2021. TABBIE:
Pretrained Representations of Tabular Data. In Proceedings of NAACL-HLT 2021.
Association for Computational Linguistics, 3446-3456.

Saehan Jo and Immanuel Trummer. 2023. Demonstration of ThalamusDB: An-
swering Complex SQL Queries with Natural Language Predicates on Multi-
Modal Data. In Companion of the 2023 International Conference on Management
of Data, SIGMOD/PODS 2023, Seattle, WA, USA, June 18-23, 2023, Sudipto Das, Ip-
pokratis Pandis, K. Selcuk Candan, and Sihem Amer-Yahia (Eds.). ACM, 179-182.
https://doi.org/10.1145/3555041.3589730

Mandar Joshi, Dangi Chen, Yinhan Liu, Daniel S. Weld, Luke Zettlemoyer, and
Omer Levy. 2020. SpanBERT: Improving Pre-training by Representing and
Predicting Spans. Trans. Assoc. Comput. Linguistics 8 (2020), 64-77. https:
//doi.org/10.1162/tacl_a_00300

Rajasekar Krishnamurthy, Yunyao Li, Sriram Raghavan, Frederick Reiss, Shiv-
akumar Vaithyanathan, and Huaiyu Zhu. 2009. SystemT: a system for declarative
information extraction. SIGMOD Rec. 37 (2009), 7-13. https://api.semanticscholar.
org/CorpusID:8749741

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettlemoyer. 2017. End-to-
end Neural Coreference Resolution. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing. Association for Computational
Linguistics, Copenhagen, Denmark, 188-197. https://doi.org/10.18653/v1/D17-
1018

Mike Lewis, Marjan Ghazvininejad, Gargi Ghosh, Armen Aghajanyan, Sida
Wang, and Luke Zettlemoyer. 2020. Pre-training via Paraphrasing. In Advances
in Neural Information Processing Systems 33: Annual Conference on Neural In-
formation Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/hash/
d6f1dd034aabde7657e6680444ceff62- Abstract.html

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART:
Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, Dan
Jurafsky, Joyce Chai, Natalie Schluter, and Joel R. Tetreault (Eds.). Association for
Computational Linguistics, 7871-7880. https://doi.org/10.18653/V1/2020.ACL-
MAIN.703

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, and Kai-Wei Chang.
2019. VisualBERT: A Simple and Performant Baseline for Vision and Language.
CoRR abs/1908.03557 (2019). arXiv:1908.03557 http://arxiv.org/abs/1908.03557
Peng Li, Yeye He, Dror Yashar, Weiwei Cui, Song Ge, Haidong Zhang,
Danielle Rifinski Fainman, Dongmei Zhang, and Surajit Chaudhuri. 2023. Table-
gpt: Table-tuned gpt for diverse table tasks. arXiv preprint arXiv:2310.09263
(2023).

Yuliang Li, Aaron Feng, Jinfeng Li, Saran Mumick, Alon Y. Halevy, Vivian Li,
and Wang-Chiew Tan. 2019. Subjective Databases. Proc. VLDB Endow. 12, 11
(2019), 1330-1343. https://doi.org/10.14778/3342263.3342271

Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan.
2020. Deep Entity Matching with Pre-Trained Language Models. Proc. VLDB
Endow. 14, 1 (2020), 50-60. https://doi.org/10.14778/3421424.3421431

Qian Liu, Bei Chen, Jiagi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, and
Jian-Guang Lou. 2022. TAPEX: Table Pre-training via Learning a Neural SQL
Executor. In The Tenth International Conference on Learning Representations, ICLR
2022, Virtual Event, April 25-29, 2022. OpenReview.net. https://openreview.net/
forum?id=050443AsCP

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Dangi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. CoRR abs/1907.11692 (2019).
arXiv:1907.11692 http://arxiv.org/abs/1907.11692


https://www.cidrdb.org/cidr2023/papers/p51-chen.pdf
https://www.cidrdb.org/cidr2023/papers/p51-chen.pdf
http://jmlr.org/papers/v24/22-1144.html
http://www.vldb.org/conf/2007/papers/research/p1045-chu.pdf
https://doi.org/10.18653/v1/2021.naacl-main.105
https://doi.org/10.18653/v1/2021.emnlp-main.494
https://doi.org/10.18653/v1/2021.emnlp-main.494
https://doi.org/10.1145/3542700.3542709
https://doi.org/10.48550/ARXIV.2305.14314
https://doi.org/10.18653/v1/n19-1423
http://www.lrec-conf.org/proceedings/lrec2018/summaries/632.html
http://www.lrec-conf.org/proceedings/lrec2018/summaries/632.html
https://doi.org/10.1145/3589265
https://doi.org/10.1145/3588722
https://doi.org/10.18653/v1/2020.acl-main.247
https://doi.org/10.18653/v1/2020.acl-main.247
https://doi.org/10.1109/ICDE.2014.6816755
https://doi.org/10.1109/ICDE.2014.6816755
http://sites.computer.org/debull/A01DEC-CD.pdf
http://sites.computer.org/debull/A01DEC-CD.pdf
https://doi.org/10.18420/BTW2023-08
https://doi.org/10.1145/3588710
https://doi.org/10.1145/3555041.3589730
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://api.semanticscholar.org/CorpusID:8749741
https://api.semanticscholar.org/CorpusID:8749741
https://doi.org/10.18653/v1/D17-1018
https://doi.org/10.18653/v1/D17-1018
https://proceedings.neurips.cc/paper/2020/hash/d6f1dd034aabde7657e6680444ceff62-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d6f1dd034aabde7657e6680444ceff62-Abstract.html
https://doi.org/10.18653/V1/2020.ACL-MAIN.703
https://doi.org/10.18653/V1/2020.ACL-MAIN.703
http://arxiv.org/abs/1908.03557
https://doi.org/10.14778/3342263.3342271
https://doi.org/10.14778/3421424.3421431
https://openreview.net/forum?id=O50443AsCP
https://openreview.net/forum?id=O50443AsCP
http://arxiv.org/abs/1907.11692

[38

[39]

[41]

[42]

[43]

[44

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization.
In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net. https://openreview.net/
forum?id=Bkg6RiCqY7

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. 2019. ViLBERT:
Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-
Language Tasks. In Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Ro-
man Garnett (Eds.). 13-23. https://proceedings.neurips.cc/paper/2019/hash/
c74d97b01eae257e44aa9d5bade97baf- Abstract.html

Avanika Narayan, Ines Chami, Laurel J. Orr, and Christopher Ré. 2022. Can
Foundation Models Wrangle Your Data? Proc. VLDB Endow. 16, 4 (2022), 738-746.
https://doi.org/10.14778/3574245.3574258
OpenAl 2023. GPT-4 Technical Report.
08774 arXiv:2303.08774 [cs]

Liangming Pan, Wenhu Chen, Wenhan Xiong, Min-Yen Kan, and William Yang
Wang. 2021. Unsupervised Multi-hop Question Answering by Question Gen-
eration. In Proceedings of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2021, Online, June 6-11, 2021, Kristina Toutanova, Anna Rumshisky,
Luke Zettlemoyer, Dilek Hakkani-Tiir, Iz Beltagy, Steven Bethard, Ryan Cotterell,
Tanmoy Chakraborty, and Yichao Zhou (Eds.). Association for Computational
Linguistics, 5866-5880. https://doi.org/10.18653/v1/2021.naacl-main.469
Ankur P. Parikh, Xuezhi Wang, Sebastian Gehrmann, Manaal Faruqui, Bhuwan
Dhingra, Diyi Yang, and Dipanjan Das. 2020. ToTTo: A Controlled Table-To-
Text Generation Dataset. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMINLP 2020, Online, November 16-20,
2020, Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (Eds.). Association for
Computational Linguistics, 1173-1186. https://doi.org/10.18653/v1/2020.emnlp-
main.89

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep Contextualized Word Rep-
resentations. In Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2018, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long
Papers), Marilyn A. Walker, Heng Ji, and Amanda Stent (Eds.). Association for
Computational Linguistics, 2227-2237. https://doi.org/10.18653/v1/n18-1202
Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick S. H. Lewis, Majid Yaz-
dani, Nicola De Cao, James Thorne, Yacine Jernite, Vladimir Karpukhin, Jean
Maillard, Vassilis Plachouras, Tim Rocktischel, and Sebastian Riedel. 2021. KILT:
a Benchmark for Knowledge Intensive Language Tasks. In Proceedings of the
2021 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, NAACL-HLT 2021, Online,
June 6-11, 2021, Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek
Hakkani-Tiir, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty,
and Yichao Zhou (Eds.). Association for Computational Linguistics, 2523-2544.
https://doi.org/10.18653/v1/2021.naacl-main.200

Michal Pietruszka, Michal Turski, Lukasz Borchmann, Tomasz Dwojak, Gabriela
Palka, Karolina Szyndler, Dawid Jurkiewicz, and Lukasz Garncarek. 2022. STable:
Table Generation Framework for Encoder-Decoder Models. CoRR abs/2206.04045
(2022). https://doi.org/10.48550/arXiv.2206.04045 arXiv:2206.04045

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016.
SQuAD: 100, 000+ Questions for Machine Comprehension of Text. In Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2016, Austin, Texas, USA, November 1-4, 2016, Jian Su, Xavier Carreras,
and Kevin Duh (Eds.). The Association for Computational Linguistics, 2383-2392.
https://doi.org/10.18653/V1/D16-1264

Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, and Omer Levy. 2021.
Few-Shot Question Answering by Pretraining Span Selection. In Proceedings of
the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing, ACL/IJCNLP
2021, (Volume 1: Long Papers), Virtual Event, August 1-6, 2021, Chengqing Zong,
Fei Xia, Wenjie Li, and Roberto Navigli (Eds.). Association for Computational
Linguistics, 3066-3079. https://doi.org/10.18653/v1/2021.acl-long.239
Mohammed Saeed, Nicola De Cao, and Paolo Papotti. 2023. Querying Large
Language Models with SQL. arXiv preprint arXiv:2304.00472 (2023).

Warren Shen, AnHai Doan, Jeffrey F. Naughton, and Raghu Ramakrishnan. 2007.
Declarative Information Extraction Using Datalog with Embedded Extraction
Predicates. In Proceedings of the 33rd International Conference on Very Large
Data Bases, University of Vienna, Austria, September 23-27, 2007, Christoph Koch,
Johannes Gehrke, Minos N. Garofalakis, Divesh Srivastava, Karl Aberer, Anand
Deshpande, Daniela Florescu, Chee Yong Chan, Venkatesh Ganti, Carl-Christian
Kanne, Wolfgang Klas, and Erich J. Neuhold (Eds.). ACM, 1033-1044. http:
//www.vldb.org/conf/2007/papers/research/p1033-shen.pdf

Peng Shi, Patrick Ng, Zhiguo Wang, Henghui Zhu, Alexander Hanbo Li, Jun
Wang, Cicero Nogueira dos Santos, and Bing Xiang. 2021. Learning Contextual

https://doi.org/10.48550/arXiv.2303.

20

[52

[53

[54

[55

(57

(58]

[60

[61

[62

[63

[64

[65

Representations for Semantic Parsing with Generation-Augmented Pre-Training.
In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third
Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The
Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021,
Virtual Event, February 2-9, 2021. AAAI Press, 13806-13814. https://ojs.aaai.org/
index.php/AAAl/article/view/17627

Jaeho Shin, Sen Wu, Feiran Wang, Christopher De Sa, Ce Zhang, and Christopher
Ré. 2015. Incremental Knowledge Base Construction Using DeepDive. Proc.
VLDB Endow. 8, 11 (2015), 1310-1321. https://doi.org/10.14778/2809974.2809991
Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, and Jifeng Dai.
2020. VL-BERT: Pre-training of Generic Visual-Linguistic Representations. In
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net. https://openreview.net/forum?id=
SygXPaEYVH

Hao Tan and Mohit Bansal. 2019. LXMERT: Learning Cross-Modality Encoder
Representations from Transformers. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong
Kong, China, November 3-7, 2019, Kentaro Inui, Jing Jiang, Vincent Ng, and
Xiaojun Wan (Eds.). Association for Computational Linguistics, 5099-5110. https:
//doi.org/10.18653/v1/D19-1514

Luis Tari, Phan Huy Tu, Jorg Hakenberg, Yi Chen, Tran Cao Son, Graciela
Gonzalez, and Chitta Baral. 2010. Incremental information extraction using
relational databases. IEEE Transactions on Knowledge and Data Engineering 24, 1
(2010), 86-99.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste
Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth,
et al. 2023. Gemini: a family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805 (2023).

James Thorne, Majid Yazdani, Marzieh Saeidi, Fabrizio Silvestri, Sebastian Riedel,
and Alon Y. Halevy. 2021. Database reasoning over text. In Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021,
(Volume 1: Long Papers), Virtual Event, August 1-6, 2021, Chengqing Zong, Fei Xia,
Wenjie Li, and Roberto Navigli (Eds.). Association for Computational Linguistics,
3091-3104. https://doi.org/10.18653/v1/2021.acl-long.241

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guil-
laume Lample. 2023. LLaMA: Open and Efficient Foundation Language Models.
arXiv:2302.13971 [cs]

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, Dan Bikel, Lukas Blecher, Cristian Canton-Ferrer, Moya Chen, Guillem
Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar
Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux,
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier
Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew
Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan
Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang,
Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan
Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. 2023. Llama
2: Open Foundation and Fine-Tuned Chat Models. CoRR abs/2307.09288 (2023).
https://doi.org/10.48550/ARXIV.2307.09288 arXiv:2307.09288

Immanuel Trummer. 2022. DB-BERT: A Database Tuning Tool That "Reads the
Manual". In Proceedings of the 2022 International Conference on Management of
Data. ACM, Philadelphia PA USA, 190-203. https://doi.org/10.1145/3514221.
3517843

Matthias Urban and Carsten Binnig. 2024. CAESURA: Language Models as
Multi-Modal Query Planners. In 14th Conference on Innovative Data Systems
Research, CIDR 2024, Chaminade, CA, USA, January 14-17, 2024. www.cidrdb.org.
https://www.cidrdb.org/cidr2024/papers/p14-urban.pdf

Matthias Urban and Carsten Binnig. 2024. ELEET: Efficient Learned Query
Execution over Text and Tables. Proc. VLDB Endow. 17, 13 (2024), XXXX-XXXX.
https://www.vldb.org/pvldb/vol17/xxxx.pdf

Matthias Urban, Duc Dat Nguyen, and Carsten Binnig. 2023. OmniscientDB:
A Large Language Model-Augmented DBMS That Knows What Other DBMSs
Do Not Know. In Proceedings of the Sixth International Workshop on Exploiting
Artificial Intelligence Techniques for Data Management (Seattle, WA, USA) (aiDM
"23). Association for Computing Machinery, New York, NY, USA, Article 4, 7 pages.
https://doi.org/10.1145/3593078.3593933

Liane Vogel, Benjamin Hilprecht, and Carsten Binnig. 2023. Towards Foundation
Models for Relational Databases [Vision Paper]. arXiv:2305.15321 [cs]

Jin Wang, Yuliang Li, Wataru Hirota, and Eser Kandogan. 2022. Machop: an
end-to-end generalized entity matching framework. In aiDM ’22: Proceedings of


https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://proceedings.neurips.cc/paper/2019/hash/c74d97b01eae257e44aa9d5bade97baf-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c74d97b01eae257e44aa9d5bade97baf-Abstract.html
https://doi.org/10.14778/3574245.3574258
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2021.naacl-main.469
https://doi.org/10.18653/v1/2020.emnlp-main.89
https://doi.org/10.18653/v1/2020.emnlp-main.89
https://doi.org/10.18653/v1/n18-1202
https://doi.org/10.18653/v1/2021.naacl-main.200
https://doi.org/10.48550/arXiv.2206.04045
https://doi.org/10.18653/V1/D16-1264
https://doi.org/10.18653/v1/2021.acl-long.239
http://www.vldb.org/conf/2007/papers/research/p1033-shen.pdf
http://www.vldb.org/conf/2007/papers/research/p1033-shen.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/17627
https://ojs.aaai.org/index.php/AAAI/article/view/17627
https://doi.org/10.14778/2809974.2809991
https://openreview.net/forum?id=SygXPaEYvH
https://openreview.net/forum?id=SygXPaEYvH
https://doi.org/10.18653/v1/D19-1514
https://doi.org/10.18653/v1/D19-1514
https://doi.org/10.18653/v1/2021.acl-long.241
https://arxiv.org/abs/2302.13971
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.1145/3514221.3517843
https://doi.org/10.1145/3514221.3517843
https://www.cidrdb.org/cidr2024/papers/p14-urban.pdf
https://www.vldb.org/pvldb/vol17/xxxx.pdf
https://doi.org/10.1145/3593078.3593933
https://arxiv.org/abs/2305.15321

[66]

[67]

[68]

[69]

the Fifth International Workshop on Exploiting Artificial Intelligence Techniques
for Data Management, Philadelphia, Pennsylvania, USA, 17 June 2022, Rajesh
Bordawekar, Oded Shmueli, Yael Amsterdamer, Donatella Firmani, and Ryan
Marcus (Eds.). ACM, 2:1-2:10. https://doi.org/10.1145/3533702.3534910

Zhiruo Wang, Haoyu Dong, Ran Jia, Jia Li, Zhiyi Fu, Shi Han, and Dongmei
Zhang. 2021. TUTA: Tree-based Transformers for Generally Structured Ta-
ble Pre-training. In KDD °21: The 27th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, Virtual Event, Singapore, August 14-18, 2021,
Feida Zhu, Beng Chin Ooi, and Chunyan Miao (Eds.). ACM, 1780-1790. https:
//doi.org/10.1145/3447548.3467434

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian
Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler,
Ed H. Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy Liang, Jeff Dean, and
William Fedus. 2022. Emergent Abilities of Large Language Models.  https:
//doi.org/10.48550/arXiv.2206.07682 arXiv:2206.07682 [cs]

Sam Wiseman, Stuart M. Shieber, and Alexander M. Rush. 2017. Challenges in
Data-to-Document Generation. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2017, Copenhagen, Denmark,
September 9-11, 2017, Martha Palmer, Rebecca Hwa, and Sebastian Riedel (Eds.).
Association for Computational Linguistics, 2253-2263. https://doi.org/10.18653/
v1/d17-1239

Xueqing Wu, Jiacheng Zhang, and Hang Li. 2022. Text-to-Table: A New Way
of Information Extraction. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022,

21

[70]

[71]

(73]

Dublin, Ireland, May 22-27, 2022, Smaranda Muresan, Preslav Nakov, and Aline
Villavicencio (Eds.). Association for Computational Linguistics, 2518-2533. https:
//doi.org/10.18653/v1/2022.acl-long.180

Yi-Pu Wu, Jin-Jiang Guo, and Xue-Jie Zhang. 2007. A Linear DBSCAN Algo-
rithm Based on LSH. In 2007 International Conference on Machine Learning and
Cybernetics, Vol. 5. 2608-2614. https://doi.org/10.1109/ICMLC.2007.4370588
Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. 2020.
TaBERT: Pretraining for Joint Understanding of Textual and Tabular Data. In
Proceedings of the 58th Annual Meeting of the Association for Computational Lin-
guistics, ACL 2020, Online, July 5-10, 2020, Dan Jurafsky, Joyce Chai, Natalie
Schluter, and Joel R. Tetreault (Eds.). Association for Computational Linguistics,
8413-8426. https://doi.org/10.18653/v1/2020.acl-main.745

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin Wang, Yi Chern Tan, Xinyi
Yang, Dragomir R. Radev, Richard Socher, and Caiming Xiong. 2021. GraPPa:
Grammar-Augmented Pre-Training for Table Semantic Parsing. In 9th Interna-
tional Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net. https://openreview.net/forum?id=kyaleYj4zZ
Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan Salakhutdinov, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. 2015. Aligning Books and Movies: Towards
Story-Like Visual Explanations by Watching Movies and Reading Books. In 2015
IEEE International Conference on Computer Vision, ICCV 2015, Santiago, Chile,
December 7-13, 2015. IEEE Computer Society, 19-27. https://doi.org/10.1109/
ICCV.2015.11


https://doi.org/10.1145/3533702.3534910
https://doi.org/10.1145/3447548.3467434
https://doi.org/10.1145/3447548.3467434
https://doi.org/10.48550/arXiv.2206.07682
https://doi.org/10.48550/arXiv.2206.07682
https://arxiv.org/abs/2206.07682
https://doi.org/10.18653/v1/d17-1239
https://doi.org/10.18653/v1/d17-1239
https://doi.org/10.18653/v1/2022.acl-long.180
https://doi.org/10.18653/v1/2022.acl-long.180
https://doi.org/10.1109/ICMLC.2007.4370588
https://doi.org/10.18653/v1/2020.acl-main.745
https://openreview.net/forum?id=kyaIeYj4zZ
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11

A BENCHMARK QUERIES

In the following, we list all queries used as benchmarks for the evaluations in Section 6 in the paper.

A.1 Rotowire

(1) (player_info Mname player_to_reports) %,ush name reports.Player
(2) player_stats Ureports.Player
(3) Scan(reports.Player)
(4) (player_info ™name Player_w_reports) Dﬂ(‘path,name Fname,Points,Assists,Steals (reports.Player)
( ) {l:name,Points,Assists,Steals (player_Stats) U ii'name,Paints,Assists,StealS(reports'Player)
(6) Scan(#name,Points,Assists,Steals(report3~Player))
(7) (00.01(player_info) ™pame player_to_reports) D.apath,name reports.Player
(8) (o0.05(player_info) Mpame player_to_reports) M pathname reports.Player
(9) (o0.1(player_info) »pame player_to_reports) Mpathname reports.Player
(10) Scan(8points=32[sel=0.056] (reports.Player))
(11) Scan(arPoin.t.s:ZS[sel:0.096] (reports.Player))
(12) j('lis,’name(Scan(reports.Player))
(13) )'('list,name(Scan(ﬁname,Points,Assists,Steals(reports~Player)))

(14) ).f.list,name (gcan(é—PointS=28[sel=0.096] (rePOVtS-Player)))
(15) (team_info >pame team_to_reports) Xpqih name reports.Team

(16) team_stats Ureports.Team

(17) Scan(reports.Team)

(18) (team_info ™pame team_to_reports) M pathname ﬁ'name,Wins,Losses,Totalpoints(reports-Team)
(19) ”name,Wins,Losses,Totalpoints(team_StatS) U ﬁname,Wins,Losses,Totalpaints(reports~Team)

(20) Scan(ﬁname,Wins,Losses,Totalpoints(report$~Team))
00.01(team_info) MNuame team_to_reports) B reports.Team
21) ( (t i ) t t port path,name T€P ts.T

00.05(team_info) MNpuame team_to_reports) X reports.leam

22 i P "path,name p T
0o.1(team_info) ™Nuame team_to_reports) reports.Team

23 ] P S path,name T€P T

(29) Scan(&Totalpoints:99[sel:0.049](reports~Team))

(25) Scan(&Totagpoints:IOZ[sel:O.063] (reports.Team))

(26) )'('list,,,ame(Scan(reports.Team))

(27) ).(.list,name(gcan(ﬁ’name,Wins,Losses,Totalpoints(report5~Team)))

(28) Xlist,name (Scan(b'—Totalpoints:IOZ[sel:0‘063] (reports.Team)))

A.2 T-REx

1) nobelPersonaltbl U nobel_reports.Personal
2) nobelCareertbl Unobel_reports.Career
3) nobelCareerinfo 5,4, nobel_reports.Personal
4) nobelPersonalinfo %4y, nobel_reports.Career
5)
6)

)

)

Scan(nobel_reports.Personal)
Scan(nobel_reports.Career)
7) nobelPersonaltbl U Gcountryofcitizenship=unitedstatesof america[sel=0.443] (nobel_reports.Personal)
8) nobelCareertbl U Goccupation=physicist[sel=0.127] (nobel_reports.Career)
©) ”name,placeofbirth,countryofcitizenship(nObelPersonaltbl) U ﬁ'name,placeofbirth,countryofcitizenship(nObel_reports~Personal)
(10) ”name,awardreceived,educa{fedat(nObelcareertbl) v ﬁname,awardreceived,educatedat(nObel_reports~career)
(11) ).f.list,countryofcitizenship(Scan(nObeLreport&Personal))
(12) Jiist,fieldof work (Scan(nobel_reports.Career))

o~ o~~~ o~ o~

A.3 Aviation

1) (aircraft Maircraft_registration_number aircraft_to_reports) Npathaircraft_registration_number reports.incident

2) incidents Ureports.incident

Scan(reports.incident)

(aircraft ™aircraft_registration_number aircraft_to_reports) Bapath,aircraftjegistrationfnumber ﬁlocationicity,locationﬁstate(reportsvirwident)
{l:lacatian_city,location_state (inCidents) v ﬁlocation_city,location_state (reports-inCident)

6) Scan(ﬁlocationicity,locationﬁstate(reportSanide”t))

AA/"-;\A/—\A
= D =
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(10)
(11)
(12)
(13)
(14)
(15)

A4

(00.3(aircraft) ™aircraft_registration_number aircraft_to_reports) Bapath,aircraftjegistrationﬁnumber reports.incident
(o0.5(aircraft) Maircraft_registration_number aircraft_to_reports) Bapath,aircraft_registration_number reports.incident
(O—O.S(Qircraft) Maircraft_registration_number aircraft_t‘)_reports) [;apath,aircraft_registration_number reports'inCident
incidents U Blocationstate=colorado[sel=0.100] (reports.incident)

incidents U 6weathercondition:visualmeteorologicalconditiuns[sel:0.433] (reports~in0ident)

incidents U Baircraftqamage=destroyed|sel=0.667] (reports.incident)

)'('list,aircraftfdamag.e: (Scan(reports.incident))

).(.list,location_state (Scan"(reportsjm:ident))

)?list,weather_condition(Scan(reports-inddent))

Corona

corona_stats Ureports.summary

ﬂnew_cases,new_deaths,vaccinated(Corona_Stats) v ifnew_case:s.,new_deaths,vaccinated(reports"summary)
”date,patients_intensiue_care,twice_uaccinated(coronafstats) U ﬁdate,patients_intensiue_care,twice_vaccinuted (reports.summary)
”date,incidence,vaccinated(Corona_smts) U ﬁdate,incidence,vaccinated(report3~3ummary)

”date,new_cases,new_deaths(Corona_Stats) U jfdate,new_cases,new_deaths(reports‘summary)
”newﬁdeaths,vaccinated,twiceiz)accinated(Coronafstats) v ﬁnewﬁdeaths,vaccinated,twiceivaccinated(reports~5ummary)
”date,vuccinated,twiceivaccinated(Corona_smts) v ii'date,vaccinated,twiceivaccinated(reports~3ummary)
”new_deaths,incidence,vaccinated(corona_srats) v ﬁnew_deaths,incidence,vaccinated(reports'summary)
”newﬁcases,newﬁdeaths,incidence(Coronafstats) v ﬁ'newﬁcases,newﬁdeaths,incidence(reports~summary)
”date,newﬁcases,patientsiintensivefcare,vaccinated(Corona_smts) U ﬁdate,newﬁcases,patientsfintensiveicare,vaccinated (reports.summary)
Tnew_cases,new_deaths,incidence,t wice_vaccinated (coronafstats) v f.i—new_cases,ne w_deaths,incidence,t wice_vaccinated (reports~summary)
”date,newﬁcases,newﬁdeaths,patientsfintensiveicare(Corona_smts) U ﬁdate,newﬁcases,newﬁdeaths,patientsiintensivefcare(report5~summary)
Tdate,new_cases,vaccinated,t wice_vaccinated (Corona_Stats) v jfdate,new_cgses,uaccinated,twice_vaccinated(reports~summary)
”date,newﬁdeaths,patientsjntensiuefcare,twiceivaccinated(Coronafstats) U ﬁdate,newﬁdeaths,patientsfintensiz;efcare,twicefz)accinated(report5~summary

”dllte,rleW_death,inCid@nce,UaCCinated(Corona—StatS) u ”date,new_deaths,incidence,vaccinated(reports~summary)
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