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A partition function framework for estimating logical error curves in stabilizer codes
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Based on the mapping between stabilizer quantum error correcting codes and disordered statistical
mechanics models, we define a ratio of partition functions that measures the success probability for
maximum partition function decoding, which at the Nishimori temperature corresponds to maximum
likelihood (ML) decoding. We show that this ratio differs from the similarly defined order probability
and describe the decoding strategy whose success rate is described by the order probability. We refer
to the latter as a probabilistic partition function decoding and show that it is the strategy that at zero
temperature corresponds to maximum probability (MP) decoding. Based on the difference between
the two decoders, we discuss the possibility of a maximum partition function decodability boundary
outside the order-disorder phase boundary. At zero temperature, the difference between the two
ratios measures to what degree MP decoding can be improved by accounting for degeneracy among
maximum probability errors, through methods such as ensembling. We consider in detail the example
of the toric code under bitflip noise, which maps to the Random Bond Ising Model. We demonstrate
that estimation of logical performance through decoding probability and order probability is more
sample efficient than estimation by counting failures of the corresponding decoders. We consider
both uniform noise and noise where qubits are given individual error rates. The latter noise model
lifts the degeneracy among maximum probability errors, but we show that ensembling remains useful
as long as it also samples less probable errors.

I. INTRODUCTION

For large scale quantum computing, high-fidelity qubits and operations are needed. On hardware with
limited fidelities, this can be achieved through quantum error correction and fault-tolerant logical operations
on the encoded logical qubits. The logical performance can be improved by hardware improvements that
reduce the physical error rates, or by the usage of a better quantum error correcting code or a more accurate
decoder. In the choice of quantum error correcting code, logical performance must be balanced against the
spacetime overhead, while the decoder accuracy must be balanced against the decoder runtime.

Just as there is currently a multitude of approaches to hardware design, the same holds for quantum
error correcting codes and decoding approaches, with the list likely to keep growing rapidly. Within this
abundance of options, estimates of the logical performance under hardware-realistic noise models provide
useful guidance. One important metric of code performance, the optimal threshold, has for scalable families
of stabilizer and subsystem codes early on been related to order-disorder phase transitions in Random Bond
Ising-type statistical mechanics models along a certain line in the phase diagram: the Nishimori line [1].
This statistical mechanics mapping has been extended from independent qubit Pauli noise to more realistic
noise models, including circuit noise and coherent noise [2–8], and used to extract finite size corrections to
the threshold for surface codes tailored to biased noise [9]. Similarly, the phase transition along the zero
temperature line has been shown to yield the threshold under maximum probability (MP) decoding [1, 2].
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More specifically, maximum likelihood (ML) decoding relates to the comparison of certain partition func-
tions at the Nishimori temperature (as detailed in Section II), while maximum probability decoding relates
to the comparison of partition functions at zero temperature. In the toric code under independent identically
distributed bitflip noise, which maps to the ±J Random Bond Ising Model (RBIM), the phase boundary has
been shown to be reentrant [10], illustrating the non-optimality of MP decoding. More recently, the RBIM
phase boundary has been mapped out through numerical estimates of the order probability [11].

While the order probability allows for the determination of the phase boundary, and hence the threshold
of an optimal decoder, we show that it does not measure the success rate of the optimal decoder. Instead,
it measures the success rate of what we shall refer to as a probabilistic partition function decoder. The full
optimal logical error curves are thus inaccessible through this measure. Analogous to order probability, we
introduce a ratio that we name the decoding probability, which on the Nishimori line measures the optimal
logical error curves. We expect that estimating optimal performance by measuring the decoding probability
directly generally requires less sampling overhead than estimation by counting the number of failures of the
corresponding ML decoder. Previous works concerning performance estimates via the statistical mechan-
ics mapping have mainly focused on establishing the optimal thresholds of error correcting codes under
different noise models (e.g., [2, 3, 7, 12–15]). In [16], full optimal error curves were computed for the
surface code under independent identically distributed bitflip noise by counting the number of failures of an
ML decoder. Tensor network methods have been used to approximate optimal decoding in a controllable
way [2, 4, 16]. Most recently, [4] generalized tensor network decoding to the case of 3D codes, such as the
3D unrotated surface code with depolarizing noise, as well as 2D codes with circuit level noise. There has
also been previous work on estimating optimal performance in the surface code through the construction of
a lookup table, in order to test the accuracy of different suboptimal surface code decoders [17], although
the authors estimated that this method could at most be applied to a distance 9 surface code. On the Nishi-
mori line, measurement of optimal performance by decoding probability corresponds to the measurement
by syndrome-averaged minimum infidelity used in [6] (see also the related work [5] by the same authors)
as well as the success rate shown in [16]. In [11], the order probability in the Random Bond Ising Model
was linked to logical performance rates of the toric code, but the distinction between probabilistic partition
function decoding and optimal decoding was not made, and the resulting curves do not show the success
rate of an optimal decoder.

Generalizing beyond ML and MP decoders, one can define decoders that return a correction based on
either the maximization of the partition function at a given temperature, or that probabilistically return a
correction with the probabilities set by the partition functions. We refer to these as maximum partition
function decoders and probabilistic partition function decoders, respectively. (For the former, previous
works similarly define minimum free energy decoders [2]. However, in the zero temperature limit, we find
that the partition function is the better quantity to consider, since degeneracy can play an important role.)
We show that the decoding probability measures the success rates of the former, and the order probability
measures the success rates of the latter. This gives access to the logical error curves for any member of
these two families of decoders. We relate probabilistic partition function decoding at zero temperature to
MP decoding, and maximum partition function decoding at zero temperature to “degeneracy enhanced”
MP (dMP) decoding – meaning that, whenever there are multiple maximum probability errors, the decoder
returns a correction from the equivalence class containing the largest number of such errors. In matching
based decoders, degeneracy enhancement can be approximated through the method of ensembling described
in [18], where the edge weights of the decoding graph are perturbed in order to sample over multiple match-
ings. Again, we expect that estimating the success rates through order probability and decoding probability
requires fewer samples than by counting the number of failures of the corresponding decoders. Together, or-
der probability and decoding probability provide a flexible framework for estimating the performance under
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different decoding schemes. Given a hardware realistic noise model and a set of potential codes that could
run on the hardware, such an estimation provides a way to filter out codes with low optimal performance
before spending resources on developing a fast decoder. In the development of a fast decoder tailored to
a specific code, it also provides a measure for how far from optimality the decoder is, and whether or not
there is enough room for improvement to motivate further refinements.

Other than being interesting as tools for performance estimation in stabilizer codes, we believe that the
distinction between decoding probability and order probability is of interest for further characterizing the
phase diagrams of the statistical mechanics models that the codes map to. The shape of the RBIM phase
boundary has historically attracted interest of its own, having originally been expected to be vertical [19]
but having later been found to be reentrant [10, 11]. The distinction between order probability and de-
coding probability opens the possibility that there could exist stabilizer codes whose associated statistical
mechanics models have maximum partition function decodability boundaries (defined from the thresholds
of maximum partition function decoders) that differ from their phase boundaries. We define in Section III
conditions under which a model would possess a vertical decodability boundary even with a reentrant phase
boundary.

After describing the general framework for performance estimation via decoding probability and order
probability, we consider in detail the example of the toric code under both uniform (independent identically
distributed) and non-uniform bitflip noise, where in the latter noise model we assign different error proba-
bilities to each qubit. While still a simplified “toy model”, non-uniform qubit fidelities represent a scenario
that better agrees with hardware observations [20] and introduces a degeneracy lifting into the model where
the distinction between MP and dMP decoding vanishes, so that the zero temperature locations of the phase
boundary and the decodability boundary must agree. Meanwhile, we find that an improvement from ML
over MP remains, although it decreases for larger standard deviations. This implies that there is still room
for potential gains from decoder improvements through methods such as ensembling, although in the case
of ensembling, the perturbations must now be taken large enough to ensure sampling of not only the most
probable errors.

The structure of the paper is as follows.
In Section II we summarize the relevant background. We describe ML, MP and dMP decoding, and

introduce the mapping between stabilizer codes and disordered statistical mechanics models.
In Section III we define maximum partition function decoders and probabilistic partition function de-

coders, and show that their success rates are measured by the decoding probability and the order probability,
respectively. We discuss under which conditions a maximum partition function decoder could reach opti-
mality even away from the Nishimori line.

In Section IV we present numerical results for the toric code under bitflip noise, using the FKT algo-
rithm to compute the relevant partition functions. We demonstrate that the decoding probability and order
probability give estimates of the success rates of ML, MP and dMP decoders, and that about 75% fewer
samples are required to reach a given confidence interval compared to estimation by counting the number
of decoder failures. Comparing the dMP and ML thresholds, we see that the maximum partition function
decodability boundary is reentrant in the Random Bond Ising Model.

In Section V we focus on the zero temperature limit, and compare to matching based decoders. We
discuss the role of boundary conditions and the parity of the code distance in determining the effect of
degeneracy. We show how these factors influence the amount of improvement observed from ensembling
compared to regular MWPM in the toric code, unrotated surface code and rotated surface code, using the
PyMatching [21] implementation of MWPM. We also discuss bias, both in MWPM and in ensembling.

Finally, in Section VI, we turn to non-uniform bitflip noise in the toric code, drawing qubit error rates
from a uniform distribution with varying standard deviations. We estimate MP, dMP and ML performance
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from the relevant partition functions, as well as the improvement from ensembling over regular MWPM
using PyMatching. We see that all decoding strategies perform better under non-uniform noise than
under uniform noise with the same mean error rate, and that MP and dMP decoders now perform identically.
Additionally, we see that the performance gains from ensembling decrease as the standard deviation is
increased.

II. BACKGROUND

In this section we will present the preliminary material as well as the notation we use. We also give
a brief description of the role the statistical mechanics mapping plays in the estimation of optimal logical
performance. For a more detailed discussion, we refer the reader to [1].

A. Preliminaries

Consider the Hilbert space H = (C2)⊗n on n qubits and the Pauli group P with elements g ∈ P given
by g = λg1 ⊗ g2 ⊗⋯⊗ gn for λ ∈ {±1,±i} and where gi ∈ Pi = {1,X,Y,Z} are single Pauli operators. A
stabilizer code is a quantum error correcting code defined by a stabilizer group S ⊂ P , with −1 ∉ S , under
which the code spaceH0⃗ is invariant, i.e.

H0⃗ = {ψ ∈ H ∶ Sψ = ψ, ∀S ∈ S}. (1)

For a stabilizer group of rank r, the code space encodes the quantum information of n− r logical qubits.
The quantum information is subject to noise, described by a noise model. We here consider noise models
that contain only errors e ∈ P . Each such error is assigned a probability pe. Coherent errors can be written
as a decomposition in terms of elements in {1,X,Y,Z}, and quantum error correction performed through
repeated projective Pauli measurements leads to a digitization of errors, so that the ability to correct a finite
set of errors is enough to correct any error [22].

We consider a setting where the generators of the stabilizer group are repeatedly measured. If an error
is such that the system is in an eigenspace other than the code space after the following round of stabilizer
measurements, we refer to it as a detectable error. From the stabilizer measurements we obtain a string
of ±1 eigenvalues (−1)s1 , (−1)s2 , . . . , (−1)sr , where s⃗ ∈ Zr

2 is referred to as the syndrome. The syndrome
s⃗ = 0⃗ is the trivial syndrome characterizing the code space.

In terms of the syndromes, the Hilbert space decomposes as:

H =⊕
s⃗

Hs⃗. (2)

We say that a Pauli operator f has syndrome s⃗ if and only if fSk = (−1)skSkf for all stabilizers Sk ∈ S.
The previous statement is also equivalent to saying that f has syndrome s⃗ if and only if fH0 = Hs⃗. Based
on this identification, we can speak not only of the syndrome of an eigenspace, but also of the syndrome of
an error.

The role of a decoder is to, for any detectable error e, return a correction operator f based on its measured
syndrome s⃗, in such a way that fe act trivially on the encoded information. Let C(S) be the centralizer of
the stabilizer group. For a given syndrome s⃗, the set of Pauli operators with this syndrome is g(s⃗)C(S) for
some fixed representative g(s⃗). The centralizer contains L̄ ∈ C(S)/S, the logical Pauli operators, as well
as the stabilizers themselves. Since the stabilizer group is a subgroup of the centralizer, the set of all Pauli
operators with syndrome s⃗ can be partitioned into a disjoint union of equivalence classes under stabilizer
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multiplication. Relative to a representative g(s⃗), we denote these classes as Cs⃗,L̄ = g(s⃗)L̄S , referring to
them as logical equivalence classes. The decomposition is then given by

g(s⃗)C(S) = ⋃
L̄

Cs⃗,L̄. (3)

Taking the example of a stabilizer code with a single logical qubit, L̄ ∈ {1, X̄, Ȳ , Z̄} and the set of Pauli
operators with syndrome s⃗ is partitioned as follows:

g(s⃗)C(S) = Cs⃗,1 ∪ Cs⃗,X̄ ∪ Cs⃗,Ȳ ∪ Cs⃗,Z̄ , (4)

with

C
(1)
s⃗ = g(s⃗)S, Cs⃗,Ȳ = g(s⃗)Ȳ S, (5)

Cs⃗,X̄ = g(s⃗)X̄S, Cs⃗,Z̄ = g(s⃗)Z̄S. (6)

Based on these equivalence classes two Pauli operators f and g are considered to be equivalent if they
belong to the same logical equivalence class and we write f ∼S g. After syndrome extraction, the task of
a decoder boils down to finding a Pauli operator g ∼S e where e is the error that occurred. The decoder
succeeds if g and e belong to the same logical equivalence class Cs⃗,L̄, and fails otherwise.

The optimal decoding strategy is for the decoder to always return a recovery operation from the most
likely logical error class CML

s⃗ for the given syndrome s⃗. After the action of the noise channel, stabilizer
measurement and extraction of syndrome s⃗, the (unormalized) state can be written as the following linear
combination:

ρ(s⃗) = ∑
L̄

P (Cs⃗,L̄∣s⃗)g(s⃗)L̄ρL̄g(s⃗), (7)

for some fixed, hermitian Pauli g(s⃗), and logical operators L̄. More precisely, a maximum likelihood de-
coder returns a Pauli operator g ∈ CML

s⃗ where

C
ML
s⃗ = argmax

L̄
P (Cs⃗,L̄∣s⃗). (8)

Maximum likelihood decoding succeeds with probability

PML
success = ∑

s⃗

P (s⃗)P (CML
s⃗ ∣s⃗). (9)

It is generally hard to compute the probabilities of the error classes. Meanwhile, it is for some codes and
noise models easy to find a maximum probability error. This motivates the alternative strategy of maximum
probability decoding. In this case, given a syndrome s⃗, the decoder outputs a recovery operation e(s⃗) such
that P (e(s⃗)) ≥ P (e′(s⃗)) ∀e′(s⃗).

In this case, the logical class CMP
s⃗ that the recovery operator belongs to is given by

C
MP
s⃗ = argmax

L̄
max
e∈Cs⃗,L̄

P (e) (10)

and the decoder succeeds with probability

PMP
success = ∑

s⃗

P (s⃗)P (CMP
s⃗ ∣s⃗). (11)

PMP
success ≤ P

ML
success, with strict inequality in general.
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A third decoding strategy of interest in what follows is to return a Pauli operator belonging to the class
that contains the largest number nmax of maximum probability errors emax (errors such that p(emax) ≥

p(f) ∀f ). We refer to this as degeneracy enhanced MP decoding (dMP), as it also accounts for the de-
generacy among maximum probability errors. If all classes containing such errors have an equal number
of maximum probability errors, dMP decoding reduces to MP decoding. For instance, this holds whenever
there is a unique maximum probability error.

The logical class CdMP
s⃗ that the dMP recovery operator belongs to is given by

C
dMP
s⃗ = argmax

L̄
nmax(Cs⃗,L̄∣s⃗) (12)

and the decoder succeeds with probability

P success
dMP = ∑

s⃗

P (s⃗)P (CdMP
s⃗ ∣s⃗). (13)

In summary:

Correction returned by ML decoder: e(s⃗) ∈ Cs⃗ s.t. P (Cs⃗) ≥ P (C
′
s⃗) ∀C

′
s⃗.

Correction returned by MP decoder: e(s⃗) s.t. P (e(s⃗)) ≥ P (e′(s⃗)) ∀e′(s⃗).

Correction returned by dMP decoder: e(s⃗) ∈ Cs⃗ s.t. nmax(Cs⃗) ≥ nmax(C
′
s⃗) ∀C

′
s⃗.

B. Error Class Probabilities in the Statistical Mechanical Mapping

Maximum likelihood decoding relies on computing error class probabilities. For stabilizer and subsys-
tem codes, this problem can be mapped to computing partition functions in disordered statistical mechan-
ics models[1], after which existing tools for computation or approximation of partitions functions can be
used [4, 23–25]. In particular, this mapping relates the optimal threshold of quantum error correcting codes
to a critical point in an order-disorder phase transition in the statistical mechanics model. The statistical
mechanics mapping was initially done for the toric code under bitflip noise, but has also been extended to
other noise models such as depolarizing noise [12], and correlated noise including circuit level noise [2–
4]. Additionally, [26] considers non-uniform noise models with long-range spatio-temporal correlations for
the repetition code and the toric code. In this section we give an overview of the mapping, focusing on
independent qubit noise in stabilizer codes and referring the reader to [2, 27] for details on the treatment of
correlated noise and subsystem codes. We present the example of the toric code under bitflip noise in more
detail.

To each stabilizer Sk we associate a classical spin degree of freedom σk ∈ {−1,1}. The goal of the statis-
tical mechanics mapping is to provide, for each error e, a Hamiltonian He({σk}), such that the Boltzmann
weight of the all spin up configuration {⇑} gives the error probability, and the quenched disorder partition
function Z(e) (with e seen as the disorder realization) gives error class probability:

e−βHe({⇑}) = P (e) (14)

Z(e) = ∑
{σk}

e−βHe({σk}) = P (C(e)) (15)

for a suitable inverse temperature β. In what follows, it is often convenient to write the partition function in
terms of the density of states g(E) as Z(C) = ∑E gC(E)e

−βE , with E the energy.
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FIG. 1: A sketch of the Random Bond Ising Model phase diagram, adapted from [29], with the reentrance
of the phase boundary exaggerated for the purpose of illustration. The arrows indicate the renormalization
group flow.

Below, we show the expression for such a Hamiltonian in a general stabilizer code, for a noise model
where each qubit i fails independently, and where the qubit errors are single Pauli operators, gi ∈ Pi =
{1,X,Y,Z} with probabilities pi(1), pi(X), pi(Y ), pi(Z).

Following [2] we write the Hamiltonian in terms of the scalar commutator [[. , .]] ∶ P ×P → C, which is
defined by the following normalized trace of the group commutator

[[A,B]] ∶=
1

2
Tr[A,B], (16)

with the group commutator being given by [A,B] ∶= ABA−1B−1.
The Hamiltonian takes the form

He({σi}) = −∑
i
∑

gi∈Pi

Ji(gi) [[gi,E]] ∏
k∶[[gi,Sk]]=−1

σk (17)

with coupling strength Ji(gi) defined by the Nishimori condition

βJi(gi) =
1

∣P∣
∑

fi∈Pi

log pi(fi)[[gi, f
−1
i ]], ∀i ∈ {1, . . . , n}, gi ∈ Pi. (18)

The Hamiltonian in Eq. (17) is symmetric under stabilizer multiplication of the error configuration as de-
scribed in [2]. This means that the Hamiltonian of an error e′, which differs from another error e by
multiplication of a stabilizer Sk, gives the same energy for a given spin configuration as the Hamiltonian of
the error e gives for a related spin configuration where the corresponding stabilizer spin degrees of freedom
is flipped.

For the toric code under bitflip noise, this Hamiltonian reduces to the Hamiltonian of the Random Bond
Ising Model (RBIM). Here, the partition function under quenched disorder can be efficiently computed by
Pfaffian methods [28]. The toric code and surface code under bitflip noise will be the focus of the numerical
examples presented in this paper. We show a sketch of the RBIM phase diagram in Fig. 1.

For the toric code under independent identically distributed bitflip noise, the Hamiltonian of the corre-
sponding statistical mechanics model is defined, for each error configuration e, as

He = − ∑
⟨kl⟩

J⟨kl⟩σkσl −K (19)
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with the sum taken over all edges ⟨kl⟩. The spin degrees of freedom on the vertices k, l, . . . correspond to
the toric code stabilizers of Z-type, and the qubits in the toric code sit on the edges ⟨kl⟩.

For an error e the couplings are set to

J⟨kl⟩ =
⎧⎪⎪
⎨
⎪⎪⎩

−J, if ⟨kl⟩ ∈ e

J, otherwise
(20)

with the relation e−2βJ = p
1−p and e−2βK = p(1−p) at the Nishimori line. Here ⟨kl⟩ ∈ e means that the error

e has support on the qubit at edge ⟨kl⟩.
In what follows, we keep the couplings J fixed and vary the temperature. We denote by TNish the temper-

ature such that the above relation between βNish = 1/TNish and the couplings J,K is fulfilled. For identically
distributed (uniform) bitflip noise, we fix J = ±1, TNish =

2
ln((1−p)/p) . The Hamiltonian in Eq. (19) then ful-

fills Eqs. (14), so that a decoder that returns a correction based on the largest partition function at T = TNish

is a maximum likelihood decoder. The interaction strength can not uniformly be normalized in the case of
non-uniform bitflip noise with individually sampled qubit error probabilities pi. Hence, for non-uniform
bitflip noise, we set the temperature fixed while varying the couplings: Ji = 1

2 ln(
1−pi
pi
) and TNish = 1.

III. SUCCESS RATES FOR PARTITION FUNCTION DECODERS

The goal of this section is to provide a unifying description of the success rates of ML, MP and dMP
decoders in terms of ratios of partition functions. Sampling these ratios generally allows for more efficient
estimation of the logical performance than directly sampling the number of decoding failures.

A. The maximum partition function decoder and the probabilistic partition function decoder

The statistical mechanics mapping relates the probability of an error class Cs⃗ to the partition function
of any error e ∈ Cs⃗ evaluated on the Nishimori line. It is also of interest to consider the partition function
at other temperatures. In particular, we show how the zero temperature values measure the success rates
of MP and dMP decoders. We note that in the zero temperature analysis in [1, 2] the focus has been on
energies rather than partition functions, which does not account for the contribution from degeneracy.

In what follows, we denote by ZT (Cs⃗) the partition function of any e ∈ Cs⃗ evaluated at temperature T .
For a given syndrome s⃗ and temperature T , we denote by {Cmax

s⃗ (T )} the set of all classes Cmax
s⃗ (T ) such

that ZT (Cmax
s⃗ (T )) ≥ ZT (Cs⃗) for all Cs⃗. Below the optimal threshold, in the infinite distance limit and at

T = TNish, this set contains only one element Cmax
s⃗ (TNish), and its partition function increasingly dominates

over the others: ZTNish(Cmax
s⃗ (TNish)) → 1 while ZTNish(Cs⃗) → 0 for all Cs⃗ ≠ Cmax

s⃗ (TNish).1 At temperatures
T ≠ TNish, the set {Cmax

s⃗ (T )} may contain more than one element, even at noise levels below the optimal
threshold. In the infinite temperature limit, it will contain all classes consistent with a given syndrome, while
in the zero temperature limit it will contain all classes that contain the largest number nmax of maximum
probability errors.

For a given temperature T , we define the following two partition function based decoding strategies:

Definition 1. A maximum partition function decoder at temperature T is a decoder that, for each syndrome
s⃗, returns a recovery operation belonging to one of the classes in {Cmax

s⃗ (T )}, chosen at random each time
the decoder is called, with equal probability for each such class.

1 In the toric code, where the logical operators correspond to nontrivial loops on the torus, an equivalent statement is that the free
energy cost of inserting a system-spanning domain wall diverges on the Nishimori line below the optimal threshold.
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Definition 2. A probabilistic partition function decoder at temperature T is a decoder that, for each syn-
drome s⃗, returns a recovery operation belonging to a class C̃s⃗ with probability

Pdecoder(C̃s⃗) =
ZT (C̃s⃗)

∑Cs⃗ Z
T (Cs⃗)

. (21)

In the following proposition, the first statement (which we include for completeness) has been well
established, going back to [1], while the distinction between the second and the third statements has to the
best of our knowledge not been made.

Proposition 1. The following three statements hold:
1. A maximum partition function decoder at T = TNish is an ML decoder.
2. A maximum partition function decoder at T = 0 is a dMP decoder.
3. A probabilistic partition function decoder at T = 0 is an MP decoder

Proof. We prove each of the three statements in turn.

1. The proof of this statement immediately follows from P (Cs⃗) = Z
TNish(Cs⃗).

2. Writing the partition function as ZT (Cs⃗) = ∑E gCs⃗(E)e
−E/T , with gCs⃗(E) the density of states for

the class Cs⃗, we denote by Emin(Cs⃗) the lowest energy E such that gCs⃗(E) ≠ 0, and denote by Emin(s⃗) =

minCs⃗ Emin(Cs⃗) the lowest energy among all error classes consistent with the syndrome s⃗. Normalizing by
the lowest energy Boltzmann weight,

lim
T→0

ZT
(Cs⃗)e

Emin(s⃗)/T =
⎧⎪⎪
⎨
⎪⎪⎩

g(Emin(Cs⃗)) if Emin(Cs⃗) = Emin(s⃗)

0 else
(22)

with g(Emin(Cs⃗)) the number of lowest energy disorder realizations present in Cs⃗. Since the probability
of an error is given by its Boltzmann weight at TNish, and the Boltzmann weight monotonically decreases
with E, the lowest energy errors are the most probable and ZT (Cs⃗)e

Emin(s⃗)/T = nmax(Cs⃗), from which the
second statement follows.

3. Finally, a probabilistic partition function decoder at zero temperature returns a correction belonging
to C̃s⃗ with a probability

Pdecoder(C̃s⃗) =
nmax(C̃s⃗)

∑Cs⃗ nmax(Cs⃗)
, (23)

which is equivalent to returning a maximum probability error e, with equal probability for each such error.

B. The decoding probability and the order probability

We next introduce decoding probability, alongside the definition of order probability used in [11], and
show that the former measures the success rate of maximum partition function decoders, while the latter
measures the success rate of probabilistic partition function decoders.

Definition 3. For a temperature T and syndrome s⃗, let C∗s⃗ (T ) be an error class chosen at random from
{Cmax

s⃗ (T )} with uniform probability. The decoding probability at temperature T is defined as the following
average over disorder realizations e and class choices C∗:
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Pd(T ) = ⟨
ZTNish(C∗s⃗ (T ))

∑Cs⃗ Z
TNish(Cs⃗)

⟩

e,C∗
≡ ∑

e

P (e) ∑
C∗
s⃗(e)(T )

1

∣{Cmax
s⃗(e) (T )}∣

ZTNish(C∗s⃗(e)(T ))

∑Cs⃗(e) Z
TNish(Cs⃗(e))

. (24)

Definition 4. For each disorder realization e, let C̃s⃗ be its error class, e ∈ C̃s⃗. The order probability at
temperature T is defined as the following average over disorder realizations e:

Po(T ) = ⟨
ZT (C̃s⃗)

∑Cs⃗ Z
T (Cs⃗)

⟩

e

≡ ∑
e

P (e)
ZT (C̃s⃗)

∑Cs⃗ Z
T (Cs⃗)

. (25)

We note that the sum over partition functions in the denominator of Eq. (24) is equal to one, as the
partition functions at TNish are equal to class probabilities. Including the sum explicitly has the advan-
tage of making the expression valid also when the partition functions are computed only up to an overall
normalization.

While both the decoding probability and the order probability go to 1/N in the limit T → ∞, with N
being the number of equivalence classes for each syndrome, their values at finite temperature are generally
different. At T = 0 their values are equal if, for each syndrome s⃗, all classes in {Cmax

s⃗ } are of equal size.

Proposition 2. The success rate of a maximum partition function decoder at temperature T is equal to the
decoding probability at temperature T .

Proof. We separate the averages over disorder realizations e into averages for each syndrome s⃗,

Psuccess = ∑
s⃗

P (s⃗)Psuccess(s⃗) = ∑
s⃗

P (s⃗)∑
Cs⃗
P (Cs⃗∣s⃗)Psuccess(Cs⃗). (26)

For disorder realizations e ∈ Cs⃗, the decoder succeeds if the recovery operator belongs to Cs⃗. By defini-
tion 1, the recovery operator for a syndrome s⃗ is chosen at random among {Cmax

s⃗ (T )} with probability
Pdecoder(C

∗
s⃗ (T )) =

1
∣{Cmax

s⃗ (T )}∣ . Hence,

Psuccess(Cs⃗) =

⎧⎪⎪
⎨
⎪⎪⎩

1
∣{Cmax

s⃗ (T )}∣ if Cs⃗ ∈ {Cmax
s⃗ (T )}

0 else,
(27)

so that

Psuccess(s⃗) = ∑
C∗∈{Cmax

s⃗ (T )}
P (C∗∣s⃗)

1

∣{Cmax
s⃗ (T )}∣

. (28)

Finally we substitute

P (C∗∣s⃗) = ZTNish(C∗) =
ZTNish(C∗)

∑Cs⃗
ZTNish(Cs⃗)

, (29)

P (s⃗) = ∑
e

s⃗(e)=s⃗

P (e) (30)

to get

Psuccess = ∑
s⃗

P (s⃗) ∑
C∗∈{Cmax

s⃗ (T )}

1

∣{Cmax
s⃗ (T )}∣

ZTNish(C∗)

∑Cs⃗ Z
TNish(Cs⃗)

= ∑
e

P (e) ∑
C∗∈{Cmax

s⃗(e) (T )}

1

∣{Cmax
s⃗(e) (T )}∣

ZTNish(C∗)

∑Cs⃗(e) Z
TNish(Cs⃗(e))

. (31)
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We note that at the Nishimori temperature, in a setting with two classes per syndrome, the above per-
syndrome measure of logical performance reduces to the following measure given in [6]:

Pfailure = ∑
s⃗

min
q
Pq,s⃗, (32)

where the authors denote by P0,s⃗, P1,s⃗ the class probabilities for the two classes with syndrome s⃗.

Proposition 3. The success rate of a probabilistic partition function decoder at temperature T is equal to
the order probability at temperature T .

Proof. The proof follows the same structure as the proof of Proposition 2. The success rate can again be
considered on a per-syndrome basis, with the decoder succeeding whenever the class encountered is the
same as the class chosen by the decoder in accordance to Definition 2:

Psuccess = ∑
s⃗

P (s⃗)∑
C̃s⃗
P (C̃s⃗∣s⃗)Pdecoder(C̃s⃗) = ∑

s⃗

P (s⃗)∑
C̃s⃗
P (C̃s⃗∣s⃗)

ZT (C̃s⃗)

∑Cs⃗ Z
T (Cs⃗)

= ∑
e

P (e)
ZT (C̃s⃗(e))

∑Cs⃗ Z
T (Cs⃗)

. (33)

For T = TNish the ratio averaged over to obtain the order probability, ZT (C̃s⃗)
∑Cs⃗ ZT (Cs⃗) , also appears within the

expression for coherent information of CSS codes under depolarizing noise found in Ref. [30]. Coherent
information provides an alternative method for finding the optimal threshold that can provide accurate
estimates at low distances [31], but it generally only provides bounds on the optimal logical success rate
itself. An example of a lower bound from coherent information is shown for CSS codes under decoherence
in Ref. [32].

Not only do the ratios of Definitions 3 and 4 measure the success rates of the decoders defined in
Definitions 1 and 2 when averaged over all disorder realizations and class choices, but we expect that for
any given finite sample size, an estimate of the success rate computed from these ratios will generally
have a narrower confidence interval than an estimate based on counting the number of successes by the
corresponding decoder. For each disorder realization, the partition function ratios that are sampled over to
estimate decoding probability and order probability,

Od =
ZTNish(C∗s⃗ (T ))

∑Cs⃗ Z
TNish(Cs⃗)

(34)

Oo =
ZT (C̃s⃗)

∑Cs⃗ Z
T (Cs⃗)

, (35)

will yield values in the interval [0,1], which narrows to [1/N,1] on the Nishimori line forOd
2. Meanwhile,

counting the number of successes means sampling over

O
′
=

⎧⎪⎪
⎨
⎪⎪⎩

1 if success

0 else
(36)

which only takes values in {0,1}, leading to a larger sample variance.

2 For an error class C ∈ {Cmax
s⃗ (TNish)}, ZTNish(C) = P (C) ≥ 1

N
.
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C. Performance comparisons

There are two natural comparisons for the two types of decoder strategies defined above: performance
differences for the same strategy as T is varied, and performance difference between the two strategies for
a fixed T .

It has been shown that when T is varied from TNish to zero in the toric code under independent identically
distributed bitflip noise, the phase boundary of the corresponding statistical mechanics model is reentrant.
This shows that the probabilistic partition function decoder has a lower threshold at zero temperature than
at TNish in this setting. In models with a reentrant phase boundary, it is interesting to consider whether
or not the decodability boundary – defined by the threshold of the maximum partition function decoder –
is also reentrant. The distinction between decoding probability and order probability opens the possibility
that, as long as the noise rate is below the optimal threshold, maximum partition function decoders can
succeed outside the phase boundary. (We expect that a maximum partition function decoder generally has
better performance than a probabilistic partition function decoder. At T = TNish this is clearly the case:
the maximum partition function decoder is optimal, while the probabilistic partition function decoder is
suboptimal unless all error classes are equally probable.)

When comparing the present discussion to the phase boundary discussion in [2], it is important to dis-
tinguish between a maximum partition function decoder and a minimum free energy decoder. The authors
of [2] consider the latter. They note that the negative logarithm defining the free energy F from the partition
function,

F (T ) = −T lnZ(T ), (37)

is monotonically decreasing, and relate the two decoding strategies to each other. However, at zero temper-
ature the free energy decoder will lose the information about degeneracy,

lim
T→0

F (T ) = lim
T→0
−T ln(∑

E

g(E)e−E/T)

= lim
T→0
−T ln(g(Emin)) − T ln e−Emin/T − T ln

⎛

⎝
∑

E′>Emin

g(E′)e−E
′/T⎞

⎠

= Emin, (38)

making it an MP decoder at T = 0 even though it is a maximum partition function decoder for all T > 0.
Making this distinction, it is clear that while neither the decodability boundary nor phase boundary

can extend further to the right than the optimal threshold, lemma 3 of [2] should at T > 0 be seen as a
statement about the decodability boundary rather than the phase boundary. To phrase the possible distinction
between the boundaries differently: even if the free energy difference between error classes does not diverge
at T ≠ TNish, the minimum free energy decoder may still succeed at this temperature, provided that the
difference remains nonzero and the free energy does diverge at TNish. Indeed, in such a case a minimum
free energy decoder can even retain optimality in spite of a reentrant phase boundary, apart from at T = 0.
To make a statement that also holds at T = 0, we consider a maximum partition function decoder instead: A
maximum partition function decoder can retain optimality at T ≠ TNish, as long as at least one of the most
likely classes C∗ ∈ {Cmax

s⃗ (TNish)} has a partition function that remains larger than that of any less likely
class.3 In such cases the decodability boundary is vertical.

3 For noise rates below the optimal threshold there is only one such class at large enough distance, but for finite distances there
may be more than one.
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Corollary 1. The success rate of a maximum partition function decoder at temperature T is equal to the
success rate of an optimal decoder if there exists at least one class C∗s⃗ ∈ {C

max
s⃗ (TNish)} such that ZT (C∗s⃗ ) >

ZT (C′s⃗) for all C′s⃗ ∉ {C
max
s⃗ (TNish)}.

Proof. By Definition 1, if the criterion in Corollary 1 is fulfilled the maximum partition function decoder at
temperature T will return a maximally likely error class. By Definition 3 it will then have the same success
rate as a maximum partition function decoder at TNish, which by Proposition 1 is optimal.

The above shows, in particular, that the thresholds of an MP decoder and a dMP decoder can differ
for codes and noise models where the phase boundary is reentrant. This brings us to the second type of
comparison: the performance difference between the two decoding strategies at a fixed temperature. In the
ordered phase at increasing distance, the two decoding strategies – and hence the two success rates – will
increasingly agree, as all partition functions but one go to zero. However, the success rates may differ at
finite distance even in the ordered phase, including in cases where their thresholds are the same. In the next
section, we study numerically how the distinction between the two decoding strategies plays out in the toric
code under bitflip noise, focusing on T = TNish and T = 0.

We sum up the present section with the three ratios to be sampled over in order to estimate the perfor-
mance of the three decoders summarized at the end of Section II A:

For each disorder realization e, let C̃ be its error class and C∗⃗s(e)(T ) ∈ {C
max
s⃗ (T )} be chosen at random.

Estimator for the performance of an ML decoder: ZTNish(C∗s⃗ (T ))
∑Cs⃗ ZTNish(Cs⃗)

at T = TNish.

Estimator for the performance of an MP decoder: ZT (C̃s⃗)
∑Cs⃗ ZT (Cs⃗) at T = 0.

Estimator for the performance of a dMP decoder: ZTNish(C∗s⃗ (T ))
∑Cs⃗ ZTNish(Cs⃗)

at T = 0.

IV. PARTITION FUNCTION BASED ESTIMATES OF DECODER PERFORMANCE IN THE TORIC
CODE UNDER BITFLIP NOISE

In this section we focus on the toric code under bitflip noise, mapped to the RBIM as detailed in Sec-
tion II B. We numerically demonstrate Proposition 2 and Proposition 3, and also demonstrate that less
samples are needed to reach a certain precision (as measured by the width of the confidence interval) when
estimating failure rates using order probability and decoding probability than when counting decoder fail-
ures.

We mainly use Pfaffian methods to compute RBIM partition functions, adapting an implementation
of the Fisher–Kasteleyn–Temperley (FKT) algorithm by Thomas and Middleton [28] found here. As a
complement to this approach, we also adapt a Wang-Landau simulation of partition functions [33]. The
Wang-Landau approach allows us to estimate partition values at zero temperature, whereas the FKT algo-
rithm can only approach this limit. Another reason for providing a Wang-Landau implementation is that
it can be easily adapted to other codes and noise models, in contrast to the FKT algorithm. However, we
expect that tensor network methods are likely to be a more robust choice for general settings such as circuit
level noise [4]. We provide a brief description of the Fisher-Kasteleyn-Temperley (FKT) and Wang-Landau
(WL) algorithm in Appendix B and C. For an in-depth analysis of these methods, we refer the reader
to [23, 24, 28, 33–36]. The source code of our implementation is publicly available at [37–39].

https://github.com/a-alan-middleton/IsingPartitionFn
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In Fig. 2 we show a comparison between code performance estimates at zero temperature generated
by the WL algorithm and performance estimates at T = 0.1TNish generated by the FKT algorithm. We
see agreement of results within error bars. Further decrease of temperature within the FKT algorithm
comes at the cost of significant increase of required bits of precision. A comparison between FKT results
at T = 0.1TNish and FKT results at T = 0.01TNish is shown in Appendix A, Fig. 14, and produces close
matching between the logical failure curves. Thus, estimating partition functions with the FKT algorithm
at T = 0.1TNish indicates to be sufficient to approximate the zero temperature limit with reasonable bits
of precision. Additionally, close matching between WL performance estimates at zero temperature and at
T = 0.1TNish, shown in Appendix A, Fig. 15, indicates that T = 0.1TNish is a close enough approximation
of T = 0 for the quantities under consideration. Having established this, all subsequent partition function
computations are performed using the FKT algorithm, with T = 0.1TNish as a stand-in for zero temperature.

In what follows, we consider 104 disorder realizations (samples) for P ∈ [0.06,0.12]. For each sample,
we check whether or not the decoders in Definitions 1 and 2 fail (“estimation by counting”), and compute
the ratios in Definitions 3 and 4 (“estimation by ratio”). We compute error bars using bootstrapping [40],
in order to have a method that works for both estimation methods. We are using 1000 resamples and 95%

confidence level for error estimates by bootstrapping. For the estimation by counting we also compute error
bars using a posterior beta distribution with Jeffrey’s prior at 95% confidence level, and find that these agree
with the error bars computed via bootstrapping.

In Fig. 3 we demonstrate Propositions 2 and 3 at T = TNish, and in Fig. 4 at T = 0.1TNish. In both cases
we see agreement within error bars between estimation by counting and by ratio.

Comparing the crossing points seen at T = TNish to those seen at T = 0.1TNish, which in the large distance
limit measure the thresholds of the different decoders, indicates that not only the phase boundary but also
the decodability boundary is reentrant. This shows that in the toric code under bitflip noise, the criterion for
Corollary 1 is not fulfilled.

Comparing the two decoding strategies at T = 0.1TNish shows the performance difference between MP
and dMP decoding. We find that the logical failure rates are almost identical at odd distances, while dMP
decoding performs better than MP decoding at small, even distances. The dependence on parity at zero
temperature will be discussed in more detail in the next section. At T = TNish, we find that maximum
partition function decoding generally outperforms probabilistic partition function decoding for both even
and odd distance, although the threshold is not visibly affected.

Moreover, by comparing decoding probability estimates at T = TNish to those at T = 0.1TNish, which is
shown in Fig. 5, we find that dMP decoding closely matches the ML decoding performance for low code
distances or low error rates. ML decoding increasingly outperforms dMP decoding with increasing code
distances and error rates.

The size of the error bars are not visible in Fig. 3 and Fig. 4, but are as expected smaller for the estimation
by ratio. To illustrate the improved sample efficiency in estimation by ratio compared to estimation by
counting, we estimate the fraction of the sample size that is sufficient to obtain the same confidence interval.
A typical example of confidence interval size as a function of sample fraction is shown in Fig. 6. We find
that for the distances and probabilities considered, estimation by ratio achieves the same confidence interval
with around 75% fewer samples compared to estimation by counting.

V. BIAS, DEGENERACY AND ENSEMBLING IN MATCHING BASED DECODING

In this section, we consider how MP and dMP decoders relate to decoding strategies based on minimum
weight perfect matching (MWPM). While a matching based decoder will return some maximum probability
error, it does not necessarily return such errors in an unbiased fashion [41]. Comparing MP to MWPM
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FIG. 2: Matching within error bars of maximum partition function decoder performance estimates
generated by WL at zero temperature and FKT at T = 0.1TNish.

shows how bias in a given matching algorithm affects the performance.
To approximate dMP decoding, a matching based decoder moreover needs to return not only a single

matching, but an unbiased sampling of several such matchings that can be used to estimate the relative
fraction of them belonging to each class. Methods such as ensembling [18] can return several matchings by
calling the matching algorithm multiple times, each time with a random perturbation of the edge weights.
We distinguish between weak ensembling, where the perturbation is small enough that we only sample
among minimum weight matchings, and strong ensembling, where the perturbation is strong enough that
we also sample among higher weight matchings. To approximate dMP decoding, weak ensembling would
be used. However, bias may again affect performance, as ensembling does not return matchings in an
unbiased fashion. An intuitive example for why this is the case is shown in Fig. 7. The comparison of dMP
decoding to weakly ensembled MWPM shows how this bias affects the performance. We also discuss under
what conditions weak ensembling would either not be expected to lead to performance gains, or only lead
to performance gains at small distances.

A. Matching based decoding and ensembling

Minimum-weight perfect matching (MWPM) decoding is a maximum probability decoding technique
that finds a most probable correction operator consistent with stabilizer measurement outcomes. We pro-
vide a brief overview of the method in Appendix D. Implementations of MWPM decoding, such as sparse
blossom [21] or fusion blossom [42], operate deterministically. That is, given a matching graph and syn-
drome, they will always find the exact same correction operator. Under a uniform bitflip noise model with
error probability p, we employ an ensembling [18] strategy by sampling 50 matching graphs with their edge
weights perturbed to

wi = log
1 − (p + ξi)

p + ξi
, (39)
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FIG. 3: Performance estimates for both counting and ratio methods for probabilistic and maximum
partition function decoding at T = TNish. Here, the performance estimates by counting are labeled “Max Z”
and “Probabilistic Z”. The success rate of ML decoding is measured by “Max Z” and the “Decoding
probability” at T = TNish. We find matching within error bars between counting and ratio methods.
Furthermore, we find improved performance of maximum partition function decoding over probabilistic
partition function decoding.

where ξi ∼ N(0, σ2ξ). If a syndrome s⃗ is consistent with multiple error configurations, this small, random
modification of the edge weights allows the decoder to find different correction operators for the different
perturbed graphs. We group the correction operators into equivalence classes and select a representative
correction operator for the equivalence class found most often as the decoding result. The expectation is
that this method on average will decode to error classes with higher degeneracy, thus approximating dMP
decoding, provided σξ is chosen small enough to not introduce new shortest paths into the matching graph.
As an alternative ensembling strategy, we also tried sampling isomorphic permutations of the matching
graph GM , where each permutation changes the order of nodes and edges. With a deterministic decoder
implementation, different permutations may result in different equivalent matchings to be found. While this
method produced slight improvements on the observed logical error rate over MWPM decoding, it generally
performed worse than the ensembling based on edge weight perturbations discussed here.

In the following subsections we present and discuss the results of simulations with a range of physical
error rates for the toric code, as well as the unrotated and rotated planar surface code. We set σξ = 10−6,
after optimizing this parameter as discussed in Appendix E. Our implementation of ensembling, based on
PyMatching, is available at [43].
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FIG. 4: Performance estimates for both counting and ratio methods for probabilistic and maximum
partition function decoding at T = 0.1TNish. Here, the performance estimates by counting are labeled “Max
Z” and “Probabilistic Z”. The success rate of MP decoding is estimated by “Probabilistic Z” decoding and
the “Order probability” while the success rate of dMP decoding is measured by “Max Z” and the
“Decoding probability” in the low temperature limit. We find matching within error bars between counting
and ratio methods. Furthermore, we find improved performance of maximum partition function decoding
over probabilistic partition function decoding for low, even distances, while the performance results match
closely for odd distances.

B. Comparison of MP and dMP to matching based decoding in the toric code

We have established in Propositions 1, 2 and 3 that the order probability at T = 0 estimates the success
rate of a MP decoder while the decoding probability at T = 0 estimates the success rate of a dMP decoder.
(In practice, we use T = 0.1TNish as a stand-in for T = 0, as discussed in Section IV). By comparison of
logical failure rates from MWPM and weakly ensembled MWPM decoding to the order probability at T = 0
and the decoding probability at T = 0 respectively, one can compare potentially biased matching decoders
to their unbiased counterparts. We note that the choice of normally distributed perturbations ξi will on rare
occasions lead to sampling of higher weight matchings, but that such events are rare enough to not affect
the results significantly.

The logical performance estimates under MWPM, weakly ensembled MWPM, MP and dMP decoding
are shown for even and odd code distances in Fig. 8. We observe that MWPM decoding suffers from bias,
which primarily affects the performance at even code distances negatively. In particular, the logical failure
rates of the MWPM decoder are noticeably higher than the failure rates of the MP decoder at even distances
beyond d = 4. In contrast, for odd distances, the logical failure rates of MWPM and MP decoding differ only
slightly. This parity dependent effect of bias on MWPM decoding is closely related to the appearance of
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FIG. 5: Comparison of dMP (estimated by decoding probability at T = 0.1TNish) and ML decoding
(estimated by decoding probability at T = TNish). We see an increase of performance advantage from ML
over dMP decoding with an increase of code distance.

ground state degeneracies, which are more likely for even distance toric codes as discussed in Section V C.
Meanwhile, we find that the code performance of the dMP decoder aligns closely with the performance
estimates of weakly ensembled MWPM decoding. Thus, the bias of weakly ensembled MWPM decoding
does not visibly affect its performance. This may be explained by the ensembling having a certain degree
of robustness to bias: it requires solely the estimation of which error classes have the highest degeneracy,
rather than an estimation of their exact amounts of degeneracy.

C. Boundary and parity dependence of performance effects from bias and weak ensembling

We have seen in Section IV that the difference between MP and dMP depends on the parity of the dis-
tance in the toric code. For degeneracy to matter at zero temperature, there must be syndromes s⃗ such that
there are at least two different error classes C(1)s⃗ ,C

(2)
s⃗ fulfilling the criteria nmax(C

(1)
s⃗ ) > 0, nmax(C

(2)
s⃗ ) > 0

and nmax(C
(1)
s⃗ ) ≠ nmax(C

(2)
s⃗ ). In terms of matchings, the condition is that there are syndromes consistent

with at least two classes of minimum weight perfect matchings, with one class containing more such match-
ings than the other. We illustrate such a scenario for the d = 6 toric code in Fig. 9. In addition to governing
the difference between MP and dMP, effects from bias in matching based decoders can only occur when the
first of these criteria is fulfilled.

Under the assumption of uniform bitflip noise, the existence of two classes such that nmax(C
(1)
s⃗ ) >

0, nmax(C
(2)
s⃗ ) > 0 can be related to the existence of even (Hamming) weight representatives of logical
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FIG. 6: The left plot shows the confidence interval widths for estimates of performance using decoding
probability (estimation by ratio), for varying fractions of the full sample set. The confidence intervals
widths from estimation by counting of maximum partition function decoding, generated by bootstrapping
and the Jeffreys interval, are shown as horizontal lines. The intersection point indicates that roughly 20%

of the full sample set is sufficient for estimating the maximum partition function decoding result to same
accuracy by the ratio method. The right plot shows the intersection between confidence interval widths of
decoding probability with those from estimation by counting for varying distances. We find that the widths
of the confidence intervals overlap when the sample count is reduced by around 75% in the estimation by
ratio, with the lowest distance allowing for even larger reduction.

operators. Taking such a representative of weight 2w, we may write it as the disjoint union of two errors
e(1), e(2) with the same syndrome, with w(e(1)) = w(e(2)) = w. Conversely, taking e(1) ∈ C(1)s⃗ and
e(2) ∈ C(2)s⃗ to be inequivalent maximum probability errors of weights w(e(1)) = w(e(2)), there exists a
logical operator e(1)e(2) with weight 2w(e(1)) − 2w(e(1) ∩ e(2)), with e(1) ∩ e(2) being the overlap of the
two errors. The lowest-weight even representative of a logical operator thus provides a lower bound on
how significant the effect of degeneracy can be, as it lower-bounds the weight of errors that can give rise to
syndromes s⃗ fulfilling the two criteria above.

In the toric code at even distance, this lower bound allows for effects from degeneracy in the leading term
of the logical error rate, as the lowest-weight even logical representative is of weight d. Considering also
the criterion n(1)max ≠ n

(2)
max, however, shows that degeneracy can only show up in the first subleading term.

A maximum probability error chain belongs to a set of equivalent error chains of equal weight (nmax > 1)
if and only if it can be deformed by stabilizer multiplication without changing its weight. On the square
lattice, it is clear by inspection that this is only possible when the chain does not consist of only horizontal
bonds or only vertical bonds, which excludes the leading term contribution. Degeneracy only affects the
first subleading term, as illustrated in Fig. 9. In the toric code at odd distance, meanwhile, the effect
of degeneracy is increasingly suppressed with d, since the lowest-weight even logical representative is of
weight 2d (crossing the torus “diagonally”), as illustrated in Fig. 10 (a). From these considerations, we
expect the performance improvement from weak ensembling to be very suppressed in the toric code at odd
distance.

Extending the above considerations to the surface code, we expect improved logical performance from
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FIG. 7: Depicted are five shortest paths between the black vertices, corresponding to minimum weight
perfect matchings. The equivalence classes are indicated by color, with the upper (blue) path belonging to
one class and the four lower (red) paths belonging to another. The red paths differ only by the last segment.
A fair sampling of minimum weight perfect matchings would return the blue path 20% of the time. In
weak ensembling, the weight of each segment of the above paths is perturbed by a small amount. If the
perturbations add up in such a way that the blue path is the shortest, this is the matching returned. However,
given a large number NS of segments, the length difference between the blue path and any of the red paths
is almost always determined by the first NS − 1 segments, so that as NS →∞ the blue path is returned
50% of the time. This demonstrates that weak ensembling does not sample fairly among matchings.

weak ensembling in the unrotated surface code at both even and odd distances, but only at even distances in
the rotated surface code. The unrotated surface code has stabilizers of odd weight (the weight-three stabiliz-
ers at the boundary), so that both the odd and even distance code contain low-weight logical representatives
of even length. In Fig. 10 (b) we illustrate a syndrome in the unrotated surface code that fulfills both of the
above criteria, with leading-term effects on the logical performance. The rotated surface code contains only
even-weight stabilizers, and all logical representatives have the same parity. At odd distance, we therefore
expect that ensemling has no effect at all, while at even distance we again expect leading-term effects, as
illustrated in Fig. 10 (c).

In Fig. 11, we show the effect of ensembling on logical performance for even and odd distance in the
toric code, unrotated surface code and rotated surface code. We see that ensembling does not improve
performance in the rotated surface code at odd distance, and barely differs from MWPM in the toric code
at odd distance, while for the other combinations of boundaries and parities there is a noticeable (though
modest) improvement. It should be noted that we have seen in Section V B that bias lowers the performance
of MWPM decoding compared to MP decoding. The performance gains from ensembling seen in the surface
code might similarly stem from ensembling having robustness to bias, rather than from the degeneracy
enhancement itself. As noted above, the effects of bias have a similar dependence on boundary conditions
and the parity of the distance as the effects of degeneracy.
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FIG. 8: Comparison of potentially biased matching based decoders to their unbiased partition function
decoder counterparts. In the absence of bias, an MWPM decoder is expected to act as an MP decoder while
a weakly ensembled MWPM decoder is expected to behave as a dMP decoder. We notice a bias-induced
deviation between decoding schemes primarily between MWPM and MP decoding at large even distances.
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(a) Defect pattern. (b) Matching with degeneracy 1. (c) Matching with degeneracy 4.

FIG. 9: In Ref. [44] the authors give an example for a syndrome pattern with matchings of equal weight
but different degeneracies, shown here on the 6×6 torus (a). On a larger torus, this pattern can be repeated
arbitrarily often in horizontal direction. The first matching, shown in (b) corresponds to an error class with
degeneracy 1. The syndrome admits another error class with degeneracy 4, shown in the matching in (c).

(a) Distance 5 toric code. (b) Distance 5 unrotated
surface code.

(c) Distance 6 rotated
surface code.

FIG. 10: Example syndrome pattern for the distance 5 toric code with a chain of two possible matchings
with equal weight, wrapping around the torus in both directions (a). The matching shown in purple has
degeneracy 1, whereas the matching colored orange has four equivalent alternatives. The unrotated planar
surface codes admits such ambiguities as well (b), here shown with a matching of degeneracy 1 (purple)
that includes the boundary nodes (gray shaded area) and a matching with degeneracy 3 (orange). For the
unrotated surface code, equivalent matchings of different degeneracy can only occur for even distance (c).
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FIG. 11: Comparison of MWPM decoding with ensembling using 50 random perturbations on the decoder
graph for the toric code, unrotated surface code and rotated planar surface code under a uniform noise
model. On the left the logical error curves for even distances are shown, on the right for odd distances. We
find small improvements of the intersection of logical error curves and the physical error rates with
ensembling for combinations of boundary conditions and distance parity that admit degeneracies.
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VI. STRONG ENSEMBLING, AND PERFORMANCE ESTIMATES IN THE TORIC CODE UNDER
NON-UNIFORM BITFLIP NOISE

In the toric code under uniform bitflip noise, we have seen in Section IV that dMP primarily provides
benefits over MP for small, even code distances. The performance difference between dMP and ML de-
coding shows that there is room for further decoder improvements, beyond degeneracy enhancement. To
deepen the analysis of decoder optimization potential, we extend our investigation to a non-uniform noise
model. In this model, each qubit bitflip error rate, pi, is independently drawn from a normal distribution
with mean p and standard deviation σp. The error ratio samples are subsequently truncated to lie within
the interval [10−4, 12] which ensures physical plausibility. This noise model lifts the ground state degenera-
cies and is thus expected to reduce dMP decoding to MP decoding already for a small non-zero standard
deviation.

In the following subsections, we show the results of simulations for MP, dMP, and ML decoders un-
der the truncated Gaussian noise model for varying standard deviations σp ∈ {0.005,0.06,0.12} with 104

samples of error configurations with Gaussian mean physical error rates p ∈ [0.06,0.14]. The energy gap
between ground and excited states may be arbitrarily small fo non-uniform couplings introduced in Sec-
tion II B. To suppress non groundstate contributions to performance estimates of MP and dMP decoding
sufficiently, we are approximating the zero temperature limit by reduced temperature T = 0.01TNish and
increased 9999 bits of precision within the FKT algorithm for non-uniform bitflip noise.

A. The effect of non-uniformity on the difference between MP and ML performance

Fig. 12 presents the performance estimates of MP, dMP, and ML decoders under the truncated Gaussian
noise model. We observe that increasing the standard deviation generally improves overall code perfor-
mance. This is shown by lower absolute logical failure rates and higher error thresholds at larger standard
deviations of the noise model with respect to the same decoding strategy. This is expected as the decoding
process for less uniform systems generally becomes easier when the overall error expectancy remains the
same. For odd code distances, the relationship between decoding strategies remains largely unaffected by
increased standard deviation: dMP decoding performs only as good as MP decoding for all investigated
physical error rates, while ML decoding consistently outperforms dMP and MP decoding for larger error
rates and code distances d > 3. Hence, weak ensembling methods are expected to produce no notable per-
formance gain over MP decoding for odd code distances under non-uniform bitflip noise. Further, a clear
performance gap to ML decoding persists across all tested standard deviations and code distances d > 3. In
contrast, for even code distances, we observe that dMP decoding performs only as good as MP decoding
already for small non uniformity in the noise. This indicates no performance enhancements by weak en-
sembling over standard MWPM for slightly non-uniform bitflip noise, as expected from the lifting of the
ground state degeneracies. As a consequence, the ML decoder now outperforms dMP decoding at higher
physical error rates already at small code distances, in contrast to the uniform case. It is important to note
that for small enough physical error rates and high enough standard deviation all decoding strategies become
indistinguishable, while the performance enhancement opportunities between MP/dMP toward ML decod-
ing remain for high physical error rates within the tested range of standard deviations. The performance
difference between ML and dMP/MP decoding decreases slightly with an increase of standard deviation.
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FIG. 12: Comparison of MP, dMP, and ML decoding for varying standard deviations of the cut-off
Gaussian bitflip noise model. We observe general performance improvement with an increase of standard
deviation. We also see that the performance difference between dMP and ML decoding persists within
investigated parameter range.
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FIG. 13: Improvement of the logical error rate under ensembling with σΞ = 0.025 for a non-uniform noise
model. For odd distances we see no or only very small improvements for d = 15, whereas for small
standard deviation σp of the physical error rate and even distances, improvements up to 0.03 in pl can be
found. This effect decreases with larger standard deviations and vanishes for σp = 0.15. The improvements
are more pronounced for physical error rates around the threshold, especially at larger distance.

B. Strong ensembling for non-uniform noise

We evaluated ensembling for the MWPM decoder for the toric code under the same truncated Gaus-
sian noise model. Similar to the discussion in Section V A we sample 50 perturbed matching graphs with
modified edge weights:

wi = log
1 − (pi +Ξi)

pi +Ξi
, (40)

where we sample Ξi ∼ N(0, σΞ). We again subjected the perturbation standard deviation σΞ to optimization
outlined in Appendix E and found σΞ = 0.025 as an approximate optimum for the configurations considered.
Fig. 13 shows the improvement in the logical error rate pl for a range of mean physical error rates, standard
deviations for the non-uniform noise model, and distances d = 3,4,7,8,15,16 for the toric code. For
odd distances, we find no or very small improvements only, which aligns with the findings for a uniform
noise model and the previous discussions about degeneracies in the toric code. For even distances, we see
improvements in the logical error rate up to about 0.03, particularly for mean physical error rates around
the threshold. The effect is most pronounced for small σp and vanishes for truncated Gaussian noise with a
standard deviation for the physical error rate of σp = 0.15.
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VII. DISCUSSION

In this paper, we have presented a framework for estimating logical performance in stabilizer codes under
different decoding approaches. The framework relies on estimating partition functions in the corresponding
statistical mechanics models. While the numerical results are restricted to the toric code under bitflip noise,
where the partition functions can be computed with Pfaffian methods, the method carries over to more
general settings using e.g., tensor network methods. It allows for apples-to-apples comparisons of the logical
error curves of different codes, avoiding confounding factors from code-specific decoder implementations.

One example of a confounding factor in the comparison of codes and decoders is bias within matching
implementations. As was pointed out in [45], this bias can also lead to inaccurate estimates of the location
of the phase boundary of the corresponding statistical mechanics model. In Fig. 11, ensembling is seen to
outperform MWPM for all distances, while in Fig. 4 MP and dMP are seen to agree in the toric code at
large distance. This shows that the improvement in Fig. 11 is not due to an inherent difference between
MP and dMP at large distance, but rather due to ensembling suffering less from bias in the PyMatching
implementation (as is also seen in Fig. 8).

The bitflip noise model is far from realistic, and non-uniform noise is furthermore unlikely to be nor-
mally distributed. Future work would be needed to establish which of the qualitative features seen above
would generalize to more realistic settings. For instance, we see that the performance improves for non-
uniform noise when the decoder is given the individual qubit fidelities. For correlated noise such as circuit
noise there could be an overall performance reduction compared to uniform noise. Similarly, qualitative
observations concerning the performance gains from ensembling (that they are most notable around the
threshold, and that they decrease for strongly non-uniform noise) may change in the presence of correla-
tions.

The role of degeneracy would also merit further work. For bitflip noise, it was demonstrated in [46] how
the increased amount of degeneracy in the rotated surface code can lead to worse logical performance than
that of the unrotated surface code in certain regimes, despite having a distance that is larger by a factor of

√
2

for the same number of physical qubits. In [45] the parity of the distance was seen to clearly influence the
threshold estimates when matching degeneracy is taken into account, in the setting of the toric code under
bitflip noise. These observations of the effects of boundaries and parity agree with those of the present
work. Future work would be needed to quantify the effect of degeneracy and its dependence on boundary
conditions and parity in more general settings. In stabilizer codes or noise models with stronger effects
from degeneracy, methods such as ensembling could lead to larger gains.

The numerical simulations in the present work have focused on T = TNish and the zero temperature
limit, as these are the temperatures relevant for ML, MP and dMP decoding. Here, we find that the thresh-
old estimates for maximum partition function decoding and probabilistic partition function decoding agree.
This is consistent with a maximum partition function decodability boundary that is the same as the phase
boundary (although the possibility remains that they may disagree at other temperatures). We leave as an
open question whether there are statistical mechanics models where the maximum partition function decod-
ability boundary differs from the phase boundary, or whether it is possible to prove that these boundaries
must agree.
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Appendix A: Zero Temperature limit

In order to determine a temperature scale sufficient to estimate decoder performance in the zero tempera-
ture limit with the FKT algorithm, we performed simulations with varying temperature and bits of precision
parameters. The performance estimates for a selection of these simulations are shown in Fig. 14 and Fig. 15.
Fig. 14 shows a comparison of FKT performance estimates of maximum partition function decoding at 9192
bits of precision for T = 0.01TNish and 4096 bits of precision for T = 0.1TNish. The performance estimates
are matching within error bars. Additionally, Fig. 15 shows the WL performance estimates of maximum
partition function decoding at T = 0.1TNish and WL performance estimates of maximum partition function
decoding at T = 0. The latter reduces to maximizing g(Emin(s⃗)), a quantity that WL gives direct access
to. The figure shows very close matching of performance estimates. Fig. 2 depicts a further comparison
between WL performance estimates of maximum partition function decoding at T = 0 and FKT results of
maximum partition function decoding at T = 0.1TNish with 4096 bits of precision. As the performance esti-
mates are matching within error bars, we determine T = 0.1TNish and 4096 bits of precision to be sufficient
parameters to estimate the low temperature performance with the FKT algorithm.

Appendix B: FKT algorithm

The toric code under bitflip noise maps under the statistical mechanics mapping to a two-dimensional
Random Bond Ising Model, as shown in Eq. (19). The Ising lattice defines a graph G = (V,E) by as-
sociating Ising spins with vertices and interactions between spins with edges. The dual-lattice G⋆ forms
an m × n square lattice with spin degrees of freedom associated with faces, interactions transmitted via
edges between neighboring faces, and periodic boundary conditions. A spin configuration on the Ising lat-
tice is described by a face value assignment {Si∣Si ∈ ±1 ∧ 0 ≤ i < m × n} on G⋆. The correspondence
between spin configurations on G⋆ and relative domain walls with additional fixing of a single spin value
is depicted in Fig. 16. Furthermore, by decorating each vertex in G⋆ with a Kasteleyn city as depicted in
Fig. 17, one realizes a map between perfect matchings in the decorated graph G̃⋆ and spin configurations
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of the Ising model. We note that this map is not one-to-one. We endow G̃⋆ with an orientation D and
according edge weights by ω((i, j)) = 0 for i, j ∈ vertices of same Kasteleyn city and ω((i, j)) = Jij for
(i, j) ∈ D and i, j from different cities. We define the Kasteleyn matrixK = (Kij)i,j∈V as the adjacency ma-
trix of G̃⋆, which carries information on connectivity, weights and the orientation of the graph as follows:
Kij = e

−2βω((i,j)) if the edge (i, j) is an oriented edge in D, Kij = −e
−2βω((j,i)) if (j, i) is an oriented edge

in D, and Kij = 0 otherwise. The skew-symmetric weighted adjacency matrix K = (Kij)i,j has dimension
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FIG. 16: Relative domain walls of a spin configuration on G⋆. To describe a spin configuration uniquely
we have to define relative domain walls and additionally the spin value on a single face.

4nm × 4nm. The Pfaffian of a 2N × 2N skew-symmetric matrix K is defined by:

Pf(K) =
1

n!2n
∑

π∈S2n

σ(π)
n

∏
j=1

Kπ(2j−1),π(2j) (B1)

with σ(π) the sign of the permutation. All non vanishing terms in the Pfaffian correspond to products of
edge weights of a perfect matching on the related graph with signs depending on the orientation. For all
planar graphs there exists an orientation called Pfaffian orientation which ensures that all perfect matchings
contribute with the same sign to the Pfaffian. One can show for planar graphs that Z = Pf(KPf) with the
Kasteleyn matrix KPf corresponding to a Pfaffian orientation of G̃⋆. Notice that in the non planar case not
all perfect matchings on G̃⋆ are associated with physical spin configurations; domain walls which form non
trivial loops around the torus must come in pairs while dimer configurations can come in four distinct ways:
(o, o), (o, e), (e, o), (e, e). The tuples denote even or odd wrapping number along the two dimensions
of the torus. Only the (e, e) component is related to physical spin configurations. To relate the partition
function of an Ising model with periodic boundary conditions to the calculation of Pfaffians one chooses
four different orientations on G̃⋆. The four orientations differ only on edges at the boundary (the edges
which wrap around the surface) and are equal to a specific Pfaffian orientation on the bulk. Specifically,
one assigns uniformly for the first row and column either Kij = e

−2βω((j,i)) or Kij = −e
−2βω((j,i)). Thus,

the boundary orientation defines four different Kasteleyn matrices which are labelled by the chosen signs
K++, K+−, K−+ and K−−. The Pfaffian of each of these Kasteleyn matrices contains summands which
correspond to non trivial domain wall loops which can not be related to spin configurations on the Ising
model. These summands cancel if summed over all boundary orientations. Only the (e, e) components
participate which leads to: 2Z = Pf(K++) + Pf(K+−) + Pf(K−+) + Pf(K−−).

Appendix C: Replica-exchange Wang-Landau algorithm

The replica-exchange Wang-Landau algorithm [33, 36], is a Monte Carlo algorithm to estimate the
density of states g(Ei) over an energy spectrum divided into bins Ei of a classical spin system described
by the Hamiltonian H . We summarize the algorithm in Alg. 1.

The algorithm relies on the fact that a random walk over the energy spectrum S = {Ei} with probability
proportional to 1

g(Ei) will produce flat histograms with support on the energy spectrum of H . Access to
the density of states enables the calculation of the partition function for arbitrary temperatures, including
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FIG. 17: Mapping of domain walls to a dimer cover of G̃⋆ with Kasteleyn city decoration on original
vertices in G⋆. Observe that a dimer configuration is unique at cities with inter city connections
determined by the respective domain wall. Vertices not participating in a domain wall can be covered in
three different ways by dimers. These three possibilities are shown on the three cities on the top left corner.
Thus, the map is not one to one between domain walls and dimer coverings. Furthermore, the map is
invariant under global spin flip and thus not injective.

the zero-temperature limit, in contrast to the finite-temperature restriction of the FKT algorithm. We start
by explaining the general procedure of the Wang-Landau (WL) algorithm and continue by explaining the
chosen replica exchange (RE) parallelization scheme. The WL algorithm starts by initializing an array
log(g(Ei)) = 0 ∀ Ei ∈ S, which holds the density of states estimate after completing the algorithm and a
histogram h(Ei) = 0 ∀ Ei ∈ S. In addition, one initializes an update factor f = e. Subsequently, random
spin flips are performed. The move is accepted with transition probability p(E1 → E2) = min{

g(E1)
g(E2) ,1},

with energy of the spin configuration E1 before the spin flip and E2 after the flip. For each update step,
a potentially new configuration with energy E is realized. The histogram and density arrays are updated
accordingly: h(E) ↦ h(E) + 1 and log(g(E)) ↦ log(g(E)) + log(f). The random walk continues
until the histogram satisfies the flatness condition determined by a flatness parameter α: min(h(Ei)) ≥

α ⋅mean(h(Ei)). If the histogram is flat under this condition, the update parameter is modified by f ↦
√
f

and the histogram is reset h(Ei) = 0 ∀ Ei ∈ S. The random walk continues as long as the update factor f
is not below a threshold determined by a run parameter β: f ≥ eβ . The parameter β controls the precision
of the simulation and thus the total number of random spin flips. The resulting log(g(Ei)) contains relative
degeneracy factors that must be rescaled to match physical degrees of freedom. We are using the total
number of spin configurations to rescale the degeneracy factors by ∑Ei∈S g(Ei)

!
= 2#spins. The algorithm

requires knowledge on the energy spectrum, which is estimated by performing random walks over the
energy space with the WL transition probability over a fixed number of steps within our investigation.

Appendix D: Minimum-Weight Perfect Matching Decoder

A Minimum-weight perfect matching (MWPM) decoder is a maximum probability decoder, that finds a
correction operator e(s⃗) consistent with a syndrome s⃗, that is

P (e(s⃗)) ≥ P (e′(s⃗)), ∀e′(s⃗). (D1)
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Algorithm 1: Wang-Landau Algorithm
Input: {Ei}: Energy spectrum, H: Hamiltonian, α: Flatness condition, β: Minimal update factor, N :

Number of MC steps per iteration
Output: Density of states log g(Ei)

Initialize density estimates log g(Ei) = 0 ∀ Ei

Initialize histogram h(Ei) = 0 ∀ Ei

Initialize update factor f = e
Initialize spin system S
Calculate energy E of S
while f ≥ eβ do

for N times do
Random spin flip Calculate energy after flip Ẽ
Accept spin flip with transition probability p =min{ g(E)

g(Ẽ) ,1}
Store new E
h(E)+ = 1

log(g(E))+ = log(f)
end for
if min(h) ≥ α ⋅mean(h) then

Update f =
√
f

Reset h(Ei) = 0 ∀ Ei

end if
end while

We limit our discussion to the toric code as well as the unrotated and rotated planar surface codes, though
MWPM decoding is applicable to a considerable number of quantum error correction codes [47]. Decoding
is generally performed independently for Pauli-X and Pauli-Z errors, by the same means. Given a Pauli-Z
error of the form e ∈ {Z, I}m, we denote by e⃗ ∈ Zm

2 the binary vector with e⃗i = 1 if an error occurred at
qubit i and e⃗i = 0 otherwise. The error models is fully described by a three objects. The detector check
matrix H ∈ Zn×m

2 has a row for each detector measurement and a column for each error mechanism, with
Hij = 1 if detector i is flipped by error mechanism j and Hij = 0 otherwise. Each error mechanism i occurs
with probability pi, described by p⃗ ∈ [0,1]m. Furthermore, the effect of errors on the logical observables is
captured in O ∈ Znl×m

2 , with Oij = 1 if the logical observable i is flipped by error j and Oij = 0 otherwise.
Such a general description of an error model byH , O and p⃗ is readily available from e.g., a stabilizer circuit
simulator such as Stim [48] by forward propagating Pauli errors through the circuit. The steps of the
decoding procedure are shown in Fig. 18. The error model induces the matching graph GM with incidence
matrix H , where each stabilizer measurement is a node and each error mechanism an edge. For codes
that admit error chains with a single defect, such as the rotated and unrotated planar surface code for error
chains ending at the edge of the lattice, an additional boundary node is introduced for each such stabilizer
measurement, with all boundary nodes connected by edges of weight 0. The remaining edges in the graph
are weighted by [1]

wi = log
1 − pi
pi

, (D2)

such that edges corresponding to more probable errors have lower weights. Every error e⃗ ∈ Zn
2 produces

a syndrome s⃗ = He⃗ which needs to be decoded into a correction operator g⃗ ∈ Zm
2 with g⃗ ≡ e(s⃗) fulfilling

Eq. (D1). From the defect nodes in s⃗ and the matching graph GM the syndrome graph Gs⃗ shown in Fig. 18c
is constructed. It is a complete graph of all the defect nodes and the shortest paths between them in GM as
edges. A matching in Gs⃗ is a set of edges in Gs⃗, such that no two edges are incident to the same node. A
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(a) Surface Code. (b) Matching Graph. (c) Syndrome Graph. (d) Matching. (e) Correction.

FIG. 18: The Pauli-X stabilizer measurements of the distance 5 surface code (a), induce a matching
graph (b) which is extended by boundary nodes. From the matching graph, the syndrome graph is
constructed as a complete graph of the defect nodes (red) and the shortest paths between them (c). A
minimum-weight perfect matching in the syndrome graph (d) corresponds to a most probable correction
operator consistent with the syndrome (e).

perfect matching is a matching containing all nodes of the syndrome graph, it also is a minimum-weight
perfect matching, if it fulfills these conditions and the sum of the edge weights contained in the matching
is minimal. Any minumum-weight perfect matching in Gs⃗ corresponds to a correction operator g⃗ ∈ Zm

2 that
is consistent with the syndrome and furthermore fulfills Eq. (D1). The decoding is successful, if g⃗ and the
(unknown) error e⃗ that caused syndrome s⃗ have the same effect on O, that is

O(e⃗⊕ g⃗) = 0. (D3)

Otherwise a logical error occurs. For the efficient computation of a minimum-weight perfect matching,
Edmonds’ blossom algorithm [49] is the common method, of which various high-quality implementations
and variants exist [21, 42, 47, 50, 51]. Here we conduct all simulations involving minimum-weight per-
fect matching decoding with the PyMatching 2 software package, implementing the sparse blossom
algorithm [21].

Appendix E: Optimization of Ensembling Parameters

Ensembling by perturbing the matching graph of the MWPM decoder as discussed for a uniform noise
model in Section V A and a non-uniform noise model in Section VI B, requires setting the standard deviation
for the edge weight perturbations σξ and σΞ. We optimized both values using a simple coarse grained global
optimization scheme [52] within the interval [0,0.5] for both standard deviations and furthermore tested
multiple values within the neighborhood of the determined approximate optimum. Due to the considerable
computational cost of this optimization, we limited the search to the toric code with distances d = 8 and
d = 16, error rates of p ∈ {0.05,0.07,0.1,0.11}, standard deviations for the non-uniform noise model
of σp ∈ {0.005,0.01,0.02,0.03,0.04,0.05,0.1,0.15}, and 10,000 sampled error configurations for each
optimization step. For the uniform noise model, we consistently find the best results for σξ ∈ [10−6,10−2],
for larger values the observed logical error rate increases monotonously, considerably smaller values lead
to slight increases. The optimization results for the uniform noise model are shown in Fig. 19. With a
truncated Gaussian noise model, across the tested error rate standard deviations, an approximate optimum
for all tested configurations can be observed at σΞ ≈ 0.025, which we set for all ensembling simulations
with the MWPM decoder and non-uniform noise-models. The optimization results for the toric code with
d = 8 and d = 16 are shown in Fig. 20 and Fig. 21.
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FIG. 19: Optimization results for σξ under a uniform noise model and the toric code with distance d = 8
(left) and d = 16 (right). Across four different error rates p we find the best results for σξ ∈ [10−6,10−2].

FIG. 20: Optimization results for σΞ under a non-uniform noise model with various noise standard
deviations σp and the toric code with distance d = 8. The approximate optimum of σΞ = 0.025 is marked
with the vertical orange line.
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FIG. 21: Optimization results for σΞ under a non-uniform noise model with various noise standard
deviations σp and the toric code with distance d = 16. The approximate optimum of σΞ = 0.025 is marked
with the vertical orange line.
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