
Preprint

Hierarchical Policy Blending as Inference for Reactive Robot Control

Kay Hansel1, Julen Urain1, Jan Peters1−4 and Georgia Chalvatzaki1,3

Abstract— Motion generation in cluttered, dense, and dy-
namic environments is a central topic in robotics, rendered as a
multi-objective decision-making problem. Current approaches
trade-off between safety and performance. On the one hand,
reactive policies guarantee a fast response to environmental
changes at the risk of suboptimal behavior. On the other hand,
planning-based motion generation provides feasible trajectories,
but the high computational cost may limit the control frequency
and, thus, safety. To combine the benefits of reactive policies
and planning, we propose a hierarchical motion generation
method. Moreover, we employ probabilistic inference methods
to formalize the hierarchical model and stochastic optimization.
We realize this approach as a weighted product of stochastic,
reactive expert policies, where planning is used to adaptively
compute the optimal weights over the task horizon. This
stochastic optimization avoids local optima and proposes feasi-
ble reactive plans that find paths in cluttered and dense environ-
ments. Our extensive experimental study in planar navigation
and 7DoF manipulation shows that our proposed hierarchical
motion generation method outperforms both myopic reactive
controllers and online re-planning methods. Additional material
available at https://sites.google.com/view/hipbi.

I. INTRODUCTION

We expect autonomous general-purpose robots to navigate
in unstructured, cluttered environments and perform multiple
tasks autonomously. The robots need to guarantee the success
of the task while responding reactively and safely to dynamic
changes in the environment [1]–[6]. Robot motion generation
encompasses all methods that define control commands to
generate coordinated robot behaviors. These control com-
mands take either the form of trajectory-level control [7]–[9]
or direct, instantaneous controls such as joint velocity and
acceleration [10]–[14].

On one side of the spectrum are motion planning ap-
proaches. Motion planning can be categorized into two sub-
groups based on the underlying methodology. First, sample-
based methods provide probabilistic completeness guarantees
in terms of goal-reaching and collision-free paths [8], [15]–
[18]. Gradient-based trajectory optimization methods [7],
[19], however, search for the optimal path to a task-specific
goal, taking into account several underlying objectives, e.g.,
trajectory smoothness, obstacle avoidance, or joint limits
avoidance. Algorithms from these two categories consider
a static environment with a predefined and static goal lo-
cation. These approaches are, thus, specifically suited for

This work received funding by the DFG project CHIRON and the Emmy
Noether Programme (CH 2676/1-1), and the EU project ShareWork.

1 Computer Science Department, Technische Universität Darmstadt (Ger-
many), 2 German Research Center for AI (DFKI), 3 Hessian.AI, 4 Centre for
Cognitive Science {kay.hansel, julen.urain, jan.peters,
georgia.chalvatzaki} @tu-darmstadt.de

This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may
no longer be accessible.

Fig. 1: A sequence of the reactive motion of a 7DoF manipulator
robot. The robot starts moving from the orange box toward the
green box. Our proposed method enables a reactive motion that
avoids collisions with the grey obstacle and overcomes local minima
resulting from multiple constraints.

robot operations in structured environments. To enhance
adaptability in dynamic environments, online planners [20]–
[24], attempt to ensure reactivity through online re-planning
over the action space for a short planning horizon. These
methods find the optimal sequence of actions for a certain
planning horizon. The first proposed action of the sequence is
executed, followed by re-planning. While some efforts have
been made to adapt these approaches to high-dimensional
robots [22], these methods become computationally intensive
in high dimensions, limiting the maximum frequency of
control and, thus, reactivity.

Reactive motion generators are on the other side of
the spectrum. These methods aim to meet high-frequency
requirements to provide instantaneous control. Therefore,
reactive motion generators ensure adaptability to environ-
mental changes [25], [26] and hence local safety, e.g., by
repulsive potential fields for obstacle avoidance. However,
these methods do not provide look-ahead planning due to
the high-frequency requirements. As a result, reactive motion
generators are myopic. The myopic behavior makes the reac-
tive methods susceptible to getting trapped in local minima
when solving simultaneous objectives, such as obstacle and
self-collision avoidance, as well as goal-reaching.

In this work, we propose a hierarchical policy blending
as inference (HiPBI) approach that employs hierarchical
decision making and probabilistic inference to combine the
benefits of online motion planning and reactive motion

ar
X

iv
:2

21
0.

07
89

0v
3

 [
cs

.R
O

]
 2

9
Ju

l 2
02

4

https://sites.google.com/view/hipbi

generators. On the lower level, we apply Riemannian motion
policies (RMP) [6], [11]. RMPs represent myopic policies
and provide a high-frequency response to environmental
changes. On the higher level, we adopt planning-as-inference
and use a sampling-based look-ahead planner that operates
on the parameter space of the underlying RMPs. There-
fore, we reformulate the RMPs as Gaussian policies to
employ planning-as-inference methods [27], [28] resulting
in a product of experts (PoE) [29], [30] formulation that
belongs to the exponential family. To evaluate the perfor-
mance of our approach, we conducted empirical studies for
2DoF point-mass navigation and 7DoF robot manipulation
tasks in complex and dynamic environments. We compared
our approach with representative reactive motion generation
baselines. Our results highlight the effectiveness of HiPBI
in solving tasks faced with cluttered and dynamic obstacles.
By combining high-level planning with low-level reactive
control, our approach achieves high success and safety rates.

Contribution: Our contributions are: (i) Developing a
robot motion generation method that hierarchically combines
reactive motion generation and sample-based online plan-
ning; (ii) Employing planning-as-inference to address the
policy blending problem in an online fashion; (iii) Empiri-
cally demonstrating the achievement of feasible and reactive
motions.

II. RELATED WORK

Hierarchical decision-making – abstracting the motion
generation problem into multiple decision levels – is well-
known practice in robotics. Such methods rely on multi-
level planners or operate in the parameter space of motion
policies. The former, such as TAMP, hierarchical planning,
or hierarchical RL [31]–[34], generate subgoals that an
underlying planner or policy must achieve. The latter either
specifically adjusts constraint functions of dynamic motion
primitives [35], [36] or selects a policy from a mixture of
experts [37]–[42]. Given the multi-centric nature of robotic
tasks, a hierarchical mixture of experts selects only one of
the experts [40]. When faced with unexpected environmental
changes, this selective behavior leads to suboptimal perfor-
mance [38] or at least to a combination of experts with
already complexly encoded behaviors, e.g., by imitation or
reinforcement learning [40]. We argue that the composition
of simple and stable reactive policies is capable of generating
complex reactive behaviors in robotics [43]–[45].

The fundamental work for reactive motion generators
applied artificial potential fields for modeling obstacle avoid-
ance (repulsive) and goal-reaching (attractive) behavior [1].
This work formed the basis for operational space control
investigating reactive policies to achieve instantaneous robot
motion control [46], [47]. Using Riemannian metrics instead
of Euclidean, the RMP framework extends operational space
control considering geodesics near obstacles [6], [11], [44],
[45]. The recently proposed geometric fabrics generalize
RMPs by employing Finsler geometry rather than Rieman-
nian one [12]–[14]. Motion primitives provide learning-based
generation of reactive, stable behavior [4], [10], [48]. While

most motion generators promise to be locally reactive, they
are prone to get trapped in local minima.

RMP’s intuitive superposition of policies corresponds to
a product of experts [11], [45]. In the context of primitives,
blending is useful to express complex behavior out of previ-
ously encoded primitives. Therefore, several works applied
blending for parameterized motion primitives [5], [49], [50]
or Gaussian processes [51]–[55]. Recent work addressed the
blending problem utilizing QP optimization [56], energy-
based models [9], [43], or learning from demonstrations [57].
However, most methods assume equal importance for all
experts or adjust the importance offline through optimization
or learning.

III. PRELIMINARIES

This section introduces the necessary background to frame
the hierarchical model and stochastic optimization. First, we
present a concept to express optimal control as a Bayesian in-
ference problem. Second, we provide a mathematical object
to describe the expert policies for reactive motion generation.

Control as Inference: Denoting the system state
st ∈ Rs and action at ∈ Ra at time instant t, we
define a discrete-time state-action trajectory as the sequence
τ ≜ (s0,a0, s1,a1, . . . , sT ,aT) over a time horizon T .
Given the transition dynamics p(st+1 | st,at) and a pol-
icy π(at | st;θ) conditioned on the parameters θ, in opti-
mal control, we aim to find the policy parameters θ that
minimize the expected objective function JC(τ), where
θ∗ = argminθ Ep′,π [JC(τ ;θ)] .

We express the objective function JC(τ) =
∑

k ck(τ)
as the sum of task-related cost functions, e.g., trajectory
smoothness, collision avoidance, distance to target. Optimal
control can be framed as a Bayesian inference problem con-
sidering the distribution over the policy parameters θ [28],
[58], [59]. We introduce a binary random variable O ∈ {0, 1}
that indicates the optimality of a trajectory τ w.r.t. the
objective function JC(τ). We express the probability of O=1
given a trajectory τ by p(O=1|τ) ∝ exp(−JC(τ)). Given
the trajectory distribution

p(τ |θ) = p(s0)
∏T−1

t=0 p(st+1|st,at)π(at|st;θ),

we can infer the optimality likelihood p(O=1|θ) as the
marginal probability over all the state and action trajectories,

p(O=1|θ) =
∫
τ
p(O = 1|τ) p(τ |θ) dτ .

Note that log p(O=1|θ) ∝ −JC(τ ;θ). Given a prior distri-
bution p(θ), we can approximate the posterior distribution
given the optimality O = 1 as q(θ|O=1) ∝ p(O=1|θ) p(θ),
that updates the distribution over θ towards the parameters
that are optimal for our objective function JC(τ).

Riemannian Motion Policies: RMPs [6], [11], [44]
describe a mathematical object for representing reactive,
modular motion generation policies. In RMPs, the action at

at time instant t is computed by a weighted sum of a set
of policy components, at =

∑
i αi(st)πi(st), with αi > 0

the weighting term for the component i. In RMPs, the state
st = (qt, q̇t, ct) represents the robot’s position qt ∈ Rq ,

velocity q̇t ∈ Rq and environment context ct. The action
is chosen to be the robot acceleration at = q̈t ∈ Rq . We
assume a set of task maps ϕ : Q −→ X , that relate the robot
configuration Q space and a certain task space X . Then,
given a task-space policy πx, we can represent a policy in
the robot configuration space by πq = J†

ϕπx(ϕ(st)), with
J†
ϕ the Jacobian pseudoinverse of the task map ϕ.

IV. HIERARCHICAL REACTIVE POLICY BLENDING

We propose a hierarchical optimization framework to
blend reactive policies for motion generation in complex
and dynamic environments. Our approach, HiPBI, expresses
the blended policy as a PoE. A weighted superposition
of the hand-tuned reactive policies determines the optimal
action at the low level. At the high level, we formalize the
optimization of the weights as a probabilistic inference prob-
lem and employ a sampling-based look-ahead planner. The
hierarchical optimization scheme offers (i) high-frequency
control and, hence, fast adaptation to environmental changes;
(ii) avoidance of local optima in cluttered and dense envi-
ronments through the deliberate superposition of policies. In
the following, we will discuss both sublevels sequentially.

Weighted superposition of reactive policies: We adopt
a probabilistic viewpoint and formalize each policy compo-
nent of the RMP as an energy-based model

πi(at | st;θi) ∝ exp(−Ei(st,at;θi)),

taking the form of a Boltzmann distribution. The quantities
st ∈ S and at ∈ A denote a state and action at time
instance t, respectively. An energy function Ei : S ×A → R
assigns a cost to each state-action pair. Thus, the Boltz-
mann distribution gives a probability value to each state-
action pair. The choice of the energy function Ei and
its hyperparameter θi is usually made in advance. In the
case of Riemannian geometry, the energy Ei(st,at;θi) is
a quadratic function satisfying smoothness and convexity.
Accordingly, the Boltzmann distribution forms a multivari-
ate Gaussian πi(at | st;θi) = N (µi(st),Λi(st)

−1) with
µi(st) and Λi(st) as the mean and the precision matrix,
respectively [43]. Referring to RMPs, the mean is the forcing
function, and the precision matrix’s inverse corresponds to
the Riemannian metric. We leverage a PoE

π(at | st,β) ∝
∏n

i=1 πi(at | st;θi)βi , (1)

with weighting factors β, also known as temperatures, rep-
resenting the importance or relevance of each policy in the
product. In the logarithmic space, this blending equals a
weighted superposition. The optimal action at time instance
t results from a∗

t = argmaxa∈A log π(a | st,β), depending
on state st and the weights β. Due to the quadratic nature
of the defined energy functions Ei(st,at) from the RMP
framework, the PoE is a Multivariate Gaussian distribution.
Therefore, we can obtain the gradient and hence the optimal
action analytically in closed form.

Sampling-based online planner: The behavior of the
agent π(st,at) and hence an applied action sequence
a∗
t , . . . ,a

∗
t+h up to time t + h are induced by the superpo-

sition of n experts as in (1). The temperature values β give
us the possibility to change the relevance or importance of
an expert. In an online fashion, a change in the relevance
of experts makes it possible to induce planning into the
myopic nature of the policy π(st,at). With the formulation
of PoE in mind, we exploit the duality between control
and probabilistic inference by formalizing an optimization
procedure for deriving optimal weights. The posterior of
optimal blending is given

p(β | O=1, st) ∝ p(O=1 | β, st) p(β | st),

with the current state st and the optimal likelihood
p(O=1 | β, st) [27], [28]. Given this likelihood, we can in-
sert desired higher-level goals into the framework to achieve
a desired behavior. Assuming a parameterized variational dis-
tribution q(β;θ), we minimize the reverse Kullback–Leibler
divergence

q∗(β;θ) = argminq(β;θ) DKL[q(β;θ) ∥ p(β | O=1, st)].

The reverse KL divergence ensures that the optimization fits
the distribution q(β;θ) to modes of the p(β | O=1, st). Due
to the fact that there are potentially many optimal solutions,
the mode-seeking behavior is beneficial. The optimal distri-
bution q∗(β;θ) is therefore obtained from

q∗(β;θ) = min
q(β;θ)

[
Hq(β,θ)

[
p(O=1|β,st) p(β|st)

q(β;θ)

]]
.

Given the inference framework, we can impose important
properties on the temperature parameters. Using an ex-
ponential distribution as q(β;θ), we can ensure that all
weights are greater than zero. Additionally, the use of a
Dirichlet distribution implies that the temperatures sum to
one. We choose q(β;θ) = Dir(β;θ) for this reason. The
prior p(β | st) gives us the opportunity to incorporate prior
knowledge into the framework. As we do not want to bias
the optimization, we consider a uniform prior. The Shannon
entropy of the variational distribution q(β;θ) itself ensures
that the distribution does not collapse. The optimal likelihood
forms a marginal likelihood

p(O=1 | β, st) =
∫
p(O=1 | τ , s1) p(τ | β, s1) dτ,

over possible trajectories τ . Inferring this quantity is chal-
lenging due to the integral over τ on the right hand side. We
employ variational inference that defines a lower bound, also
known as evidence lower bound (ELBO) [60], [61]. Hence,
we choose a variational distribution

q̂(τ | β) = q̂(st)
∏h

i=t q̂(st+1 | at, st)π(at | β, st),

over τ . Assuming that q̂(τ | β) approximates the true tra-
jectory distribution p(τ | β, st) closely - given β and st -
we obtain the ELBO

Eq(β)

[
Eq̂(τ)

[∑h
i=t log

p(Ot=1|,at,st)
π(at|β,st)

]
+ log q(β)

]
. (2)

Fig. 2: 2D Toy environments for planar point-mass navigation. The
orange dot denotes the start and the green one the goal location.
Top. The toy maze environment with dynamic obstacles. Bottom.
the toy box environment, in which a box moves horizontally at a
constant speed. The goal is fixed in the center of the moving box.

For clarity, we omitted the dependencies on θ and β of
q(β | θ) and q̂(τ | β). The first quantity in the final objective
(2) resembles look-ahead planning. Thus, we approximate
the optimal likelihood utilizing a shooting method. For the
optimization of a parameterized distribution q(β;θ) we can
either apply gradient-based [62] or apply sampling-based
techniques [21], [23], [23], [43]. Since online sampling-
based techniques are promising in practice, we chose the
iCEM approach [20], [21], i.e., after shooting, we take the
k best samples and apply moment matching to them. As
we can calculate the entropy Eq(β) [log q(β)] in (2) of our
parameterized distribution q(β;θ) in closed form, it is a
constant value applying iCEM. Hence, we end up with the
final objective for the iCEM method results in

JCEM(β) = Eq(β)q̂(τ)

[∑h
i=t log p(Ot=1 |,at, st)

+ λπ log π(at | β, st)
]
,

with regularization parameter λπ . After selecting the k best
samples, we estimate the mean and precision of the Dirichlet
distribution separately [63]. For the precision, a Newton-
Raphson like method is applied, while for the mean, a fixed-
point iteration takes place.

V. EXPERIMENTS

In this section, we benchmark HiPBI against two base-
lines. The algorithm Riemannian motion policies (RMPflow)
[11] works as a baseline from the family of reactive poli-
cies, that corresponds to a graph-based syntethis framework,
and combines individual local RMPs to generate global
dynamical behavior. A framework for real-time planning and
second baseline is the improved cross entropy method for
model-predictive-control (iCEM-MPC) [21] framework. The
method utilizes improved cross entropy method (iCEM) for
trajectory optimization in a model predictive control (MPC)
scheme. First, two low-dimensional planar navigation envi-
ronments give us insights into how the different algorithms
behave under different environmental conditions. Then, we

consider a high-dimensional robotic simulation. This envi-
ronment shows how HiPBI adapts to high-dimensional state
and action spaces. In all experiments, we set λπ = 0.

Toy Environments: The 2D toy maze environment (2D-
Maze) is a dynamic 2D planar environment on which a
particle navigates from a random start to a random goal
position (see Fig. 2). In the environment, a given number
of m circular obstacles – partly static, partly dynamic – bar
the way. The environment randomly sets obstacles inside
a restricted area between the start (orange point) and goal
positions (green point). We model the movement of the
obstacles using a constant velocity model. 2D-Maze mimics
a dense, cluttered and dynamic environment.

Unlike 2D-Maze, the 2D toy box environment (2D-Box)
presents a dynamic domain in which constant local optima
exist (see Fig. 2). The box is dynamic, and its motion
is modeled as a constant velocity one. The start position
is sampled randomly to the right or left of the box. The
challenge comes from local optima under the box or in front,
i.e., to the left or the right. Furthermore, the dynamic nature
complicates the planning of a feasible solution. Validation
is important as local optima are constantly changing in 2D-
Maze – they appear and disappear independently - whereas
they exist permanently in 2D-Box. Therefore, 2D-Box shows
us the effectiveness in overcoming constant local optima.

We consider four different metrics for validation in 2D-
Maze and 2D-Box: (i) the success rate (SUC), indicating
the percentage of times the goal has been reached; (ii) the
safety rate (SAFE), implying collision-free motions; (iii) the
final l2 distance (L2D) to the goal; and (iv) the needed
time steps (TS) until the goal is reached. As RMPflow runs
at high frequency, we studied iCEM-MPC and HiPBI in a
synchronous (S) and asynchronous (A) mode. In the former,
iCEM-MPC and HiPBI have sufficient time to find feasible
solutions – as the environment remains fixed during the
planning. In the latter, planning runs asynchronously with
the environment, and online planning is needed. Therefore,
we applied different look ahead (LA) horizons for both the
basic iCEM-MPC and the HiPBI methods.

RMPflow employs the composition of experts with attrac-
tive and repulsive forces. To achieve a curling behavior, we
choose an expert πcurl ⊥πgoal that exerts forces normal to
the goal attractive force. πcurl scales proportional to πgoal
and, thus, vanishes if the particle reaches the goal. We apply
two mutually balancing agents to avoid constant rotational
forces, i.e., πcurli = −πcurlj . Although this extension does
not affect RMPflow, HiPBI adapts the weights and hence
achieves curling behavior.

Table I summarizes our results. In 2D-Box, RMPflow
converges to local optima. In synchronous mode, iCEM-
MPC and HiPBI improve their success rate with increas-
ing look-ahead size and encounter no collisions. However,
iCEM-MPC loses performance in asynchronous mode as it
cannot react fast to environmental changes. HiPBI, which
combines online planning with reactive control, achieves
a 100% success and safety rate with a look-ahead of 75
without suffering from the same performance gap. In 2D-

0 5 10 15 20 25 30
Different speed Levels

RMPflow

iCEM (LA 25)

iCEM (LA 50)

iCEM (LA 75)

iCEM (LA 100)

HiPBI (LA 25)

HiPBI (LA 50)

HiPBI (LA 75)

HiPBI (LA 100)

0.0 0.0 0.0 0.0 19.0 30.0 32.0

31.0 33.3 38.0 27.0 45.0 39.4 38.0

52.0 42.0 56.0 49.0 54.0 62.0 64.0

78.0 77.0 76.0 76.0 76.0 67.0 70.0

58.0 48.0 56.0 52.0 46.0 48.0 38.0

4.0 2.0 3.0 4.0 30.0 30.0 25.0

72.0 69.0 80.0 79.0 89.0 89.0 58.0

100.0 100.0 100.0 99.0 94.0 96.0 76.0

100.0 100.0 100.0 100.0 89.0 85.0 77.0

Success Rate on 2D Toy Box Environment

0 5 10 15 20 25 30
Different Speed Levels

100.0 100.0 100.0 100.0 100.0 100.0 100.0

31.0 33.3 38.0 27.0 45.0 39.4 38.0

59.0 52.0 64.0 58.0 68.0 68.0 72.0

84.0 81.0 80.0 79.0 81.0 70.0 74.0

66.0 64.0 71.0 67.0 62.0 68.0 57.0

100.0 100.0 100.0 100.0 99.0 98.0 92.0

100.0 100.0 100.0 99.0 100.0 99.0 95.0

100.0 100.0 100.0 99.0 99.0 98.0 94.0

100.0 100.0 100.0 100.0 91.0 86.0 84.0

Safety Rate on 2D Toy Box Environment

Fig. 3: The results of an ablation study in the 2D toy box environment. The speed increases from a minimum of zero (static) to 30 pixels
per step (dynamic). We compare the baselines, i.e., RMPflow and iCEM-MPC, with our method HiPBI and employ different look-ahead
horizons (LA). Left. The success rate shows the performance. Right. The safety rate indicates how often no collision occurs.

Maze, RMPflow achieves a success rate of 77%. As in 2D-
Box, iCEM-MPC and HiPBI perform well in synchronous
mode. However, in the asynchronous mode, we notice that
iCEM-MPC suffers again from its slow response to envi-
ronmental changes, more noticeable at higher look-ahead
values. Interestingly, this behavior is reversed in 2D-Box.
Dodging under or over one box is simpler than avoiding
multiple particles. The performance of HiPBI improves with
increasing look-ahead planning. The similar collision rate as
RMPflow is reasonable as both use the same parameters for
the underlying RMP. Due to planning, HiPBI improves the
success rate compared to the myopic RMPflow.

In Figure 3, we show a comparison on 2D-Box with
different speed levels of the box. This comparison provides
insights into the responsiveness to environmental changes.
We see how success and safety rates change as velocity
increases. Regardless of the velocity, RMPflow does not
collide with the box environment but has a low success rate.
iCEM-MPC achieves a higher success rate, but collisions
occur more often. The ablation study highlights how HiPBI
combines the advantages of low-level reactiveness and high-
level planning. Increasing speed has a small influence on
HiPBI, with only a slight drop in performance at a speed
level of 30 pixels per step while maintaining a sufficient
safety rate.

Manipulation Environment: We investigate the perfor-
mance of HiPBI on a high-dimensional robotics task with a
7DoF manipulator in the physics engine PyBullet [64]. Fig. 5
shows the arm surrounded by four boxes. In each round, the
robot must first get to a randomly selected intermediate goal
(orange box). After it reaches the intermediate goal, it has to
reach the final goal (green box). Several sphere-like objects
block the way during the path from the intermediate to the
goal box. Thus, this task resembles a high-dimensional pick-
and-place task involving multiple local optima.

In an ablation study, Fig. 4, we compared the performance
of HiPBI against RMPflow. Long horizon planning was
not feasible with iCEM-MPC, thus we do not add any
comparison, as the short horizons did not give satisfactory
results. We consider two modes, a static one and a dynamic
one. In the former, zero to five static spheres are randomly
sampled in a predefined space between the intermediate and
goal box. In the latter, we use one to five dynamic spheres
similar to the former case assuming constant velocity models.
The dynamic obstacles are restricted to staying within the
path of the panda and goal box. RMPflow uses eight experts,
which included self-collision avoidance, joint and velocity
limitations, goal-reaching, and avoidance of obstacles such
as floors, boxes, and spheres. Unlike in 2D-Box and 2D-
Maze, HiPBI leverages the same experts and omits the local

TABLE I: Evaluation of the baselines, i.e., RMPflow and iCEM-MPC, and our method HiPBI on the planar point-mass navigation tasks
using different metrics: (i) the success rate (SUC); (ii) the safety rate (SAFE); (iii) the L2 distance from the final state to the goal (L2D);
and (iv) the time steps required to reach the goal (TS). We employed different look-ahead horizons depicted as LA. The quantities S and
A indicate whether the dynamics run synchronously with the algorithm or asynchronously. Left. Experiments took place in the 2D toy
box environment. Right. Results in the 2D toy maze environment are highlighted.

2D Toy Box Environment 2D Toy Maze Environment

SUC[%] SAFE[%] L2D TS SUC[%] SAFE[%] L2D TS

RMPflow 0 100 198.9 ± 1.5 500.0 ± 0.0 77 89 161.5 ± 620.0 330.7 ± 191.3

iCEM (LA 25, S) 38 100 77.2 ± 91.2 353.9 ± 277.9 98 99 17.4 ± 175.1 133.1 ± 65.4
iCEM (LA 50, S) 57 100 56.6 ± 73.6 271.0 ± 282.5 99 99 21.1 ± 163.1 167.0 ± 59.8
iCEM (LA 75, S) 90 100 43.3 ± 82.7 195.2 ± 177.2 99 99 37.7 ± 166.7 223.8 ± 90.5
HiPBI (LA 25, S) 2 100 189.3 ± 44.7 490.9 ± 81.8 98 99 20.3 ± 172.7 247.6 ± 55.8
HiPBI (LA 50, S) 61 100 49.5 ± 75.6 276.6 ± 251.2 99 99 17.5 ± 162.6 247.5 ± 47.6
HiPBI (LA 75, S) 100 100 7.3 ± 5.9 131.9 ± 18.0 99 99 19.0 ± 171.7 252.1 ± 47.3

iCEM (LA 25, A) 31 31 95.5 ± 94.8 372.9 ± 265.6 40 40 409.6 ± 570.0 356.6 ± 245.5
iCEM (LA 50, A) 54 64 64.3 ± 83.2 292.5 ± 271.7 4 4 774.0 ± 436.1 488.9 ± 78.1
iCEM (LA 75, A) 79 85 63.1 ± 84.4 237.7 ± 208.6 0 0 974.1 ± 287.5 499.2 ± 22.4
HiPBI (LA 25, A) 7 100 178.6 ± 71.1 477.1 ± 120.3 83 84 116.2 ± 386.3 294.2 ± 131.4
HiPBI (LA 50, A) 73 100 40.1 ± 76.9 324.3 ± 169.7 85 87 100.0 ± 357.9 293.4 ± 123.7
HiPBI (LA 75, A) 100 100 8.5 ± 6.0 205.8 ± 35.3 86 87 106.1 ± 376.5 297.3 ± 122.1

Fig. 4: Manipulation environment in which the intermediate (orange) and target (green) boxes are randomly selected out of four boxes.
Five randomly generated grey obstacles obstruct the path of the 7DoF manipulator robot. With blue, we denote the executed trajectory.
Top. Performance of Riemannian motion policies (RMPflow) method that gets stuck in a local optimum. Bottom. Performance of our
proposed HiPBI, that successfully discovers an obstacle-free path to the target.

curling policies. Our approach adjusts the importance of
the experts to achieve desired dynamical behavior. Due to
the computational complexity of planning algorithms and
the advantage of optimizing in parameter space, we apply
the HiPBI in asynchronous mode – as 2D results confirm
our assumption. While the high-level planner optimizes at a
lower frequency, the local policies ensure reactive behavior.
By choosing a Dirichlet distribution, we guarantee that each
expert affects the dynamic system. Thus, no scenarios arise
in that local policies are switched off.

In Figure 5, we present an ablation study and see that
RMPflow performs better in a dynamic setting, strengthening
our assumption that local optima alter in dynamic environ-
ments. However, the success rate decreases with an increas-
ing number of obstacles. This outcome is reasonable, as
each obstacle induces another constraint creating more local
optima. HiPBI demonstrates significantly improved results
with a look-ahead horizon of 25, corresponding to 2.5 s at a

0 1 2 3 4 5
Number of Obstacles

RMPflow

HiPBI (LA 25)

HiPBI (LA 50)

HiPBI (LA 75)

78.4 43.1 20.0 23.5 21.6 25.5

100.0 64.0 58.2 59.5 61.4 58.2

100.0 72.3 66.7 61.9 63.2 70.6

98.0 71.2 64.1 65.4 62.5 58.2

Static Environment

1 2 3 4 5
Number of Obstacles

90.2 76.5 82.4 64.7 64.7

94.1 93.5 85.6 81.7 86.3

96.7 90.2 90.9 88.3 83.6

96.1 89.5 90.2 88.3 79.1

Dynamic Environment

Fig. 5: Evaluation study on the manipulation environment. We
benchmark our approach HiPBI in a static and a dynamic setting
against the baseline RMPflow. Left. The success rate in a static
environment. The number of obstacles varies from zero up to a
maximum of five. Right. The success rate in a dynamic environ-
ment. A maximum of five movable obstacles are used.

planning frequency of 10Hz. In the static environment with
fixed local optima, HiPBI also outperforms RMPflow.

Figure 4 compares two executed trajectories of RMPflow
(top) and HiPBI (bottom) at four different time points.
RMPflow naturally follows the myopic behavior and ends
in a local optimum. HiPBI, on the other hand, exploits the
information of the hierarchical high-level planning scheme.
The reactive leaping motion indicates the low-level RMPs.
High-level planning enables feasible solutions avoiding local
optima and reaching the goal.

VI. CONCLUSIONS

We presented hierarchical policy blending as inference
(HiPBI), a method for reactive motion generation that com-
bines, at the low level, myopic reactive motion policies
that can be modeled as a product of experts (PoE), and,
on the high level, a sampling-based online planner on the
parameter space of the policies, that decides over the optimal
weighting of the experts. Our method dynamically adapts
the importance of the different policies and shows superior
performance in terms of task success-rate and safety (in terms
of collision avoidance) against representative baselines, as
demonstrated both in complex planar environments, and in
high-dimensional robotic manipulation tasks in face of clutter
and dynamic changes.

As our method comes with the cost of higher computa-
tional complexity, we will explore collocation methods for
the planning process in the future and apply the approach
to appropriately designed real robot environments. Further-
more, the probabilistic inference framework assumes a prior
distribution to provide prior knowledge to the system. We
will discuss the form and realization of such a prior, e.g., by
imitation or offline reinforcement learning.

REFERENCES

[1] O. Khatib, “A unified approach for motion and force control of robot
manipulators: The operational space formulation,” IEEE Journal on
Robotics and Automation, vol. 3, no. 1, pp. 43–53, 1987.

[2] D.-H. Park, H. Hoffmann, P. Pastor, and S. Schaal, “Movement repro-
duction and obstacle avoidance with dynamic movement primitives
and potential fields,” in Humanoids 2008-8th IEEE-RAS International
Conference on Humanoid Robots. IEEE, 2008, pp. 91–98.

[3] N. Hogan and D. Sternad, “Dynamic primitives of motor behavior,”
Biological cybernetics, vol. 106, no. 11, pp. 727–739, 2012.

[4] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: learning attractor models for motor
behaviors,” Neural computation, vol. 25, no. 2, pp. 328–373, 2013.

[5] A. Paraschos, C. Daniel, J. Peters, and G. Neumann, “Using proba-
bilistic movement primitives in robotics,” Autonomous Robots, vol. 42,
no. 3, pp. 529–551, 2018.

[6] N. D. Ratliff, J. Issac, D. Kappler, S. Birchfield, and D. Fox, “Rie-
mannian motion policies,” arXiv preprint arXiv:1801.02854, 2018.

[7] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith,
C. M. Dellin, J. A. Bagnell, and S. S. Srinivasa, “Chomp: Covariant
hamiltonian optimization for motion planning,” The International
Journal of Robotics Research, vol. 32, no. 9-10, pp. 1164–1193, 2013.

[8] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“Stomp: Stochastic trajectory optimization for motion planning,” in
2011 IEEE International Conference on Robotics and Automation,
2011, pp. 4569–4574.

[9] A. Lambert, A. T. Le, J. Urain, G. Chalvatzaki, B. Boots, and J. Peters,
“Learning implicit priors for motion optimization,” arXiv preprint
arXiv:2204.05369, 2022.

[10] S. M. Khansari-Zadeh and A. Billard, “Learning stable nonlinear
dynamical systems with gaussian mixture models,” IEEE Transactions
on Robotics, vol. 27, no. 5, pp. 943–957, 2011.

[11] C.-A. Cheng, M. Mukadam, J. Issac, S. Birchfield, D. Fox, B. Boots,
and N. Ratliff, “Rmpflow: A computational graph for automatic motion
policy generation,” in International Workshop on the Algorithmic
Foundations of Robotics. Springer, 2018, pp. 441–457.

[12] M. Xie, K. Van Wyk, A. Li, M. A. Rana, Q. Wan, D. Fox, B. Boots,
and N. Ratliff, “Geometric fabrics for the acceleration-based design
of robotic motion,” arXiv preprint arXiv:2010.14750, 2020.

[13] N. D. Ratliff, K. Van Wyk, M. Xie, A. Li, and M. A. Rana,
“Generalized nonlinear and finsler geometry for robotics,” in 2021
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2021, pp. 10 206–10 212.

[14] K. Van Wyk, M. Xie, A. Li, M. A. Rana, B. Babich, B. Peele, Q. Wan,
I. Akinola, B. Sundaralingam, D. Fox, et al., “Geometric fabrics:
Generalizing classical mechanics to capture the physics of behavior,”
IEEE Robotics and Automation Letters, 2022.

[15] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[16] S. LAVALLE, “Rapidly-exploring random trees: A new tool for path
planning,” Computer Science Dept. Oct., vol. 98, no. 11, 1998.

[17] S. M. LaValle, Planning algorithms. Cambridge university press,
2006.

[18] T. Löw, T. Bandyopadhyay, J. Williams, and P. V. Borges, “Prompt:
Probabilistic motion primitives based trajectory planning.” in Robotics:
Science and Systems, 2021.

[19] M. Mukadam, J. Dong, X. Yan, F. Dellaert, and B. Boots, “Continuous-
time gaussian process motion planning via probabilistic inference,”
The International Journal of Robotics Research, vol. 37, no. 11, pp.
1319–1340, 2018.

[20] M. Kobilarov, “Cross-entropy motion planning,” The International
Journal of Robotics Research, vol. 31, no. 7, pp. 855–871, 2012.

[21] C. Pinneri, S. Sawant, S. Blaes, J. Achterhold, J. Stueckler, M. Rolinek,
and G. Martius, “Sample-efficient cross-entropy method for real-time
planning,” in Proceedings of the 2020 Conference on Robot Learning,
vol. 155. PMLR, 2021, pp. 1049–1065.

[22] M. Bhardwaj, B. Sundaralingam, A. Mousavian, N. D. Ratliff, D. Fox,
F. Ramos, and B. Boots, “Storm: An integrated framework for fast
joint-space model-predictive control for reactive manipulation,” in
Proceedings of the 5th Conference on Robot Learning, vol. 164.
PMLR, 2022, pp. 750–759.

[23] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots,
and E. A. Theodorou, “Information theoretic mpc for model-based
reinforcement learning,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2017, pp. 1714–1721.

[24] A. Lambert, A. Fishman, D. Fox, B. Boots, and F. Ramos, “Stein vari-
ational model predictive control,” arXiv preprint arXiv:2011.07641,
2020.

[25] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in Autonomous robot vehicles. Springer, 1986, pp. 396–404.

[26] S. Calinon, “Robot learning with task-parameterized generative mod-
els,” in Robotics Research. Springer, 2018, pp. 111–126.

[27] M. Toussaint, “Robot trajectory optimization using approximate infer-
ence,” in Proceedings of the 26th annual international conference on
machine learning, 2009, pp. 1049–1056.

[28] S. Levine, “Reinforcement learning and control as probabilistic infer-
ence: Tutorial and review,” arXiv preprint arXiv:1805.00909, 2018.

[29] V. Tresp, “A Bayesian Committee Machine,” Neural Computation,
vol. 12, no. 11, pp. 2719–2741, 2000.

[30] G. E. Hinton, “Training products of experts by minimizing contrastive
divergence,” Neural computation, vol. 14, no. 8, pp. 1771–1800, 2002.

[31] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical planning in the
now,” in Workshops at the Twenty-Fourth AAAI Conference on Artifi-
cial Intelligence, 2010.

[32] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer,” in 2014 IEEE international conference
on robotics and automation (ICRA). IEEE, 2014, pp. 639–646.

[33] S. Jauhri, J. Peters, and G. Chalvatzaki, “Robot learning of mobile
manipulation with reachability behavior priors,” IEEE Robotics and
Automation Letters, vol. 7, no. 3, pp. 8399–8406, 2022.

[34] K. Pertsch, O. Rybkin, F. Ebert, S. Zhou, D. Jayaraman, C. Finn,
and S. Levine, “Long-horizon visual planning with goal-conditioned
hierarchical predictors,” Advances in Neural Information Processing
Systems, vol. 33, pp. 17 321–17 333, 2020.

[35] S. Bahl, M. Mukadam, A. Gupta, and D. Pathak, “Neural dynamic
policies for end-to-end sensorimotor learning,” Advances in Neural
Information Processing Systems, vol. 33, pp. 5058–5069, 2020.

[36] S. Bahl, A. Gupta, and D. Pathak, “Hierarchical neural dynamic
policies,” in Robotics: Science and Systems, 2021.

[37] C. Daniel, G. Neumann, and J. Peters, “Hierarchical relative entropy
policy search,” in Artificial Intelligence and Statistics. PMLR, 2012,
pp. 273–281.

[38] O. Kroemer, C. Daniel, G. Neumann, H. Van Hoof, and J. Peters, “To-
wards learning hierarchical skills for multi-phase manipulation tasks,”
in 2015 IEEE international conference on robotics and automation
(ICRA). IEEE, 2015, pp. 1503–1510.

[39] F. End, R. Akrour, J. Peters, and G. Neumann, “Layered direct policy
search for learning hierarchical skills,” in 2017 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2017, pp.
6442–6448.

[40] O. Celik, D. Zhou, G. Li, P. Becker, and G. Neumann, “Specializing
versatile skill libraries using local mixture of experts,” in Conference
on Robot Learning. PMLR, 2022, pp. 1423–1433.

[41] R. Akrour, D. Tateo, and J. Peters, “Continuous action reinforcement
learning from a mixture of interpretable experts,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2021.

[42] M. Zaki, A. Mohan, A. Gopalan, and S. Mannor, “Actor-critic based
improper reinforcement learning,” in Proceedings of the 39th Interna-
tional Conference on Machine Learning, vol. 162. PMLR, 2022, pp.
25 867–25 919.

[43] J. Urain, A. Li, P. Liu, C. D’Eramo, and J. Peters, “Composable energy
policies for reactive motion generation and reinforcement learning,”
arXiv preprint arXiv:2105.04962, 2021.

[44] A. Li, C.-A. Cheng, M. A. Rana, M. Xie, K. Van Wyk, N. Ratliff,
and B. Boots, “Rmp2: A structured composable policy class for robot
learning,” arXiv preprint arXiv:2103.05922, 2021.

[45] M. Mukadam, C.-A. Cheng, D. Fox, B. Boots, and N. Ratliff, “Rie-
mannian motion policy fusion through learnable lyapunov function
reshaping,” in Conference on robot learning. PMLR, 2020, pp. 204–
219.

[46] J. Nakanishi, R. Cory, M. Mistry, J. Peters, and S. Schaal, “Oper-
ational space control: A theoretical and empirical comparison,” The
International Journal of Robotics Research, vol. 27, no. 6, pp. 737–
757, 2008.

[47] M. Toussaint and C. Goerick, “A bayesian view on motor control and
planning.” From Motor Learning to Interaction Learning in Robots,
vol. 264, pp. 227–252, 2010.

[48] S. Calinon, D. Bruno, and D. G. Caldwell, “A task-parameterized
probabilistic model with minimal intervention control,” in 2014 IEEE
International Conference on Robotics and Automation (ICRA), 2014,
pp. 3339–3344.

[49] T. Luksch, M. Gienger, M. Mühlig, and T. Yoshiike, “Adaptive
movement sequences and predictive decisions based on hierarchical
dynamical systems,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2012, pp. 2082–2088.

[50] M. Saveriano, F. Franzel, and D. Lee, “Merging position and orienta-
tion motion primitives,” in 2019 International Conference on Robotics
and Automation (ICRA), 2019, pp. 7041–7047.

[51] Y. Cao and D. J. Fleet, “Generalized product of experts for automatic
and principled fusion of gaussian process predictions,” arXiv preprint
arXiv:1410.7827, 2014.

[52] ——, “Transductive log opinion pool of gaussian process experts,”
arXiv preprint arXiv:1511.07551, 2015.

[53] M. Deisenroth and J. W. Ng, “Distributed gaussian processes,” in Pro-
ceedings of the 32nd International Conference on Machine Learning,
vol. 37. PMLR, 2015, pp. 1481–1490.

[54] H. Liu, J. Cai, Y. Wang, and Y. S. Ong, “Generalized robust Bayesian
committee machine for large-scale Gaussian process regression,” in
Proceedings of the 35th International Conference on Machine Learn-
ing, vol. 80. PMLR, 2018, pp. 3131–3140.

[55] S. Cohen, R. Mbuvha, T. Marwala, and M. Deisenroth, “Healing
products of Gaussian process experts,” in Proceedings of the 37th
International Conference on Machine Learning, vol. 119. PMLR,
2020, pp. 2068–2077.

[56] N. Jaquier, Y. Zhou, J. Starke, and T. Asfour, “Learning to sequence
and blend robot skills via differentiable optimization,” IEEE Robotics
and Automation Letters, vol. 7, no. 3, pp. 8431–8438, 2022.

[57] E. Pignat, J. Silvério, and S. Calinon, “Learning from demonstration
using products of experts: Applications to manipulation and task pri-
oritization,” The International Journal of Robotics Research, vol. 41,
no. 2, pp. 163–188, 2022.

[58] M. Botvinick and M. Toussaint, “Planning as inference,” Trends in
cognitive sciences, vol. 16, no. 10, pp. 485–488, 2012.

[59] K. Rawlik, M. Toussaint, and S. Vijayakumar, “On stochastic optimal
control and reinforcement learning by approximate inference,” Pro-
ceedings of Robotics: Science and Systems VIII, 2012.

[60] M. J. Beal, Variational algorithms for approximate Bayesian inference.
University of London, University College London (United Kingdom),
2003.

[61] D. G. Tzikas, A. C. Likas, and N. P. Galatsanos, “The variational
approximation for bayesian inference,” IEEE Signal Processing Mag-
azine, vol. 25, no. 6, pp. 131–146, 2008.

[62] J. Peters, K. Mulling, and Y. Altun, “Relative entropy policy search,”
in Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010.

[63] T. Minka, “Estimating a dirichlet distribution,” 2000.
[64] B. Ellenberger, “Pybullet gymperium,” https://github.com/benelot/

pybullet-gym, 2018–2019.

https://github.com/benelot/pybullet-gym
https://github.com/benelot/pybullet-gym

	Introduction
	RELATED WORK
	PRELIMINARIES
	Hierarchical Reactive Policy Blending
	EXPERIMENTS
	CONCLUSIONS
	References

