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Nonlinear Power Amplifier-Resilient Cell-Free
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Abstract—This letter proposes an analytical model to study
analyzes the effects of power amplifiers (PAs) on the downlink
of cell-free massive MIMO systems. We model signal trans-
mission incorporating nonlinear PA distortion and derive a
unified spectral efficiency (SE) expression applicable to arbitrary
precoding schemes. To combat PA-induced performance loss,
a tractable joint optimization approach, as well as its low-
complexity alternative, for user-centric clustering and max-min
power control is proposed based on a conservative approximation.

Index Terms—Cell-free massive MIMO, max-min power con-
trol, nonlinear power amplifier, user association, user fairness

I. Introduction

CELL-FREE (CF) massive multi-input multi-output (CF-
mMIMO) has garnered significant attention recently.

Nevertheless, power amplifiers (PAs)—critical components in
wireless transmitters—introduce nonlinear signal distortion,
particularly when operating near their saturation point. Ig-
noring this nonlinearity can lead to overestimated system
performance and cause bias into algorithm design.

To date, only a few existing works provide initial insights.
Mokhtari et al. [1] quantified sum-rate degradation under PA
distortion using maximum ratio (MR) precoding with equal
power allocation. Subsequent studies by Jadidi et al. [2] and
Khoueini et al. [3] investigated uplink and downlink impacts,
respectively, assuming single-antenna access points (APs) and
MR precoding. While these studies offer valuable theoretical
insights, several key dimensions remain unexplored, e.g.,
• Scalability limits: [1]–[3] use conventional CF config-

uration where all APs serve all users, neglecting the
scalability gain of user-centric dynamic clustering [4];

• Precoding generality constraint: [1]–[3] focus solely on
MR precoding, omitting state-of-the-art techniques such
as zero-forcing (ZF) and minimum mean square error
(MMSE) precoding [5].

To bridge these gaps, this letter presents a unified analytical
framework and a novel design for PA-resilient CF-mMIMO
systems. Specifically, we develop a downlink signal model
that captures nonlinear PA distortion, and derive a spec-
tral efficiency (SE) expression applicable to arbitrary linear
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precoding schemes. Our analysis reveals that the achievable
SE under PA-induced distortion critically depends on both
user-centric clustering and power control. Leveraging this
insight, we propose a tractable approximation approach, that
adaptively handles AP-user association and max–min fairness
transmission power to effectively suppress the performance
loss due to nonlinear PA distortion. The novelty of our work
lies in moving beyond prior studies that focus either on PA-
agnostic clustering [4], [6] and power optimization [5], [7] or
on PA distortion analysis in non-clustering systems [1]–[3].

The remainder of this letter is structured as follows. Section
II introduces the system model. Section III presents the
SE analysis under PA distortion. Section IV formulates the
joint optimization design. Section V analyzes computational
complexity and offers a low-complexity algorithm.

II. SystemModel

We consider a CF-mMIMO system comprising L APs, each
equipped with Na co-located antennas, distributed throughout
a coverage area to serve K users, where the total number
of antennas M = L × Na ≫ K. Each user equipment (UE)
is generally equipped with a single antenna. The sets of
indices for APs and users are denoted by L = {1, . . . , L}
and K = {1, . . . ,K}, respectively. The wireless channel from
AP l, ∀l ∈ L to UE k, ∀k ∈ K is denoted by hkl ∈ C

Na .
Adopting the block fading assumption, each coherent block—a
time-frequency span of τc symbols—maintains a quasi-static
channel response. In practical deployments, closely spaced an-
tennas at an AP exhibit spatial correlation due to their physical
proximity. Hence, each coherence block applies an indepen-
dent realization from correlated Rayleigh fading, defined as
hkl ∼ CN(0,Rkl), where Rkl = E[hklhH

kl] stands for the spatial
correlation matrix. Using linear MMSE estimation [5], the
estimated channel ĥkl follows a complex Gaussian distribution
ĥkl ∼ CN

(
0, puτpRklΓ

−1
kl Rkl

)
, where Γkl = puτp

∑
k′∈Pk

Rk′l +

σ2
z INa , and pu denotes the maximal transmit power of the UEs,
τp is the pilot sequence length, Pk is the set of users sharing
the same pilot as user k, and σ2

z indicates the variance of
thermal noise. The estimation error, defined as h̃kl = hkl − ĥkl,
is attributed to both noise and pilot contamination, following
CN(0,Θkl), where the associated error covariance matrix is
given by Θkl = E

[
h̃klh̃H

kl

]
= Rkl − puτpRklΓ

−1
kl Rkl.

III. Downlink Transmission

In the downlink, the data symbols intended for the K users
are assumed to be independent, zero-mean random variables
with unit variance. These symbols are jointly expressed as
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x = [x1, . . . , xK]T , satisfying E[xxH] = IK . Under the user-
centric dynamic clustering strategy, each AP maintains a set
of associated users, denoted by Kl for AP l, where Kl ⊆ K.
Each AP spatially multiplexes the symbols of its associated
users k ∈ Kl, producing

sl =
√

pa

∑
k∈K

ukl
√
ηklwklxk, (1)

where pa denotes the AP power constraint, ηkl is the power
coefficient for AP l to user k, ukl is the association indicator
for user-centric clustering, which equals 1 if user k is served
by AP l (i.e., k ∈ Kl), and 0 otherwise. The vector wkl ∈ C

Na

denotes the precoding vector employed by AP l for user k,
with the normalization constraint E

[
|wkl|

2
]
= 1.

A. Nonlinear Power Amplification

A common approach to model PA nonlinearity is the
Bussgang decomposition [8]. For the feeding signal sl, the
amplified transmit signal at AP l is given by

xl = G(sl) = αl
√

pa

∑
k∈K

ukl
√
ηklwklxk + dl, (2)

where:
• G(·): A general nonlinear PA function.
• αl is a complex linear gain, and αl = E

[
sH

l G(sl)
]
/E[∥sl∥

2].
• dl ∼ CN(0, σ2

dINa ) is complex Gaussian distortion, uncor-
related with sl (i.e., E[sH

l dl] = 0), where

σ2
d = βlE

[
∥sl∥

2
]
= βl pa

∑
k∈K

uklηkl (3)

stands for distortion variance, and βl represents distortion-
to-signal ratio.

Thus, the actual transmitted power is expressed by

E[∥xl∥
2] = E

[∥∥∥∥αl
√

pa

∑
k∈K

ukl
√
ηklwklxk + dl

∥∥∥∥2]
= |αl|

2 pa

∑
k∈K

uklηklE[∥wkl∥
2] + E[∥dl∥

2], (4)

applying the property of binary variables u2
kl = ukl. The

distortion power is E[∥dl∥
2] = tr

(
E[dldH

l ]
)
= tr

(
σ2

dINa

)
=

βl paNa
∑

k∈K uklηkl, since E[∥wkl∥
2] = 1. Now, (4) simplifies

to E[∥xl∥
2] =
(
|αl|

2 pa + βl paNa

)∑
k∈K uklηkl. To ensure the AP

respects its power budget, the transmitted power must satisfy
E[∥xl∥

2] ≤ pa, imposing the constraint:∑
k∈K

uklηkl ≤
1

|αl|
2 + βlNa

, ∀l ∈ L. (5)

B. Precoding Schemes

To ensure scalability, each AP l independently performs lo-
cal signal processing using its own channel estimates, denoted
by Ĥl =

[
ĥ1l, · · · , ĥKl

]
∈ CNa×K . The applicable precoding

schemes identified include:
1) MR: This simple approach, a.k.a. conjugate beamform-

ing, sets the precoding matrix at AP l as Vmr
l = Ĥ∗l to

maximize the desired signal strength.
2) ZF: Aiming to cancel multi-user interference, the ZF

precoder is the pseudo-inverse of Ĥl, given by Vzf
l =

Ĥ∗l (ĤT
l Ĥ∗l )−1 so as to meet ĤT

l Vzf
l = IK . This condition

holds exclusively when the channel matrix satisfies the

full-rank assumption, when Ĥl has full column rank,
requiring Na ≥ K.

3) Regularized ZF (RZF): In practice, due to scalability
requirement, APs may be equipped with fewer antennas
than users (Na < K), rendering ZF inapplicable. To
handle rank-deficient cases, regularized ZF is used, i.e.,
Vrzf

l = Ĥ∗l
(
ĤT

l Ĥ∗l + σ
2
z IK

)−1
, where the regularization

term σ2
z IK ensures matrix invertibility.

4) MMSE: The balance between interference suppression
and noise enhancement is achieved by minimizing the
mean squared error between the transmitted symbol
and the received signal. Its precoding matrix is given
by Vmmse

l =
(
puĤlElĤH

l + pu
∑

k∈K ηklΘkl + σ
2
z INa

)−1
Ĥl,

where El = diag(η1l, . . . , ηKl) is a diagonal matrix of
power coefficients.

Let vkl ∈ C
Na denote the k-th column of Vl ∈ C

Na×K , i.e.,
vkl = Vl(:, k). The required precoding vector wkl is obtained
by normalizing vkl as wkl =

vkl
∥vkl∥
, ∀l ∈ L,∀k ∈ K, ensuring it

satisfies the normalization condition E
[
∥wkl∥

2
]
= 1.

C. Performance Analysis

The received signal at user k is yk =
∑

l∈L hT
klxl + nk, where

noise nk ∼ CN(0, σ2
z ). The expression can be expanded as

yk =
√

pa

∑
l∈L

αl

∑
k′∈K

uk′l
√
ηk′lhT

klwk′lxk′ +
∑
l∈L

hT
kldl + nk. (6)

Massive MIMO systems typically operate in time-division
duplexing to avoid prohibitive downlink training overhead that
scales with M. Therefore, users typically do not know channel
estimates due to the absence of downlink pilots, making
coherent detection impractical. Instead, signal detection is per-
formed using large-scale fading decoding (LSFD), where the
statistical mean E[wH

klhkl]1, ∀k, l, serves as an approximation.
This statistical mismatch leads to an additional performance
degradation known as channel uncertainty error. To facilitate
the derivation, (6) is decomposed into

yk =
√

pa

∑
l∈L
αlukl

√
ηklE[hT

klwkl]xk︸                                    ︷︷                                    ︸
S1: desired signal over channel statistics

+
√

pa

∑
l∈L
αlukl

√
ηkl

(
hT

klwkl − E[hT
klwkl]

)
xk︸                                                    ︷︷                                                    ︸

J1: channel uncertainty error

(7)

+
√

pa

∑
l∈L

αl

∑
k′∈K\{k}

uk′l
√
ηk′lhT

klwk′lxk′︸                                         ︷︷                                         ︸
J2: inter−user inter f erence

+
∑

l∈L
hT

kldl︸       ︷︷       ︸
J3:PA distortion

+nk.

Proposition 1: The achievable SE of user k is Rk =

E
[
log2(1 + γk)

]
, where the expectation is over channel real-

1 Since the precoder wkl is a function of the channel estimate ĥkl and is
therefore uncorrelated with the channel estimation error h̃kl, it follows that
E[wH

klhkl] = E[wH
kl (ĥkl + h̃kl)] = E[wH

kl ĥkl]. This expectation can be derived
from channel statistics, see, e.g., [6, Corol. 3].
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izations and the instantaneous effective SINR is

γk =

∣∣∣∑l∈L αlukl
√
ηklE[hT

klwkl]
∣∣∣2

σ2
z/pa +

∑
k′∈K

(∑
l∈L

uk′lηk′l|αl|
2E[|hT

klwk′l|
2]
)

−
∑
l∈L

uklηkl|αl|
2
∣∣∣E[hT

klwkl]
∣∣∣2 +∑

l∈L

βl

∑
k′∈K

uk′lηk′l

 tr(Rkl)


(8)

Proof: Using the standard capacity lower bounds (cf. [6,
Prop. 3]), the SINR is given by γk =

|S1 |
2

E[|J1+J2+J3 |
2]+σ2

z
, where

the power gain of the desired signal is

|S1|
2 = pa

∣∣∣∣∑l∈L
αlukl

√
ηklE[hT

klwkl]
∣∣∣∣2 . (9)

Due to the independence among data symbols and signal
distortion, J1, J2, and J3 in (7) are uncorrelated. This implies
that E

[
|J1 +J2 +J3|

2
]
= E
[
|J1|

2
]
+ E
[
|J2|

2
]
+ E
[
|J3|

2
]
. We

now compute the variance of J1 (cf. [7, Th. 1]) as

E
[
|J1|

2
]
=pa

∑
l∈L

uklηkl|αl|
2E
[∣∣∣hT

klwkl − E[hT
klwkl]

∣∣∣2] (10)

=pa

∑
l∈L

uklηkl|αl|
2
(
E
[∣∣∣hT

klwkl

∣∣∣2] − ∣∣∣E[hT
klwkl]

∣∣∣2) .
Next, the variance of J2 is computed as

E
[
|J2|

2
]
=pa

∑
l∈L
|αl|

2
∑

k′∈K\{k}
uk′lηk′lE[|hT

klwk′l|
2]. (11)

Finally,

E
[
|J3|

2
]
=
∑
l∈L

σ2
dE[∥hkl∥

2] = pa

∑
l∈L

βl

∑
k′∈K

uk′lηk′l

 tr(Rkl).

(12)

Applying S1, J1, J2, and J3 yields (8).

IV. Joint Optimization of User Association andMax-Min
Power Allocation

Analyzing (3) and (8) reveal that user-centric AP asso-
ciation (ukl) and power control (ηkl) decide the variance of
PA distortion and the resultant SINR. To perserve uniformly
high-quality service under PA-induced distortion, we propose
jointly optimizing user association and max-min power allo-
cation. The problem formulation is

max
U, η

min
k∈K

γk (13)

s.t.


∑

k∈K
uklηkl ≤

1
|αl|

2 + βlNa
, ∀l ∈ L,

ηkl ≥ 0, ukl ∈ {0, 1}, ∀k ∈ K, l ∈ L,

where U = [ukl] is the binary association matrix, and η =
[ηkl] is the power allocation matrix. The numerator of γk is
a square of a sum of square roots, which is not convex in
η. To convexify this term, we introduce auxiliary variables
νkl, collectively denoted as ν = {νkl}k∈K,l∈L, and impose the
following constraint:

ν2kl ≤ ηkl, ∀k ∈ K, l ∈ L. (14)

It can be equivalently expressed as a convex rotated second-
order cone (SOC) constraint, given by∥∥∥[2νkl; 1 − ηkl

]∥∥∥ ≤ 1 + ηkl, ∀k ∈ K, l ∈ L. (15)

This standard reformulation is efficient for embedding our
problem within a convex SOC programming framework. Due
to the objective’s incentive to maximize power, (14) is a tight
relaxation, i.e., νkl =

√
ηkl at optimum. Then, the effective

received signal for user k can be denoted by

Ak(U, ν) =
∑

l∈L
αluklνklE[hT

klwkl], (16)

which becomes linear in νkl. Define the additive terms in the
denominator of (8) as

Bk(U, ν) =
∑

k′∈K

(∑
l∈L

uk′lν
2
k′l|αl|

2E
[
|hT

klwk′l|
2
])

(17)

+
∑

l∈L
βl

(∑
k′∈K

uk′lν
2
k′l

)
tr (Rkl) + σ2

z/pa,

and the subtracted term as Ck(U, ν) =
∑
l∈L

uklν
2
kl|αl|

2
∣∣∣E[hT

klwkl]
∣∣∣2.

Thus, the denominator becomes Bk(U, ν)−Ck(U, ν). Introduc-
ing a slack variable γt to represent the common SINR target,
the constraint γk ≥ γt is rewritten to

|Ak(U, ν)|2 ≥ γt (Bk(U, ν) − Ck(U, ν)) , ∀k ∈ K. (18)

The constraint in (18) is still non-convex due to the quadratic
term |Ak(U, ν)|2. To convexify it, we build a stricter constraint:(

ℜ{Ak(U, ν)}
)2
≥ γtBk(U, ν), ∀k ∈ K. (19)

Remark 1: Since |Ak(U, ν)| ≥ ℜ{Ak(U, ν)} and Ck(U, ν) ≥
0, it follows that

(
ℜ{Ak(U, ν)}

)2
≥ γtBk(U, ν) =⇒

|Ak(U, ν)|2 ≥ γt (Bk(U, ν) − Ck(U, ν)), i.e., (19) is a sufficient
(conservative) condition for (18). Thus feasibility under (19)
guarantees feasibility under (18).

Lemma 1: The convexification above guarantees a close
approximation because

|Ak(U, ν)| ≈ ℜ{Ak(U, ν)}, and Ck(U, ν) ≪ Bk(U, ν).

Proof: The first approximation follows from typical
precoder phase alignment (see Sec. III-B): precoder phases
are chosen to align with their channels, so hT

klwkl are real
— for example, with MR precoding one has hT

klwkl = ∥hkl∥.
Consequently the sum in (16) that defines Ak(U, ν) is com-
posed mainly of real-valued contributions, making |Ak(U, ν)| ≈
ℜ{Ak(U, ν)} a reasonable approximation. For the second rela-
tion note that E

[
|hT

klwkl|
2] − ∣∣∣E[hT

klwkl]
∣∣∣2 = Var(hT

klwkl) ≥ 0, so
E
[
|hT

klwkl|
2] ≥ ∣∣∣E[hT

klwkl]
∣∣∣2. In other words, terms collected in

Ck are typically small compared with the squared-mean terms
(collected in Bk). This separation becomes more pronounced
with extra noncoherent terms k′ , k, especially when K
is large. Hence, Ck(U, ν) ≪ Bk(U, ν) is generally satisfied.
Numerical results presented later verify this claim.

Since ℜ{Ak(U, ν)} is linear in νkl, we reformulate (19) into
an SOC form:

ℜ{Ak(U, ν)} ≥
√
γt∥bk(U, ν)∥, ∀k ∈ K, (20)

where bk(U, ν) is a vector that stacks the square roots of all
Bk(U, ν)’s terms, namely

bk(U, ν) = (21)[
σz√

pa
;
{
νk′l|αl|

√
uk′lE[|hT

klwk′l|
2]; νk′l

√
uk′lβl tr(Rkl)

}
k′∈K, l∈L

]
.
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Putting all these elements together, (13) is transformed into a
tractable optimization problem:

max
U, ν, η, γt

γt (22)

s.t.



ℜ{Ak(U, ν)} ≥
√
γt∥bk(U, ν)∥, ∀k ∈ K,

∥[ 2νkl; 1 − ηkl]∥ ≤ 1 + ηkl, ∀k ∈ K, l ∈ L,∑
k∈K

uklν
2
kl ≤

1
|αl|

2 + βlNa
, ∀l ∈ L,

νkl ≥ 0, ηkl ≥ 0, ukl ∈ {0, 1}, ∀k ∈ K, l ∈ L.

This problem can be solved by a bisection method on γt, as
depicted in Algorithm 1.

Algorithm 1: Joint Optimization Approach

Initialization:

t ← 0, γ(0)
low ← 0, γ(0)

high ← maxk∈K

(
pa|
∑

l∈L αlE[hT
klwkl]|

2

σ2
z

)
while γ(t)

high − γ
(t)
low > ϵ do

γt ←
1
2 (γ(t)

low + γ
(t)
high)

Convex Feasibility Check:

Find {U, ν}

s.t.



ℜ{Ak(U, ν)} ≥
√
γt∥bk(U, ν)∥, ∀k ∈ K,

∥[ 2νkl; 1 − ηkl]∥ ≤ 1 + ηkl, ∀k ∈ K, l ∈ L,∑
k∈K

uklν
2
kl ≤

1
|αl|

2 + βlNa
, ∀l ∈ L,

νkl ≥ 0, ukl ∈ {0, 1}, ∀k ∈ K, l ∈ L.

if feasible then
γ(t+1)

low ← γt, γ
(t+1)
high ← γ

(t)
high, U∗ ← U, ν∗ ← ν

end
else
γ(t+1)

low ← γ(t)
low, γ(t+1)

high ← γt

end
t ← t + 1

end
return {U∗, ν∗}

V. Computational Cost and Low-Complexity Alternative
The joint user association and power optimization (JUP)

constitutes a mixed-integer SOC program. It involves n = L×K
binary variables ukl, indicating user-AP associations, and up to
n continuous power variables ηkl, conditioned on the associated
ukl = 1. In the worst case, all 2n combinations of U must
be explored, resulting in an exponential complexity of O(2n).
Such exponential scaling may limit the applicability of this
approach to large-scale networks. To address this challenge,
we propose a two-stage decoupled strategy:

1) Fixed User Association: Each user is associated with
its geographically closest AP(s), thereby eliminating the
binary variables ukl from the optimization problem.

2) Max–Min Power Control: With U fixed, the problem
reduces to optimizing {ηkl} to maximize the minimum
achievable SE. Power is allocated only to active associ-
ations (i.e., where ukl = 1), so the effective number of
power variables is smaller than L × K.

TABLE I
Key Simulation Parameters

Parameter Value
Coverage Radius 1000 m (3GPP Microcell)
Path Loss Model −30.5 − 36.7 log10(d) (dB)
Shadow Fading N(0, 42) dB, Gaussian normal
Number of Active Users K = 4
AP Configuration 32 APs, each with 2 antennas
Power Constraints pu = 200 mW and pa = 100 mW
Noise Spectral Density −174 dBm/Hz
Noise Figure 9 dB
System Bandwidth 5 MHz
Antenna Array Type ULA with half-wavelength spacing
Spatial Correlation Model Gaussian scattering
Angular Spread (Std. Dev.) 30◦

Coherence Interval τc = 200 channel uses
Pilot Contamination τp = 2 (2 users per pilot)
PA Gain Coefficients 0.8 + 0.1i · N(0, 1), standard normal
PA Nonlinearity Factors 0.05 + 0.1 · U(0, 1), uniform distribution

For reference and upper-bound analysis, we compare against
the conventional max-min power control [7], which optimizes
all L × K power variables. This problem is a standard SOC
program with polynomial-time solvability using interior-point
methods, corresponding to the complexity on the order of
O(n3). By decoupling user association and power control, this
low-complexity alternative (named JUP-Lo) enables efficient
optimization for larger network deployments.

TABLE II
Complexity Comparison of Different Optimization Schemes

Algorithm JUP JUP-Lo Max-Min Optimization
Complexity O

(
2L×K

)
O
(
(L × K)3

)
O
(
(L × K)3

)

VI. Simulation Results and Discussions

We compare the proposed joint approach with four bench-
mark schemes: 1) CF configuration with equal power alloca-
tion (EPA); 2) CF with max-min power optimization; 3) User-
centric (UC) method where each AP serves its nearest user;
and 4) Ideal case without PA nonlinearity (i.e., αl = 1 and
βl = 0). Key simulation parameters are listed in Table I. The
performance under different precoding strategies—MR, RZF,
and MMSE—is illustrated in Figs. 1a, 1b, and 1c, respectively.
Each figure shows the cumulative distribution function (CDF)
of SE across users. Particular attention is given to the 95%-
likely SE (i.e., the 5th percentile of each CDF), which serves
as a key indicator of user fairness and cell-edge performance.
The mixed-integer SOC problem in (22) is implemented using
CVX [9] in conjunction with the Gurobi optimizer [10]. Prior
to optimization, the expectations in (22) are precomputed by
averaging over 100 channel realizations.

Key observations from the numerical results are as follows:
• PA Nonlinearity Impact: The results show that the 95%-

likely SE under nonlinear PA is very poor, i.e., 0.0024,
0.0025, and 0.0020 bps/Hz for MR, RZF, and MMSE,
respectively. In contrast, in the ideal case, the SEs reach
0.5635, 0.6542, and 0.6767 bps/Hz, respectively. This
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Fig. 1. The CDF of achievable spectral efficiency under MR, RZF, and MMSE precoding. User fairness (worst-case performance) is represented by the 5th
percentile of each curve. All curves use the same marker styles as in Fig. 1a.

wide performance gap and near-zero SE values under-
score the significant adverse impact of PA nonlinearity
and highlight the need for PA-resilient design.

• Baseline Limitations: The applied UC approach yields in-
ferior 95%-likely SE (MR: 0.0004, RZF: 0.0003, MMSE:
0.0003 bps/Hz), evident in the CDFs’ early plateaus.
While reducing fronthaul overhead, its exclusion of non-
nearest users creates fairness gaps. The conventional
max-min power optimization performs better, achieving
0.0289, 0.0956, and 0.0268 bps/Hz under MR, RZF, and
MMSE precoding, respectively. However, using only op-
timal power optimization remains inadequate—its curves
show limited rightward extension compared to ideal cases,
indicating its sensitivity to PA nonlinearity.

• Joint Optimization: During the simulation, we observe
that Ak is real for all three precoding schemes and
that in most cases Ck/Bk < 10%, thereby supporting
Lemma 1. Our proposed approach significantly enhances
performance (MR: 0.3514, RZF: 0.3602, MMSE: 0.3586
bps/Hz), visualized through Right-shifted CDF curves
approaching that of ideal PA. It remarkably outperforms
the max-min power optimization, achieving gains of
approximately 1115 %, 276 %, and 1238 % in 95%-likely
SE for MR, RZF, and MMSE precoding, respectively.

It is not feasible to evaluate complexity numerically as the
number of optimization iterations is not fixed. Therefore, we
use the average runtime as a metric to evaluate complexity.
On a computer equipped with an Intel i7-4790 processor and
32GB of memory, the average time costs are approximately
17.07, 7.6, and 7.1 seconds for JUP, max-min, and JUP-
Lo, respectively, as shown in Fig.2. While maintaining lower
complexity, the simplified approach still outperforms conven-
tional baselines. It achieves consistent 95%-likely performance
across all precoding schemes (MR: 0.0531, RZF: 0.0548,
MMSE: 0.0567 bps/Hz). These results represent a 2.1× im-
provement over max-min power control (0.0268 bps/Hz) and
a 178× enhancement compared to UC (0.0003 bps/Hz) under
MMSE precoding.

VII. Conclusion

This letter has addressed the challenge of investigated PA
nonlinearity in cell-free massive MIMO downlink systems.
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Fig. 2. Comparison of computational complexity.

We proposed a unified analytical framework that models PA-
induced distortion across arbitrary linear precoding schemes.
Then, a joint optimization approach of user association and
power control was approximated to suppress alleviate the per-
formance loss raised by PA nonlinearity. This joint approach,
as well as its low-complexity variant, remarkably outperforms
conventional hardware-agnostic baselines in terms of 95%-
likely performance, providing a PA-resilient CF solution.
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