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Abstract— In this paper, we propose a concept used federated
reinforcement learning (FRL) framework designed to facilitate
the transfer of learned robot skills, such as peg-in-hole insertion
tasks. This framework enables new robots to acquire task-
specific skills through a shared global model while maintaining
the privacy of their sensors and environmental data. We
introduce a novel FRL framework to overcome the challenges
associated with skill transfer in robotic systems.

I. INTRODUCTION

Automation technology is undergoing a transformative
evolution, propelled by the integration of artificial intelli-
gence (AI) to increase efficiency, reliability, and adaptability
in robotic applications [1]. Among the key advancements,
reinforcement learning (RL) has become a foundation, em-
powering robots to explore and interact with their environ-
ments for optimal decision-making. As illustrated in Figure
1, RL enables robots to learn interaction skills, such as
force and motion control, enhancing adaptability in dynamic
settings. Concurrently, federated learning (FL) is redefining
collaborative learning paradigms by facilitating decentralized
learning across distributed systems. This approach eliminates
the need to centralize raw data, ensuring data privacy and
scalability [4].

FL offers a promising solution to uphold privacy while
enhancing collaboration between partners. Recent studies [4],
[5] highlight how FL accelerates innovation and efficiency by
enabling distributed learning without compromising sensitive
data in variant applications, which is critical advancement
for modern industrial environments. [6] show that FL can
manage the heterogeneity in shared production environments.
However, FRL combines the strengths of RL and FL, cre-
ating a framework where distributed data enhances learning
models without data centralization. As detailed in the work
[3], FRL not only improves robustness but also reduces
training times, making it a sustainable as transformative
tool for complex robotic tasks. Applications of FRL span
diverse domains, including mobile and serial robotics, as
demonstrated in [7]–[11]. These innovations are driving
intelligent automation systems toward greater adaptability
and efficiency.
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Fig. 1. The RL diagram shows the learning process of robot interaction
skills with force and motion control which are denoted as u(Fm(t) and
u(x(t)) respectively .

Transferring skills in robotics remains a significant chal-
lenge, particularly in ensuring precision and adaptability in
dynamic environments for different robots. Large interaction
with environment along with prolonged training times further
complicate the process. Recent advancements leverage global
pre-trained models from natural language processing (NLP)
and vision systems [2]. These models serve as backbones
for numerous applications, enabling the reuse of standardized
datasets across multiple robots, tasks, and environments, thus
circumventing the need for task-specific training.

II. METHODOLOGY

We propose a decentralized approach applying FRL
method, where each robot acts as an individual client in the
FRL system, depicted in 2. The global model while aggre-
gating its local models can achieve seamless collaboration
between robot tasks, regardless of varying dynamic and kine-
matic configurations. However, when more clients join the
FRL system, it can adapt the increased computational loads
without performance degradation. This scalability is vital for
industrial scenarios where numerous robots operate together,
enabling real-time learning and adaptation. As shown in
Figure 1, the RL policy governs the motion trajectory as
well as the parameters of the force and motion controllers.
The position control command is defined as follows

u(t) = a(t) + S(Kx
pxe +Kx

d ẋe)
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Fig. 2. Illustration of the FRL framework for sharing and transferring
robotic skills across distributed systems.

where a(t) denotes to the policy position action, u(t)
refers to the control command while the parameters
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controllers [14]. The term S is a selection matrix that
determines the direction in Cartesian space in which either
position or force control can respond [13]. The total reward
function is defined as

r(t) = rsparse(t) + rdense(t). (2)

The first term of the reward function (long-term reward) is
formulated as

rsparse(t) =

 100 Task completed
−5 collision occurance
−5 reaching max. num of steps

(3)

and the rdense(t) (short-time reward) is computed as the
summation of the position error distance and the force
error relative to the defined goal, i.e. α1 ∥xg − xm∥2 +
α2 ∥Fg − Fm∥2, where ∥.∥2 denotes to the Euclidean norm
and each of reward component is weighted via αi. At
each episode, the total reward is designed to balance short-
term feedback with long-term outcomes, whether the task is
successfully completed or not.

III. PROPOSAL

The idea is to demonstrate the FRL on a simulated
benchmark task using MuJoCo [12]. The experiment will
involve two robots, UR5e and Franka Emika Panda, per-
forming a peg-in-hole insertion task. These robots differ in
their kinematics and dynamics configuration. The proposed

demonstration will help us to evaluate the collaborative
learning, where robots refine hybrid force and motion control
through a shared FRL model, leveraging collective expe-
rience while maintaining data privacy. This decentralized
learning approach will not only allow each robot to efficiently
acquire the necessary skills but also ensure that new robots
joining later can immediately access and build upon the latest
learned policy. The experiment can be further extended by
integrating a real UR5e into the FRL structure, demonstrating
its capability to efficiently transfer robotic skills for real-
world applications.

IV. CONCLUSION

This work proposes a FRL framework to enhance robotic
skill acquisition by integrating RL and FL. The approach
aims to address challenges in skill transfer, training effi-
ciency, and policy generalization across robots with different
kinematic and dynamic configurations while preserving data
privacy. To evaluate this concept, we propose a simulated
peg-in-hole insertion task involving UR5e and Franka Emika
Panda robots, with potential future extensions to real-world
applications. If successful, FRL could enable scalable, decen-
tralized robotic learning, paving the way for more efficient
and adaptable automation in Industry 4.0. Future work will
focus on optimizing computational efficiency, expanding task
scope, and validating the framework in real-world deploy-
ments.

V. ACKNOWLEDGEMENTS

This work was funded by the Carl Zeiss Stiftung, Germany
under the Sustainable Embedded AI project (P2021-02-009).

REFERENCES

[1] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learn-
ing: An Introduction. A Bradford Book, Cambridge, MA, USA.

[2] O’Neill, Abby, et al. ”Open x-embodiment: Robotic learning datasets
and rt-x models: Open x-embodiment collaboration 0.” 2024 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2024.

[3] Qi, Jiaju; Zhou, Qihao; Lei, Lei; Zheng, Kan (2021): Federated
reinforcement learning: techniques, applications, and open challenges.
In IR.

[4] Hegiste, Vinit; Legler, Tatjana; Ruskowski, Martin (Eds.): Application
of Federated Machine Learning in Manufacturing.

[5] V. Hegiste, T. Legler, K. Fridman and M. Ruskowski, ”Federated
Object Detection for Quality Inspection in Shared Production,” 2023
Eighth International Conference on Fog and Mobile Edge Computing
(FMEC), Tartu, Estonia, 2023, pp. 151-158.

[6] Legler, Tatjana, et al. ”Addressing Heterogeneity in Federated Learn-
ing: Challenges and Solutions for a Shared Production Environment.”
CoRR (2024).

[7] Liang, Xinle, et al. ”Federated transfer reinforcement learning for au-
tonomous driving.” Federated and Transfer Learning. Cham: Springer
International Publishing, 2022. 357-371.

[8] Nair, Jayprakash S., et al. ”On decentralizing federated reinforcement
learning in multi-robot scenarios.” 2022 7th South-East Europe Design
Automation, Computer Engineering, Computer Networks and Social
Media Conference (SEEDA-CECNSM). IEEE, 2022.

[9] Shivkumar, S., and AA Nippun Kumaar. ”Manipulator Control using
Federated Deep Reinforcement Learning.” 2024 IEEE International
Conference on Electronics, Computing and Communication Technolo-
gies (CONECCT). IEEE, 2024.

[10] Wang, Yue, Shida Zhong, and Tao Yuan. ”Grasp Control Method for
Robotic Manipulator Based on Federated Reinforcement Learning.”
2024 7th International Conference on Advanced Algorithms and
Control Engineering (ICAACE). IEEE, 2024.



[11] Yuan, Zhenyuan, Siyuan Xu, and Minghui Zhu. ”Federated reinforce-
ment learning for robot motion planning with zero-shot generaliza-
tion.” Automatica 166 (2024): 111709.

[12] Todorov, Emanuel, Tom Erez, and Yuval Tassa. ”Mujoco: A physics
engine for model-based control.” 2012 IEEE/RSJ international confer-
ence on intelligent robots and systems. IEEE, 2012.

[13] Ortenzi, Valerio, et al. ”Hybrid motion/force control: a review.”
Advanced Robotics 31.19-20 (2017): 1102-1113.

[14] Beltran-Hernandez, Cristian C., et al. ”Variable compliance control
for robotic peg-in-hole assembly: A deep-reinforcement-learning ap-
proach.” Applied Sciences 10.19 (2020): 6923.


