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Abstract—Unexploded ordnance (UXO) and discarded muni-
tions in coastal waters pose serious environmental and safety
risks. Effective explosive ordnance disposal (EOD) relies on
accurate detection and characterization of UXO, often performed
with multibeam echosounder (MBES) surveys. In practice, how-
ever, MBES data are corrupted by outliers stemming from sen-
sor errors, environmental conditions, and acoustic interference.
Machine-learning solutions demand large volumes of precisely
labeled training data, but such labels are costly and time-
consuming to obtain. To overcome these challenges, we present
BLENDgänger, a procedural data-generation framework built on
the Blender platform. BLENDgänger synthesizes realistic MBES
bathymetric point clouds with configurable noise profiles and
ground-truth annotations, enabling the rapid assembly of large-
scale datasets for both semantic segmentation and 3D object
detection of underwater ordnance. We demonstrate that models
trained exclusively on BLENDgänger data achieve strong perfor-
mance when evaluated on independent ex-situ MBES measure-
ments. These results show that synthetic datasets can effectively
bootstrap machine-learning workflows for UXO perception and
inspection, reducing reliance on laborious manual annotation.

Index Terms—MBES sonar simulation, UXO perception, point
cloud segmentation, 3D object detection

I. INTRODUCTION

Coastal marine waters worldwide are burdened by contam-
ination from unexploded ordnance (UXO) and deliberately
discarded munitions [1], which may destabilize over time and
release toxic substances into the environment [2]. The removal
of these munitions, named explosive ordnance disposal (EOD),
is carried out by experts who first locate the UXO and
determine its condition. Artificial intelligence has recently
been applied to underwater sonar data, such as from multibeam
echosounders (MBES), to assist in the EOD process and to
reduce potential risks to EOD personnel [3]. MBES profiler
sensors represent an efficient and accurate technology for
acquiring bathymetry and backscatter measurements, but real-
world surveys often result in up to 25% percent outliers [4].
These outliers, caused by operator error, sensor malfunctions,
algorithmic limitations, harsh environmental conditions (e.g.,
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Fig. 1. Overview of the proposed BLENDgänger framework, which integrates
scene generation and MBES bathymetry simulation to produce UXO-focused
training datasets for perception models.

rough weather, air bubbles), and acoustic interference from
marine life or hydrothermal vents [5], degrade data quality
and must be rigorously filtered during post-processing. More-
over, machine-learning approaches typically require extensive
labeled datasets, the preparation of which involves labor-
intensive manual annotation.

We introduce BLENDgänger, a Blender-based framework
named after the German term Blindgänger (UXO), for the
procedural generation of synthetic MBES datasets to support
UXO perception. This framework, as shown in Fig. 1, is
composed of scene generation and MBES bathymetry simula-
tion and allows for the generation of labeled synthetic MBES
datasets for the UXO use case. Leveraging BLENDgänger,
we assemble a large-scale dataset to train machine learning
models for both UXO segmentation and 3D detection. We then
validate these models on an ex-situ dataset obtained from two
distinct Autonomous Underwater Vehicle (AUV) platforms,
with each AUV employing a different MBES sensor setup.
Together, these experiments confirm that BLENDgänger’s
synthetic datasets can robustly support machine-learning work-
flows for underwater UXO perception, and could be extended
in the future for other marine domain applications.

The main contributions of this work include:

• Generation of underwater scenes, including terrain, sen-
sor trajectory, debris, and UXO object placement and



randomization.
• A corpus of UXO mesh objects to be used in simulation,

created from 3D scans of real UXO objects.
• An interference noise modality model to mimic interfer-

ence artifacts in MBES bathymetry data.
• Evaluation of UXO segmentation and 3D detection on

real datasets, with the models being trained purely on
synthetic data.

• Upon publication, the source code for BLENDgänger,
including real dataset samples and simulation configura-
tions used in this work, will be made available online [6].

The remainder of this paper is organized as follows. Sec-
tion II reviews related work on UXO perception and MBES
simulation. Section III details the methodology underlying
the BLENDgänger framework, including scene generation and
MBES simulation. Section IV describes the datasets used
in this study, encompassing both real and simulated data.
Section V presents the experimental setup and results of the
evaluated perception models. Finally, Section VI discusses the
experimental results and potential future research directions.

II. RELATED WORKS

A. UXO Perception

While sonar imagery (e.g., side-scan or forward-looking
sonar) has previously been used in UXO detection, a growing
body of research explores using MBES point clouds and
bathymetric grids for object perception. Unlike intensity-
based sonar imagery, MBES profilers provide 3D depth mea-
surements that enable shape- and topology-based detection.
In [7], a supervised machine learning model was trained using
terrain derivatives such as slope and roughness obtained from
MBES data. This model was used to distinguish potential
UXO candidates from natural clutter in gridded depth data.
Similarly, [3] used a UNet-style CNN to segment MBES
bathymetric grids into UXO vs. background, showing that
elevation-only input can be sufficient for initial UXO detection
in seabeds. These geometry-based methods are more robust to
reflectivity variations and offer geospatial accuracy, making
them particularly useful for guiding autonomous inspection
tasks.

Although still emerging, there is a growing interest in
directly applying 3D point-based neural networks [8]–[12]
to MBES bathymetric point clouds for underwater object
detection. However, research in this area remains relatively
limited. Himri et al. [13] conducted one of the early studies on
underwater point cloud recognition by evaluating seven global
descriptors from the Point Cloud Library (PCL) [14], exam-
ining their performance under different conditions including
partial and global views, resolution levels, and added noise.
Their findings showed that descriptor performance improves
with global views and high-resolution data, but is significantly
impacted by noise. In follow-up work, the same group used
a local descriptor in combination with a Bayesian estimation
model to segment underwater pipe components, such as con-
nectors, valves, elbows, and R-Tee joints, from uncolored point

clouds acquired by a laser scanner mounted on an AUV. Their
best performance was achieved using the Clustered Viewpoint
Feature Histogram (CVFH) descriptor [15].

Other studies have explored learning-based approaches.
For instance, Martin et al. [16] collected RGB-colored point
clouds using a binocular camera and trained the PointNet
network [12] to segment pipes and valves. Similarly, Wang
et al. [17] generated point clouds from stereo images and
applied the Yolo V3 model [18] for object detection in optical
images, projecting detections onto the point clouds to assist
segmentation. Hu et al. [19] proposed a system combining
laser scanning and binocular imaging to detect underwater
pipeline systems. Their approach demonstrated high accuracy
in extracting pipeline points and keypoint estimation using
high-density laser-acquired point clouds, focusing specifically
on pipeline identification.

Another study using the BV5000 3D acoustic sensor ex-
plored underwater detection of abandoned tires through 2D
and 3D deep learning approaches. Pre-processed point clouds
were transformed into bird’s eye view images for 2D detec-
tion using Faster R-CNN and YOLOv3, and segmented for
3D classification with PointNet and PointConv. While both
methods achieved high accuracy in detecting and classifying
tires, the 3D point clouds used were extremely dense; similar
in quality to LiDAR data; which may not reflect the lower
resolution and sparser nature of typical multibeam sonar point
clouds encountered in broader underwater applications.

All the aforementioned works rely on high-resolution sens-
ing technologies such as RGB-colored point clouds, laser
scanners, or 3D mechanical scanning sonars (MSS). While
effective in clear environments, these sensors are limited by
light-dependent operation, slow scanning rates, high costs, or
limited coverage, making them less practical for large-area
mapping. In contrast, MBES profilers offer wide coverage and
real-time acquisition but produces sparser and noisier data,
with greater challenges for object detection and classification.

Limited work addressing object recognition in sparse MBES
maps is represented by [20], where a SECOND [10] 3D object
detector was trained on MBES point clouds to automatically
detect boulders, illustrating how similar techniques could be
adapted for UXO detection. Another recent work [21] utilized
a transformation-equivariant model for detecting 14 different
underwater objects (including UXOs) in MBES data and
demonstrated successful performance on real-world MBES
scans. This model is able to localize objects regardless of
their orientation or position, a critical requirement in underwa-
ter environments where object poses can vary unpredictably.
In [22], segmentation of underwater pipeline MBES data is
performed by converting MBES point clouds into “waterfall”
images and 2D projections, and applying a UNet-based 2D
image segmentation approach. The performance of these 2D
projection-based methods was compared with that of a 3D
point-based segmentation approach, with results showing that
both approaches achieved comparable segmentation perfor-
mance.

In the absence of large annotated field datasets, synthetic



MBES point cloud simulations generated using physics-based
acoustic models can be used to train or pre-train point-based
networks, helping overcome data scarcity while allowing for
controlled variation in UXO type, orientation, and seabed
condition.

B. MBES Point Cloud Simulation

A persistent challenge in this domain is the limited availabil-
ity of large, annotated MBES point cloud datasets containing
real UXO. To address this, researchers are increasingly turning
to synthetic MBES simulation pipelines, where physics-based
acoustic models generate realistic sonar returns from virtual
seafloor scenes populated with UXO-like targets. These syn-
thetic datasets can be used to pre-train point-based models
and support controlled studies of object size, orientation,
burial state, and environmental clutter. This approach offers a
scalable path forward for training and benchmarking detection
models in the absence of real-world field data.

Synthetic point cloud generation is commonly supported by
simulation frameworks such as Gazebo [23], Helios++ [24],
and Isaac Sim [25], which use raycasting to sample points on
object surfaces within virtual 3D environments. These tools are
widely used in robotics and perception research, as they can
generate dense geometric point clouds along with semantic
labels (e.g., object classes or instance IDs) for supervised
learning tasks. However, while these point clouds are useful for
general vision or LiDAR-based applications, they lack acoustic
realism. Specifically, they do not simulate the physical behav-
ior of sonar, such as beam directivity, backscatter intensity,
reverberation, or multipath effects. As a result, the generated
data does not reflect the distortions, intensity variations, or
occlusion patterns inherent in real sonar returns, limiting their
suitability for training or evaluating models in underwater
acoustic sensing contexts.

Several open-source simulators now incorporate high-
fidelity acoustic modeling to better replicate the physics of
underwater sonar sensing. HoloOcean, developed on Unreal
Engine, models profiling and imaging sonar using GPU-
accelerated ray tracing and sonar equations that account for
beam directivity, speckle noise, and multipath effects. It sup-
ports Python scripting, ROS integration, and custom 3D envi-
ronments, making it one of the most versatile and physically
grounded sonar simulators for underwater robotics [26].

OceanSim, a recent open-source framework based on
NVIDIA’s Omniverse and Isaac Sim, provides multi-sensor
simulation, including visual and acoustic sensors, through
physically-based rendering and sonar-inspired ray tracing.
It outputs both synthetic sonar imagery and point clouds,
with a focus on realism and compatibility with modern
ML pipelines [27]. For ROS/Gazebo-based workflows, the
DAVE multibeam plugin offers a CUDA-accelerated acoustic
model, simulating echo intensities using point-scatter physics
and beam noise. This plugin produces raw A-scan data that
can be post-processed into sonar images or structured point
clouds [28].

In contrast, tools like Stonefish provide more lightweight
alternatives. While these simulators offer limited physical
modeling, such as single-ray sonar beams or analytic echo
generation, they are well-suited for rapid dataset generation
or signal processing experiments [29], [30]. A particularly
flexible tool for synthetic dataset creation is BLAINDER, a
Blender-based framework designed to render labeled sonar
and vision data in underwater scenes [31]. While BLAINDER
lacks advanced acoustic physics features like beam pattern or
multipath simulation, its integration with Blender enables users
to fully generate, customize, and simulate underwater scenes
and MBES point clouds entirely within a single tool. This
self-contained approach streamlines the creation of annotated
datasets for perception and AI tasks, including object detection
and segmentation.

While these existing acoustic simulation tools have ad-
vanced the state of synthetic dataset creation for underwa-
ter perception tasks, most either lack the physical fidelity
needed for MBES bathymetry data or do not provide seamless
scene generation and annotation within a unified pipeline.
BLENDgänger bridges this gap by combining a Blender-
based procedural modeling workflow with a customizable
BLAINDER-based MBES simulation, enabling the rapid cre-
ation of large, annotated datasets that realistically capture
UXO, debris, and terrain variability as well as interference
artifacts. This integrated approach not only supports machine
learning research in UXO perception, but also provides an
extensible platform for simulating a wide range of underwater
sensing scenarios.

III. METHODS

A. Scene Generation

Underwater environments are procedurally generated in
Blender, an open-source 3D graphics suite. The generation

Fig. 2. Top-down view of UXO object meshes and corresponding real-life
imagery. Left: meshes used in this work, from top to bottom: mortar shell,
mine, artillery shell, deformed artillery shell, and 500 lb aircraft bomb; right:
real-life images showing the rusted state of the corresponding UXO objects.



of simulated underwater scenes begins with the creation
of a high-resolution digital terrain model using the A.N.T.
Landscape tool. This tool provides an array of adjustable
parameters to control terrain noise and depth profiles, enabling
the synthesis of realistic seafloor topography. Once the terrain
is generated, a sensor trajectory is defined at a user-specified
height above the seabed, with the option to follow either
a straight path or a path containing randomized heading
deviations to mimic realistic survey motions. To further en-
hance scene realism, meshes representing small boulders are
stochastically distributed over the terrain, with user-controlled
parameters for boulder density and size. At this stage, user-
created meshes representing objects of interest can also be
inserted.

For this work, we include meshes derived from five real
UXO objects. The meshes, shown in Fig. 2, were created from
3D scans performed with an Einscan H2 handheld scanner.
The UXOs span a range of types, including a small 8 cm-
diameter mortar shell as well as a large 500 lb general-purpose
aircraft bomb (GP 500 LB MK3). Placement of UXOs in
the scene is accomplished by sampling random terrain loca-
tions near the sensor trajectory to ensure adequate visibility,
followed by the application of randomized orientations and
vertical offsets. This approach produces scenarios featuring
UXOs with varying degrees of coverage and exposure above
the seafloor.

B. MBES Point Cloud Simulation

Once the environment is established, synthetic MBES
bathymetry data is generated in the form of 3D point clouds
with per-point semantic labels using the BLAINDER add-
on [31]. BLAINDER utilizes the previously defined sensor
trajectory to iterate through discrete positions, casting rays
according to user-specified sensor parameters such as field
of view and the number of beams per swath. Each valid
ray–object intersection is recorded as a point in the simulated
point cloud. A semantic class label is assigned to the point
based on the corresponding object’s class as defined during
the scene generation.

The simulation provides precise control over additional
parameters, including water-column acoustic velocity profiles
and sensor noise characteristics. During raycasting, random
noise is introduced to each beam, modeled as a combination
of an offset and Gaussian noise along the direction of the
ray. While this approach sufficiently emulates ideal MBES
profiler operation, real-world MBES bathymetry datasets are
often contaminated by structured noise due to sources such as
operating machinery or side-lobe interference. Such artifacts
often exhibit distinctive patterns, for example arc-shaped dis-
tortions that adversely affect range measurements and degrade
the resulting point clouds.

To address this discrepancy, we extend BLAINDER’s
noise modeling capabilities with an interference noise
modality. This mechanism is controlled by two user-defined
parameters: interference_chance_per_swath and
interference_chance_per_beam. The parameter

interference_chance_per_swath specifies the
probability that a given MBES swath will exhibit interference,
while interference_chance_per_beam defines the
probability that an individual beam within an affected swath
is contaminated. If a beam is determined to be affected by
interference, its range measurement is perturbed by sampling
from a designated per-swath noise distribution; additionally,
the semantic class label for that point is set to “noise”. Fig. 3
illustrates simulated MBES point cloud data generated using

Fig. 3. Along-track view of a simulated MBES point cloud. Points affected
by the proposed interference noise modality are labeled and displayed in
blue, enabling development of models that learn to automatically reject such
artifacts. Displayed are additional labels for the classes of seabed (green),
boulders (yellow), and UXO (red).

(a)

(b)

Fig. 4. Example result of underwater scene generation (a) and associated
synthetic MBES bathymetry data (b) with labels corresponding to noise (blue),
seabed (green), boulders/debris (yellow), and UXO (red).



this interference noise modality.
This interference noise model is intentionally lightweight

and built on simplified assumptions, providing a practical
means to emulate noise artifacts observed in real-world data.
The parameters are configurable, enabling alignment with
empirically observed noise patterns. By explicitly labeling
interference artifacts, the model facilitates the development
and training of perception algorithms that can learn to automat-
ically detect and reject such noise during subsequent analysis.

Owing to the extensive parameterization of both environ-
ment creation and data-generation workflows, these processes
can be executed iteratively to yield large volumes of diverse
point clouds accompanied by corresponding ground-truth la-
bels. Fig. 4 illustrates a representative output of the procedural
environment generation and resulting labeled point cloud.

IV. DATA

A. Real Data

To validate perception models trained on synthetic data, we
collected real-world datasets in a controlled environment de-
signed to preserve essential environmental variables. Data ac-
quisition was performed using two distinct AUVs to assess the
generalizability of synthetic data produced by BLENDgänger
across platforms with differing characteristics. Specifically, we
deployed the DeepLeng AUV [32], equipped with a R2Sonic
2020 MBES, and the Cuttlefish AUV [33], equipped with a
Teledyne BlueView M1350 MBES. An overview of the MBES
configurations for each vehicle is provided in Table I. The
AUV’s onboard pose estimator was used for accurate data
georeferencing like any open-world mission.

To accurately replicate realistic terrain noise, the test site
featured a pebble-covered seabed, and both genuine UXO ob-
jects and incidental debris were placed within the environment.
Fig. 5 provides camera images of the setup and AUVs during
a data acquisition run. The resulting MBES scans, an example
of which is illustrated in Fig. 6, exhibit real-world noise and
target characteristics while maintaining the advantages of a
controlled setup with known ground truth.

From the collected data, six subsets were selected for
evaluation. Two datasets from the Cuttlefish platform capture
orbiting maneuvers around the test bed, while a third dataset
was acquired during a straight-line survey over the test area.
Three other datasets were obtained from DeepLeng performing
linear passes at varying speeds. For each dataset, each MBES
swath is transformed into a global frame by using inertial

TABLE I
MBES SENSOR COMPARISON FOR DEEPLENG AND CUTTLEFISH AUVS

DeepLeng Cuttlefish

MBES Sensor R2Sonic 2020 Teledyne BlueView M1350
Field of View 60◦x1◦ 45◦x1◦
Beam Width 1◦x1◦ 1◦x1◦

Number of Beams 256 256
Frequency 400 kHz 1.35 MHz
Max Range 200 m 30 m

navigation system (INS) positioning information, similar to a
real survey process. All datasets were manually annotated with
segmentation labels and bounding boxes for use in evaluation
of perception models trained on synthetic data.

(a)

(b)

Fig. 5. Camera images of test bed setup and DeepLeng AUV (a) and Cuttlefish
AUV (b) during data collection.

Fig. 6. Example MBES point cloud obtained from the DeepLeng AUV, with
UXO and debris objects manually colored in red for visualization purposes.



B. Synthetic Data

A synthetic training dataset was generated using the pro-
posed BLENDgänger framework. The dataset comprises 1000
scenes, each covering an area of 20 m × 20 m, with multiple
instances of the 500 lb target UXO present in each scene.
Diverse environments were achieved by randomly sampling
sensor trajectories, terrain morphologies, and boulder dis-
tributions as described in Section III-A. The interference
noise parameters, interference_chance_per_swath
and interference_chance_per_beam, were set to 0.3
and 0.6, respectively, with the interference noise offsets uni-
formly sampled in the range of 2.5 m to 10 m. Sensor
trajectory altitudes were sampled uniformly between 4 m and
7 m above the seafloor. A configuration file containing all
parameters used for this dataset generation is available in the
accompanying code repository.

V. EXPERIMENTS AND RESULTS

The synthetic dataset was used to train models for two
perception tasks: 3D semantic segmentation and 3D object
detection, both targeting the identification and localization
of the 500 lb UXO. This particular UXO was selected as
the experimental focus due to its consistent and prominent
visibility across all real datasets, enabling reliable evaluation
and comparison of model performance.

A. 3D Semantic Segmentation

For 3D semantic segmentation, we implemented a sparse 3D
U-Net using the Minkowski Engine [8], tackling point-wise
classification into four categories: noise, seabed, debris, and
UXO. We adopted the Res16UNet18 architecture, in which
sparse 3D convolutions operate on voxelized point clouds with
a resolution of 0.05 m. In this architecture, “16” denotes the
base number of feature channels in the initial convolutional
layer, and “18” indicates a ResNet-18–like depth, incorporat-
ing residual blocks within the U-Net framework for effective
multi-scale feature learning.

Our synthetic dataset comprised 1,000 labeled point clouds,
randomly split into 950 for training and 50 for validation. The
network was trained from scratch using stochastic gradient
descent and categorical cross-entropy loss, with a batch size
of four point clouds. Data augmentation, such as center
cropping, random rotations, and translations, was applied to
improve generalization. Training proceeded for 25 epochs on
an NVIDIA GeForce RTX 3080 Ti GPU. Model performance
was evaluated using the Intersection over Union (IoU) metric,
achieving a mean IoU of 85.5 on the validation set. The
per-class IoU scores were 95.9 (noise), 98.4 (seabed), 87.9
(debris), and 60.0 (UXO).

The trained model was subsequently evaluated on the real
datasets as detailed in Section IV-A, with IoU metrics com-
puted separately for each platform to assess generalization
across varying systems and MBES sensors. The DeepLeng
dataset achieved a higher mean IoU of 0.475, compared to
0.336 for the Cuttlefish dataset. For the UXO class specif-
ically, the IoU was 0.763 on DeepLeng data and 0.150 on

Cuttlefish data. Complete per-class IoU scores for each dataset
are provided in Table II. Due to a high concentration of
noise in the Cuttlefish dataset, the ”debris” class was not
manually labeled and is therefore excluded from the Cut-
tlefish performance metrics. Example segmentation outputs
for both the DeepLeng and Cuttlefish datasets, together with
their ground truth counterparts, are displayed in Fig. 7 and
Fig. 8, respectively. By treating noise as an explicit class, the
network identifies spurious returns directly; these points can
then be discarded, streamlining downstream EOD workflows
and improving the fidelity of subsequent detection steps.

B. 3D Object Detection

For 3D detection, we adopted prior work of [21], which
introduced a transformation-equivariant model for detecting
various underwater objects in MBES data and demonstrated
successful performance on real-world MBES scans. This
model is able to localize objects regardless of their orientation
or position, a critical requirement in underwater environments
where object poses can vary unpredictably.

For the detection task, a subset of the dataset was used
to train the aforementioned model. Specifically, 100 point
clouds containing the 500 lbs UXO object were selected and
split into 80% for training and 20% for validation. Since the
transformation model is designed to learn generalizable object
features that remain consistent despite variations in viewpoint
or orientation, data augmentation was deemed unnecessary.

TABLE II
3D SEGMENTATION IOU METRICS PER AUV

IoU noise seabed debris UXO mIoU

DeepLeng 0.164 0.913 0.060 0.763 0.475
Cuttlefish 0.115 0.744 - 0.150 0.336

(a) (b)

(c) (d)

Fig. 7. Example segmentation result from the DeepLeng dataset. Manually
annotated ground truth is shown in (a) and (c), which are respectively along-
track and top-down views of the same data sample. The same across-track (b)
and top-down (d) views are shown for the 3D segmentation result. Colored
labels represent the classes of noise (blue), seabed (green), debris (yellow),
and UXO (red).



(a) (b)

(c) (d)

Fig. 8. Example segmentation result from the Cuttlefish dataset, where the
Cuttlefish is performing an orbiting maneuver. Manually annotated ground
truth is shown in (a) and (c), which are respectively along-track and top-down
views of the same data sample. The same across-track (b) and top-down (d)
views are shown for the 3D segmentation result. Colored labels represent the
classes of noise (blue), seabed (green), debris (yellow), and UXO (red). Debris
class is not present in the ground truth of this dataset, therefore any predicted
points belonging to ”debris” class are false positives.

The model was trained for 80 epochs with a batch size of 1
on an NVIDIA GeForce RTX 4070 Ti GPU. For performance
evaluation, the mean Average Precision (mAP) and recall
metrics, which are commonly employed in object detection
tasks, were used. The model achieved an mAP of 0.79 and a
recall of 0.89 on the validation set, indicating strong detection
performance.

Similar to the workflow used in the segmentation task,
the 3D detection model was evaluated on the six real-world
datasets described in IV-A. Because the model is designed
to detect the target object rather than classify background
points such as sea-floor structures or noise, an additional pre-
processing step was applied. Specifically, statistical outlier
filtering was performed to remove a significant portion of the
noise points from the point clouds prior to inference.

Using the same evaluation metrics as in the simulation
experiments, the 3D detection model achieved an average mAP
of 0.69 at an IoU threshold of 0.5 across the six datasets. When
evaluated on each platform dataset individually, the model
achieved perfect detection performance (mAP = 1.0) on all
three DeepLeng point clouds, accurately localizing the target
UXO. In contrast, its performance on the Cuttlefish datasets
was lower, with an average mAP of 0.375.

This performance drop can be attributed primarily to the
distinct motion trajectories used during two of the Cuttlefish
data acquisitions. These datasets employed an orbital scanning
motion, which introduced higher noise levels and significantly
altered the distribution and density of the captured points. This
form of noise was not well represented in the synthetic training
data, leading the model to produce several false positive
predictions and, consequently, a reduction in mAP.

Nevertheless, it is important to note that despite this de-
crease in mAP, the model successfully detected the target

Fig. 9. 3D detection results from evaluation on real data. (a), (b), and (c)
correspond to the DeepLeng dataset, while (d), (e), and (f) correspond to the
Cuttlefish dataset. The green and red bounding boxes correspond to the model’
prediction and the annotated groundtruth respectively. TP and FP cases are
highlighted in each prediction result.

UXO in all point clouds. Fig. 9 shows the results on all
evaluated pointclouds. This result highlights the robustness
of the detection model to previously unseen noise patterns
and its ability to generalize to real-world data, albeit with
a performance drop in more challenging scenarios. These
findings suggest that incorporating noise profiles that better
reflect real acquisition conditions into the training process
may further improve the model’s robustness and reduce false
positives.

VI. CONCLUSION

This work has detailed how BLENDgänger can be used to
generate synthetic MBES bathymetry datasets for the training
of UXO perception models. Our experiments demonstrate
that both 3D semantic segmentation and 3D object detection
models can achieve satisfactory performance when trained on
such synthetic data. However, the results also highlight the
importance of accurately emulating real-world noise condi-
tions within the simulation process. This becomes particularly
evident with the Cuttlefish datasets, where orbiting maneuvers
result in overlapping swaths and compounded noise artifacts.
These maneuvers create local regions of high point density
in the point cloud, a phenomenon not yet explicitly repli-
cated in our simulation framework, which currently models
more straightforward linear sensor trajectories. Nevertheless,
BLENDgänger is sufficiently flexible to incorporate such com-
plex maneuvers in future iterations, supporting more realistic
simulation of challenging survey scenarios.



While this study has focused on models trained using purely
bathymetric range measurements, incorporating backscatter
intensity could further enhance perception model performance.
Although BLAINDER supports backscatter simulation, realis-
tic intensity values require accurately mapped material prop-
erties. With access to labeled real-world datasets containing
backscatter information, BLAINDER’s intensity simulation
could be refined and augmented using empirical backscatter
signatures, improving the fidelity and applicability of the
synthetic data. This would be particularly useful for UXO
detection, as the distinct metallic backscatter responses of
UXO objects can help differentiate them from the surrounding
seabed.

The future scope of BLENDgänger extends beyond MBES
bathymetry simulation. Expanding the framework to include
other data types, such as underwater imagery or additional
sonar modalities would enable the development and evaluation
of multi-modal perception models that fuse complementary
sensor data. Such an approach could be especially beneficial
for UXO detection, as the strengths of some sensors may
compensate for weaknesses in others under varying envi-
ronmental conditions, such as low light, high turbidity, or
different burial depths. By facilitating multi-modal training,
BLENDgänger has the potential to assist in the development
of robust and generalizable perception systems for complex
underwater environments.

The BLAINDER-based MBES simulation presented in this
work, while effective for training purposes, can be further
enhanced through the use of more physically realistic acoustic
modeling. Owing to the modular design of BLENDgänger,
generated scenes can be easily exported for use in external
simulation engines such as ROS/Gazebo, Project DAVE, or
Isaac Sim. This flexibility enables the adoption of advanced,
high-fidelity acoustic models, supporting the creation of even
more realistic synthetic datasets for perception model devel-
opment.

The flexibility and extensibility of the BLENDgänger frame-
work open avenues for further research and application beyond
UXO detection. Potential future directions include adapting the
platform for tasks such as underwater infrastructure inspection,
habitat mapping, or other marine object detection challenges.
As synthetic datasets become more representative of real-
world complexities, the reliability, robustness and generaliz-
ability of machine learning models trained with such data will
continue to improve, advancing autonomous perception capa-
bilities in subsea environments. Ultimately, the advancement of
synthetic dataset generation tools like BLENDgänger can help
ensure that new machine learning-based detection methods are
both reliable and ready for real-world deployment. This will
not only enhance safety and reduce the risk of UXO-related
incidents but also lead to significant cost savings in surveying
and remediation, benefiting both governmental agencies and
commercial operators working in marine environments.
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heim, J. Greinert, and E. P. Achterberg, “Spread, behavior, and ecosys-
tem consequences of conventional munitions compounds in coastal
marine waters,” Frontiers in Marine Science, vol. 5, no. APR, 2018.

[2] A. J. Beck, M. Gledhill, U. Gräwe, M. Kampmeier, A. Eggert,
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