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Abstract. The Argo programme has transformed ocean monitoring, de-
ploying over 4,000 floats for climate modelling and ocean forecasting.
However, quality control remains a significant challenge as Real-Time
Quality Control often misses subtle issues, and Delayed-Mode Quality
Control is time-consuming, delaying validated datasets by over a year.
Erroneous profiles can distort climate analyses. This paper introduces
Hybrid Anomaly Detection - Quality Control (HAD-QC), a novel frame-
work combining machine learning with existing Argo QC rules to en-
hance accuracy and scalability. HAD-QC integrates an autoencoder for
unsupervised anomaly detection, a supervised ensemble classifier and 18
traditional Argo QC tests, with outputs fused via a weighting scheme.
Tested on 3,200 Argo float profiles across different ocean basins, HAD-
QC substantially improves anomaly finding, outperforming Real-Time
Quality Control significantly. It achieved an F1-score of 90.4%, an 87%
anomaly detection rate and 93% overall accuracy, overall a better perfor-
mance compared with current approach to Real-Time Quality Control.
HAD-QC is designed for compatibility with Argo Data Assembly Cen-
ter pipelines, offering interpretability and traceability of Quality Control
decisions, and is extensible to emerging Deep and Biogeochemical Argo
missions.
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1 Introduction

The Argo program has revolutionised global ocean monitoring over the past two
decades by deploying over 4,000 autonomous profiling floats that gather near
real-time measurements of temperature, salinity and pressure from the upper
2,000 meters of the ocean3. The resulting dataset serves as the foundation for
critical applications in climate modelling, ocean forecasting, and marine ecosys-
tem research [14, 8, 15]. As of 2023, Argo floats generate more than 12,000 profiles
per month, constituting the largest oceanographic data collection ever assembled.

However, quality control of this data remains a major challenge. Argo em-
ploys a two-step process: Real-Time Quality Control applies automated checks
soon after profile transmission, but often misses subtle issues, while Delayed-
Mode Quality Control involves detailed human review and validation, thus this
approach is time-consuming and frequently delays validated datasets often by
over a year[18, 4, 2]. These limitations carry real consequences. Erroneous Argo
profiles that evade detection could distort climate analyses, skew ocean mod-
els, and degrade seasonal predictions and carbon estimates. Moreover, as Argo
expands into biogeochemical observation and deep-ocean exploration, the vol-
ume and intricacy of readings will vastly exceed what people can manually val-
idate, necessitating scalable automated solutions [9]. In response, we present
Hybrid Anomaly Detection - Quality Control (HAD-QC), a novel framework
merging machine learning with existing Argo Quality Control (QC) rules to
strengthen accuracy and scalability in quality control. HAD-QC combines au-
toencoder anomaly detection trained on validated profiles, a supervised classifier
ensemble trained on human labels, and complete execution of 18 QC tests whose
outputs integrate with model results via a weighting scheme. These simple QC
rules establish threshold checks for global ranges, spikes, gradient consistency
and more. They help flagging profiles with physically dubious or suspicious mea-
surements. Testing on over 2000 profiles across various regions and platforms
demonstrated that HAD-QC substantially improves anomaly finding—including
better detection and fewer missed issues, compared with rule-based control alone.
As an accurate and transparent tool, HAD-QC offers a practical means of inte-
grating into real-time and delayed Argo data management. While prior work has
explored machine learning for Argo anomaly detection[21, 12], most approaches
lack a hybrid fusion of unsupervised, supervised and rule-based components, or
do not have evaluated models at an operational scale. HAD-QC addresses this
gap with a deployable, adaptable system grounded in Argo’s functional needs.
Through a fusion of these hybrid methods, the system can identify intricate,
non-obvious anomalies while still maintaining traceability to transgressed rules,
thereby achieving both higher accuracy and interpretability.

The paper is structured as follows, Section 2 provides related work, Section 3
introduces the HAD-QC Methodology followed by an evaluation of the system in
Section 4. Section 5 discusses HAD-QC’s future application prespective followed
by concluding remarks in Section 6.

3 https://argo.ucsd.edu
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2 Related Work

Recent years have seen growing interest in applying machine learning techniques
to tackle the pressing challenge of ocean data quality control within programs
like Argo [6, 14, 19]. As the volume and complexity of float data proliferate, with
additional insights from biogeochemical sensors, deeper deployments, and real-
time operational needs, conventional rule-based methods have proven too rigid
for anomaly identification of subtle, context-dependent, or complex anomalies
in Argo float data, not only gross outliers, but structures that may depend on
depth, or region, or season, or sensor drift, or on sensor- specific behaviors [9].

The Argo data quality control (QC) system is divided into two steps: the
real-time QC (RTQC) and the delayed mode QC (DMQC). Automated RTQC
is performed on a time scale of hours and is driven by a fixed set of rule-based
quality checks (e.g., range, spike, and gradient tests) to identify physically un-
realistic values [15]. These rules are effective for gross errors, but they have no
context and often are insensitive to more subtle anomalies, especially when there
are some complex or noisy measurement scenarios [1]. DMQC is more extensive
and more accurate, however, it could take 12 to 24 months for peer-reviewed
corrections, hampering its operational applicability.

Various research has introduced automated anomaly detection methods based
on statistical or machine learning. For instance, the authors of [20] also used
autoencoders to model normal float behaviour and raised warning when new
behaviours deviated significantly. The authors of [13] tested various classifiers
including random forests and Support Vector Machines in supervised QC er-
ror detection of Argo profiles. Similarly, [24] proposed semi-supervised ensemble
learning to identify outliers without total dependence on labeled data.

While demonstrating promise, these studies are limited in critical ways.

– Many models function as black boxes with limited interpretability, a major
barrier to operational adoption by Argo Data Assembly Centers (DACs) and
scientific users.

– Few integrate the existing QC rules into the decision logic, restricting com-
patibility with Argo protocols.

– Most systems are tested on restricted or narrow subsets of the expansive
Argo dataset, leaving scalability and generalisability uncertain.

The authors of [7] highlight the opportunity to develop data mining models that
are adaptive and able to run over streaming data in real time. This is parallel
to the Argo QC problem where floats output data regularly and auto-systems
have to cope in near real-time without spoiling the precision or the reliability.

Furthermore, the combination of unsupervised anomaly detection, supervised
classification, and domain specific rule-based logic has not been widely studied
under a single framework. HAD-QC, uses the best of both worlds: autoencoders
for finding nonlinear data patterns to score an anomaly, and ensemble classifiers
to take advantage of the known (labeled) training set, and Argo specific rules to
provide domain-aligned QC flags. While the authors of [23], highlight the require-
ment for interpretable AI in oceanography, they do not extend to the operational
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integration of these approaches. Many QC systems based on machine learning
incorporate complex models that do not provide clear explanations of the rea-
sons behind their decisions, a problem that is referred to in the literature as the
“black-box” problem. But in oceanographic quality control, such traceability and
interpretability are crucial. As Rudin argues, policy-relevant scientific decisions
need to be based on interpretable models [16]. HAD-QC bridges these gaps and
provides an interpretable and traceable hybrid quality control solution adapted
to the context and constraints of the Argo data system.

The work presented in this paper addresses this gap. HAD-QC is specially
designed to satisfy the operational needs of Argo QC while incorporating the
flexibility and learning capabilities of Artificial Intelligence (AI). By merging
data-driven models with domain-specific rules, HAD-QC balances performance
with traceability and interpretability of decisions, permitting real-time deploy-
ment without sacrificing reliability of the quality control process, which is vital
for subsequent oceanographic research and applications downstream.

3 Hybrid Anomaly Detection - Quality Control
(HAD-QC)

3.1 Argo Datasets

This study relies on a quality-controlled data set of Argo float profiles that were
measured between January 2020 and April 2025 and were extracted through
the Argo Global Data Assembly Centres4 using the Ifremer FTP server 5 and
the US Argo DAC 6. The profiles are written in NetCDF (Network Common
Data Form) format following the Argo Data Management Version 3.1 format,
including Real-Time (RT) and Delayed-Mode (DM) quality control flags [4]. The
following fundamental oceanographic parameters and associated quality control
flags were extracted from each profile:

1. Temperature (TEMP): uncorrected and corrected (TEMP_ADJUSTED)
2. Salinity (PSAL): primary and adjusted value (PSAL_ADJUSTED)
3. Pressure (PRES): corresponding raw and adjusted values (PRES_ADJUSTED)
4. Associated quality control flags for each variable: QC, ADJUSTED_QC e.g.

TEMP (Temperature) is Oceanographic, but TEMP_QC Not oceanographic
(it’s meta-data about QC status)

5. Positional or temporal metadata such as latitude, longitude, JULD (Julian
date), cycle number(float profile iteration index)

The selection of these features was based on their direct applicability to
Argo’s physical consistency checks, and their impact on measurement anomalies
detection. All analyses were based on 3,200 profiles. Of these:

4 https://argo.ucsd.edu/data/
5 ftp://ftp.ifremer.fr/ifremer/argo
6 https://usgodae.org/argo/argo.html
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1. For training, we used 2,400 profiles, as only high quality profiles (QC flag =
1) in delayed mode were used as input to learn normal procedures.

2. 800 profiles were reserved and used for testing, consisted of 80%-“good” and
20%-“bad” profiles to assess performance of HAD-QC on real-world anoma-
lies.

We adopted a a stratified random sampling without replacement strategy for
constructing the training and testing datasets to achieve a stable generalisation
across different float types, ocean basins, and sensor behaviors.
In order to avoid overfitting to any specific float type or location, the dataset
was initially binned by float type and ocean basin. For each of these two groups,
profiles were randomly divided into 80% training and 20% test datasets with a
balanced split according to float models and geographic regions. This stratifica-
tion guaranteed that no float profile occurred in both sets, and that both sets
continued to reflect the full heterogeneity present in the source data. All the
anomaly labels utilised for supervised training were based on delayed-mode QC
flags or manually reviewed annotations.
Here, this type of sampling increases the ecological value of the assessment, in
that it could provide a measure of what the HAD-QC model might achieve in
operational conditions of new floats and new regions.

The dataset is composed of various float types and ocean basins, which in-
cludes Apex, Navis, and PROVOR models; an additional 15 different float types
are deployed in the Atlantic, Pacific, and Indian oceans 7 8. This diversity pro-
vides strong variety in sensor performance, calibration strategies and regional
oceanographic environments. All the normalised profiles were first cleaned in a
systematic procedure to deal with missing values. In particular, profiles with
10% or more pairs of missing data for any of the 3 critical attributes (TEMP,
PRES or PSAL) were removed from training and validation. For the remaining
profiles, some isolated missing entries were estimated through linear interpola-
tion on the vertical pressure axis. In addition, to make the profiles comparable
across floats, the profiles were pressure-aligned through linear interpolations to
a standard depth level. Such heterogeneity is crucial for strong generalisation
and to avoid overfitting to certain float configurations 9.

3.2 HAD-QC Method and Implementation

The proposed HAD-QC method is described in this section, it aims to com-
pensate the limitations of traditional QC in oceanographic data management.
This core idea of the HAD-QC pipeline, which is a modularisable pipeline where
different pieces can be replaced to yield ensemble models, rule-based decision
logic, and unsupervised learning that scales to perform QC decisions on profiles
of Argo floats, while being interpretable and accurate. The framework includes
four primary parts: data preprocessing, autoencoder-based anomaly detection,
7 https://www.argodatamgt.org/Documentation/Metadata
8 https://argo.ucsd.edu/data/float-types
9 https://doi.org/10.5670/oceanog.2009.36
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ensemble classification, and hybrid QC decision fusion. The overall workflow is
illustrated in Figure 1.

Fig. 1: Overview of the four-stage HAD-QC architecture combining machine
learning and rule-based components.

3.3 Data Pre-processing

The data pre-processing prepares the original Argo NetCDF profiles for machine
learning anomaly detection/classification. The pre-processing stage consists of
three main procedures

1. Feature extraction: Essential physical and geographic variables are ex-
tracted from each NetCDF Argo data file: PRES, TEMP and PSAL (pres-
sure, temperature and salinity respectively) alongside adjusted values and
real-time QC flags. Metadata, such as latitude, longitude, Julian date (JULD),
and profile direction (DIRECTION), is also kept in order to maintain the
contextual continuity in space and in time.

2. Normalisation and Scaling: Continuous variables are standardised with z-
score normalisation to have consistent treatment for numbers across features.
This transformation improves the convergence properties of neural models
by aligning the feature distributions and variances [24].

3. Outlier and Missing Value Treatment: For data control, obvious out-
liers (e.g. physically infeasible pressures or salinities less than zero) are cap-
tured by means of the QC rules (e.g., range test, spike test) and excluded.
Missing values are are imputed by linear interpolation. Empty values in ver-
tical profiles are handled by depth-wise interpolation for input to the neural
model such that matrices are compatible [18].

These procedures result in a clean and uniform dataset that can be robustly fed
into the downstreams of HAD-QC models, and, hence, enhance the generalis-
ability of models and the sensitivity of anomaly detection.

3.4 Anomaly detection with autoencoder

In the second stage, a deep autoencoder is used in HAD-QC, which is an unsuper-
vised neural network, which learns a compact representation of input data. It is
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based on symmetric encoder and decoder layers, optimised by mean squared er-
ror (MSE) between input and reconstruction. Only of those high-quality profiles
(the ones with QC Flag = 1 in the core variables) are considered for training. It
is to ensure that model could detect the normal oceanographic state in the latent
space, and would be sensitive to abnormalities that could be instrument failure,
calibration drifts, or environmental anomalies. During inference the autoencoder
computes a reconstruction error for every data point — how much the input is
close to the normal patterns learned by the model. The anomaly score is taken
as the reconstruction error. The thresholding value is determined empirically, by
examining the Receiver Operating Characteristic (ROC) curve which graphs the
true positive rate versus false positive rate. All data points with anomaly scores
that exeeds the threshold are labeled as potential anomalies.

Autoencoders can be an effective choice for high-dimensional, structured, and
temporal data such as Argo profiles. Their architecture is capable of capturing
the nonlinear relationships among variables such as temperature, salinity, and
pressure and learning compact representations of "regular" oceanographic be-
havior. This lends itself well to anomaly detection, where deviations with these
learned representations suggest potential data quality problems. Although classi-
cal techniques like Isolation Forests and k-Nearest Neighbors have been employed
to perform unsupervised detection of anomalies, they work on shallow represen-
tations and perform poorly in the presence of multivariate temporal patterns or
sensor noise [11, 3]. Recent comparisons of deep learning models with traditional
methods for ocean data domains reveal that the performance of autoencoders
is generally superior to that of Isolation Forest, in terms of precision and recall
[22, 13]. Additionally, Isolation Forests do not have the reconstruction property,
so they are not easily interpreted and are difficult to incorporate in a hybrid
QC framework for which the reconstruction error can be utilised to measure the
severity of the anomalies.

3.5 Enhanced Ensemble classifier

To complement the anomalous pattern detection using label-based verification,
HAD-QC involves a supervised ensemble classifier by employing a set of base
learners:

1. Random Forest: Works well with feature noise and correlation.
2. Support Vector Machine: Provides largest margin separation in the fea-

ture space of high dimensionality.
3. Multilayer Perceptron: Models complex nonlinear relationships among

vertical profile data.

A meta-classifier (logistic regression) is then trained on the base classifiers’ pre-
diction features in order to extract a final decision. Profiles in the training set are
labeled with delayed-mode QC flags (*_ADJUSTED_QC), the highest-quality
annotations in the Argo system [4]. We perform experiments on each classifier
using stratified cross-validation and record the accuracy, precision, recall and F1
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score as the key performance metrics for the benchmark. The system uniformly
improves on individual models by decreasing both Type I (false positive) and
Type II (false negative) errors. Ensemble learning improves generalisation and
robustness, especially if the classifiers are irregularly distributed over profile pat-
terns [5]. This is crucial for oceanographic data sets in which anomalies can be
local, transitory, and/or multivariate.

3.6 The Hybrid Quality Control Decision Fusion

The last step of HAD-QC combines the outputs of the autoencoder and the en-
semble classifier with conventional rule-based RTQC tests. Each profile is anal-
ysed by applying the following logic:

– That is, if a profile violates any of the Argo critical rules (e.g., density in-
version, impossible date/location), it is automatically flagged.

– If both the anomaly detector and ensemble model output a “bad” classifica-
tion, the profile is flagged with high confidence.

– In the case of disagreement, profile scores are weighted and profiles are
flagged for manual review depending on the severity of the autoencoder
score and rules.

This combination provides the capacity for context-aware quality control
decisions by capitalising on the generalisation properties of machine learning
to discover relationships across a rich set of oceanographic conditions, but also
the application of domain-specific rule logic to express specific anomalies and
the enforcement of expert-validated thresholds. In this way, the decision-making
scheme is adaptive to novel samples and rooted in known scientific theory.

Rule-based systems are interpretable but inflexible; ML models are flexible but
opaque. Combining the two, HAD-QC attains the properties of traceability, au-
tomation, and resilience.

4 Evaluation

The effectiveness of the developed HAD-QC was validated in terms of accuracy,
robustness, and generalisation to detect oceanographic anomalies in Argo float
data. This section also provides a detailed comparison of HAD-QC against the
current RTQC, including what improvements are gained by combining the AI
approach into the system.

4.1 Comparative Performance: HAD-QC versus RTQC

HAD-QC outperforms RTQC in terms of all the performance measures. It ob-
tains higher precision (91.3% vs 78.4%), better recall (89.5% vs 66.2%) and much
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Table 1: Performance Comparison of HAD-QC versus RTQC.
Metric RTQC (Baseline) HAD-QC (Proposed) Improvement
Precision 78.4% 91.3% +16.4%
Recall 66.2% 89.5% +23.3%
F1-Score 71.7% 90.4% +18.7%
Anomaly Detection Rate 61% 87% +26%
Overall Accuracy 75% 93% +18%

stronger F1-score (90.4% vs 71.7%), demonstrating better detection of anomaly
in both precision and recall. Moreover, the accuracy of anomaly detection in-
creased by 26% and likewise the overall accuracy rose from 75% to 93%. These
enhancements demonstrated the strong ability of HAD-QC to detect anomalies,
reducing the number of false detections, and render it thus more robust and
scalable in the context of Argo data quality control.

4.2 ROC Curve and Confusion Matrix

To test how well the proposed HAD-QC system detects and classifies anomalies,
we used standard performance metrics, including the ROC curve and a confusion
matrix that provides a deeper look into the modelś discrimination and error
types. Figure 2 shows the ROC curve obtained with the test set. The ROC curve
is based on the True Positive Rate which is the ratio of actual anomalies correctly
identified to the False Positive Rate, which is the ratio false alarms, where normal
profiles (non-anomalous) are identified as anomalies. Here, a false positive is
classified as an Argo float observation marked as anomalous by HAD-QC, but
validated as the correct observation in the delayed-mode expert QC dataset. On
the contrary, false negatives would be explained as undetected anomalies that
were accepted by the HAD-QC filter and later identified by the manual QC
procedures.

One important metric of this is the Area Under the Curve (AUC) which reflects
how well the model can rank positive instances higher than negative ones overall.
An AUC of 0.94 means that there is a 94% likelihood that the HAD-QC system
will rank a true anomaly higher (with respect to an anomaly score) than to a
valid profile. This high performance also demonstrates good discriminative power
and validates the robustness of HAD-QC over different operating points.

In addition, the Confusion Matrix (see Figure 3 provides a summarised ver-
sion of real versus predicted classification results. Of the dataset, the model
successfully detected 806 anomalies (true positive) and 857 good profiles (true
negative). There were 42 false negatives and 51 false positives (valid profiles that
were erroneously identified as bad). The confusion matrix offers a more detailed
insight into how a model is behaving. The low false positive and false negative
rates demonstrate that HAD-QC is not only sensitive for detecting anomalies,
but also accurate without raising too many false alarms. These results contribute
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Fig. 2: ROC Curve showing the trade-off between True Positive Rate and False
Positive Rate.

Fig. 3: Confusion Matrix for HAD-QC classification.
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to the strong performance metrics (F1-Score: 90.4%, Precision: 91.3%, Recall:
89.5%) given in Table 1. Overall, the ROC curve and confusion matrix confirm
that HAD-QC is highly reliable with low false positive and false negative rates,
rendering it valid for applying on real-time and delayed-mode QC procedures in
Argo data.

4.3 Generalisation Across Floats and Ocean Basins

The robustness of the generalisation performance of the HAD-QC algorithm over
different float types and ocean basins is also illustrated. As shown in Table 2,
the F1-scores are all high for the APEX, SOLO-II and NAVIS floats, with a
global average higher than 89%. Of interest is that the highest worldwide F1-
score 90.3% did belong to the NAVIS floats, which implies a good match with
this type of hardware. Performance remains high throughout regional basins,
although slightly less for SOLO-II, possibly due to its more complex environ-
ment and a lower float density in the training set. This small degradation in
performance of the SOLO-II floats (Global Avg F1: 89.4%) when compared to
APEX or NAVIS could be caused by their deployment in regions with more
complex oceanographic dynamics, in terms of higher levels of mesoscale variabil-
ity or mixed-layer turbulence. These factors in the environment can result in
harder data conditions and subtle anomalies that make anomaly detection and
classification more difficult. This also highlights the flexibility and scalability of
HAD-QC with respect to various float types and deployment conditions, and its
potential for widespread operational deployment.

Table 2: F1-Score Comparison by Float Type and Ocean Basin (HAD-QC
versus RTQC)

Float Type Atlantic Pacific Indian Southern Global Avg Improvement
APEX (RTQC) 73.2% 71.0% 72.6% 69.4% 71.5% –
APEX (HAD-QC) 91.2% 89.9% 90.4% 88.1% 89.9% +18.4%
SOLO-II (RTQC) 72.4% 73.3% 70.2% 68.1% 71.0% –
SOLO-II (HAD-QC) 90.3% 91.5% 88.8% 86.9% 89.4% +18.4%
NAVIS (RTQC) 74.0% 72.6% 73.5% 69.0% 72.3% –
NAVIS (HAD-QC) 92.1% 90.8% 91.0% 87.3% 90.3% +18.0%

5 Future Work

Looking forward, we note that HAD-QC provides a number of compelling ways
for further development and practical use. One key focus of the ongoing work is
to improve the support for both real-time and delayed-mode Argo operations by
incorporating HAD-QC at a plugin module level within existing Data Assembly
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Centre pipelines. This would allow the operational Argo community to take more
advantage of it.

Additionally, effort is in progress to generalise the HAD-QC approach to
biogeochemical (BGC) quantities such as oxygen, nitrate, and chlorophyll which
will necessitate further tuning of domain adaptatiaon and anomaly detection,
due to the even greater variance and sensor-specific properties of BGC data.

The authors of [17, 10] have shown here that machine learning models can
predict Photosynthetically Available Radiation from such floats or float like de-
vices. This is evidence that ML methods are also well-suited for upscaling more
complex ecologically relevant Argo-derived variables.

An alternative direction for future work would be to commission a user-facing
dashboard (ideally web-based) that would display the QC decisions, anomaly
scores and rule-based attributions to help illuminate and provide transparency
toward a user’s requirements both for scientists and data operators.

To promote reproducibility and community development, we are planning to
release the project open-source with documentation.

6 Conclusions

This paper introduces HAD-QC, a new hybrid system that represents a sub-
stantial improvement of the quality control of Argo float data by combining
rule-based, supervised and unsupervised methods in a single framework. Con-
ventional RTQC techniques, while rapid and operationally mature, incorporate
static thresholds and fixed logic, and are thus susceptible to overlooking sub-
tle, context-dependent anomalies. Whereas HAD-QC uses autoencoder-based
anomaly detection to learn normal oceanographic profiles and anomalies, disre-
garding human-defined criteria, then uses an ensemble classifier to improve the
robustness of classification by voting from multiple algorithms (Random Forest,
Support Vector Machine, Multilayer Perceptron). Finally, we fuse these with tra-
ditional Argo QC rules to improve both accuracy and interpretability. It was also
demonstrated that, based on an extensive validation using over 3,200 Argo float
profiles from various float types and from all-ocean basins, HAD-QC achieved an
F1-score 90.4%, which surpassed RTQC by approximately 19%, and increased
the anomaly detecting rates by approximately 26%. It had high precision and
recall, with low false positives and negatives, which made it particularly well
suited for operational deployment. Crucially, HAD-QC’s final decisions are en-
tirely traceable, such that oceanographers can audit model-driven predictions,
comparing model-derived values against QC flags and rule output. Thanks to its
modular architecture and the possibility to ingest potentials based on NetCDF,
HAD-QC will, in future work, be directly integrated within an Argo Data As-
sembly Center processing pipeline. The ability to scale up automated QC to all
BGC Argo floats, which measure variables such as nitrate, oxygen, and pH, can
follow naturally. Such capability is essential for the exploration of deeper oceans
and biogeochemical domains as the Argo program grows.
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