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Abstract

Algorithms for geometric matching and feature extraction that work by recursively subdi-
viding transformation space and bounding the quality of match have been proposed in a num-
ber of different contexts and become increasingly popular over the last few years. This paper
describes matchlist-based branch-and-bound techniques and presents a number of new appli-
cations of branch-and-bound methods, among them, a method for globally optimal partial
line segment matching under bounded or Gaussian error, point matching under a Gaussian
error model with subpixel accuracy and precise orientation models, and a simple and robust
technique for finding multiple distinct object instances. It also contains extensive reference in-
formation for the implementation of such matching methods under a wide variety of error
bounds and transformations. In addition, the paper contains a number of benchmarks and
evaluations that provide new information about the runtime behavior of branch-and-bound
matching algorithms in general, and that help choose among different implementation strate-
gies, such as the use of point location data structures and space/time tradeoffs involving depth-
first search.
! 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

Matching geometric primitives under a variety of transformations is an important
problem in computer vision, robotics, and many other applications. Over the last
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decade, a number of techniques based on branch-and-bound methods have been
proposed for finding globally optimal solutions to such matching problems. Such
techniques work by recursively subdividing the space of transformation parameters
and computing upper bounds on the possible quality of match within each subre-
gion, and they can guarantee returning globally optimal solutions to geometric
matching problems. While a number of individual applications of, and approaches
to, branch-and-bound methods to geometric matching have been published in the lit-
erature [6,18,23,26,29], this paper attempts to review and bring together information
useful for the application of branch-and-bound methods to a wide variety of geomet-
ric matching problems under different error measures and transformations in a single
place and framework.

While the reference material and experimental results have applications to other
branch-and-bound techniques, the paper focuses on the use of matchlists in the eval-
uation and bounding of quality of match functions. Matchlists simplify the imple-
mentation of branch-and-bound algorithms for geometric matching, obviating the
need for point location data structures or discrete distance transforms. This enables
the practical solution of previously difficult or unsolved problems. Among others,
the paper describes the following new techniques:
• A method for globally optimal partial line segment matching under bounded error

or Gaussian error models. The previously best method for globally optimal line
segment matching is probably the method described by Yi and Camps [31], but
that method has no provisions for partial line segment matches and requires the
computation of a four-dimensional distance transform. The method presented
in this paper allows for partial matches and requires no separate distance trans-
form computation. It is one example of transform-dependent and non-circular er-
ror bounds, for which no globally optimal algorithms appear to have been
previously described. Experiments on the LiME dataset [3] are presented.

• An approach to globally optimal matching under a Gaussian error model using
matchlists. Unlike the method described by Jurie [23], the approach requires no
separate local search, and unlike the technique proposed by Olson [29], it yields
subpixel accurate results without the need for an approximate interpolative step
or a distance transform. Furthermore, the method improves on previous ap-
proaches [18,26,29] in that it incorporates, and prunes the search using, a precise
error model of feature orientations.

• A simple and robust technique for finding multiple distinct object instances is de-
scribed, related to the method described in [11].
Several additional uses enabled through matchlists are mentioned throughout the

paper.
In addition to these results, the paper also contains a number of experimental

evaluations and comparisons:
• A direct comparison of the performance of matchlist-based and point location-

based techniques, demonstrating that matchlist-based techniques are not only
simpler, but also faster.

• An empirical comparison of depth-first and best-first search strategies in these geo-
metric matching algorithms. Substantially lower memory requirements at only
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modestly increased running times are demonstrated. Demonstrating this tradeoff
allows the depth-first approach to be used on memory-constrained platforms like
handhelds and embedded devices.

• An empirical comparison of efficient implementation of alignment and branch-
and-bound methods. These results have implications for attempts to speed up
branch-and-bound methods using alignment methods, discussed in more detail
below.

• A more detailed analysis of the runtime behavior of branch-and-bound methods
than that previously presented by Mount et al. [26].

These experimental evaluations provide new information about the runtime behavior
of branch-and-bound matching algorithms in general, information about the specific
tradeoffs between matchlist and non-matchlist approaches, and they illuminate a
number of other important tradeoffs and implementation choices available to users
of such methods.

The overall goal of the paper is to provide the reader with useful guidelines,
baseline performance data, and reference information for implementing branch-
and-bound geometric matching algorithms in a wide variety of existing and novel
applications.

2. An instance of geometric matching

For simplicity of exposition, let us begin with a specific instance of the recognition
problem: bounded error matching of planar point sets under isometric transforma-
tions. We will generalize this model to other kinds of error measures and transfor-
mations in Sections 9 and 10.

Define a model to be a set of points M ¼ fm1; . . . ;mrg " R2 and an image to be
another set of points B ¼ fb1; . . . ; bsg " R2. We consider a bounded set of isometric
transformations Tall; that is, the set of transformations T : R2 ! R2 consisting of
translations and rotations and parameterize these transformations by a vector
ðDx;Dy; aÞT 2 ½Dmin;Dmax& ' ½Dmin;Dmax& ' ½0; 2pÞ " R3. We also assume a bounded
error notion of quality of match QðT ;M ;B; !Þ under the Euclidean distance; where
it is clear from context, we will omit the dependence of Q on M , B, and/or !. That
is, the quality of match assigned to a transformation T is the number of model points
the transformation brings within an error bound of ! of some image point. If we
write bpredicatec for the standard indicator function, which assumes the value 1 if
the predicate is true, 0 otherwise, we can write this quality of match function as

QðT Þ ¼
X

m2M
max
b2B

bkT ðmÞ ( bk < !c: ð1Þ

This may seem like an unnecessarily complex way of expressing a count of the
number of matching features, but it is a form that easily generalizes to other error
measures. One way of defining optimal geometric matching is to find a transfor-
mation Tmax (usually not unique) that maximizes the quality of match for a given M ,
B, and !:
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TmaxðM ;B; !Þ ¼ arg max
T2Tall

QðT ;M ;B; !Þ: ð2Þ

We will generalize this model in subsequent sections to a large variety of different
spaces of transformations and error models.

3. A random model of problem instances

Before proceeding to a description of algorithms for solving the bounded error
matching problem, let us look at a particular distribution of random problem in-
stances of the geometric matching problem.

Let each model consist of 20 points uniformly sampled from the rectangle
½(100; 100& ' ½(100; 100&. Each image consists of 10 points randomly selected from
the model, rotated by a random angle in the interval ½0; 2pÞ and translated by a ran-
dom translation drawn from ½0; 512& ' ½0; 512&. Each such model point is additionally
perturbed by an error vector randomly and uniformly selected from the set
fv 2 R2 : kvk < 5g; this represents a 5% error on the location of model features in
the image. Additionally, each image contains a random number (between 10 and
160 in different experiments) of background points, uniformly selected from the rect-
angle ½0; 512& ' ½0; 512&. The image points (both model and background points) are
randomly permuted before being used as input to the matching algorithms. Fig. 1
shows an example of such a random problem instance.

These kinds of random problem instances are useful for several reasons. First,
they approximate1 the distribution of problem instances for which optimal bounded
error matching returns maximum likelihood solutions [22]. (If we perturb model
points with error vectors with a Gaussian distribution, then the maximum likelihood
solution to the matching problem corresponds to robust least square matching.)

Note that there is no orientation information associated with any of the points in
this model. In natural images, orientation information associated with feature points
can often be derived from local gradients or geometric primitives. Given the accuracy
with which such information can be extracted, such orientation information greatly
cuts the number of possible correspondences between image and model points during
the search and results in significant speedups. The reason for not using feature ori-
entations is that, while feature orientations are easy to incorporate precisely into the
matchlist-based approach described below, their use in other branch-and-bound
methods is more complex and often heuristic. The use of feature orientations would
therefore complicate the interpretation of benchmark results and generally disadvan-
tage non-matchlist-based approaches.

From a practical point of view, samples drawn from this distribution of problem
instances are simple to generate and reproduce and have been used by other re-
searchers for testing geometric matching algorithms (e.g. [26]). A number of numer-
ical experiments and benchmarks in the remainder of this paper are based on this test
case.

1 The correspondence is only approximate because of boundary effects.
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4. A branch-and-bound approach

We can organize the search for a globally optimal solution to Eq. (2) as follows.

Algorithm 1.
1. The algorithm maintains a priority queue of search states. When two search states

have the same priority, the state with the lower depth in the search tree is pre-
ferred. The queue is initialized with a state representing all possible solutions.

2. Each search state is associated with a subregion of transformation space
Tk " Tall. It is further associated with an upper bound 8T 2 Tk : Q̂Qk ¼
Q̂QðTkÞPQðT Þ; the upper bound serves as the priority of the state. For termina-
tion and correctness, the upper bound needs to satisfy at least the condition that
Q̂QðfTgÞ ¼ QðT Þ.

3. The algorithm removes the state with the highest upper bound from the priority
queue. In case of ties, states with lower depth in the search tree are preferred.

4. Pick some transformation T 2 Tk; if QðT Þ ¼ Q̂QðTkÞ, terminate the search and re-
turn T as a solution.

5. Otherwise, we split the region Tk into two disjoint subregions T2k and T2kþ1 such
that Tk ¼ T2k [ T2kþ1 along its largest dimension and insert these subregions back
into the priority queue.

This type of algorithm is known as a branch-and-bound algorithm.
It should be noted that the algorithm makes no reference to a pixel grid, either in

its image or model points, or in any point location data structure. Rather, coordi-
nates are given as floating point numbers, and, within the limits of floating point pre-
cision and search termination/tolerance criteria, solutions returned by the algorithm
are subpixel accurate. (Note also that in the case of bounded error matching, the
range of the quality of match function is discrete and consists of the non-negative
integers, a fact that we take advantage of later.)

Fig. 1. A random instance of geometric matching problems used for various empirical performance mea-
surements throughout the paper. The model is described in Section 3.
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The three questions that we might immediately ask about this kind of algorithm
are whether the solutions it returns are optimal, whether it always terminates, and
what its complexity is. Let us sketch the relevant arguments here for the case of glob-
ally optimal bounded error matching using a branch-and-bound approach.

Theorem 1. When Algorithm 1 terminates, it returns a globally optimal solution.

Initially, the algorithm considers the set of all possible transformations Tall,
which, by definition of being globally optimal over Tall, contains at least one globally
optimal transformation Tmax. Therefore, at the beginning of the algorithm, the prior-
ity queue contains a region containing an optimal solution.

We need to establish first that this property is a loop invariant, i.e., that the glob-
ally optimal solution does not simply disappear from the priority queue. When we
remove a region Tk and its associated upper bound Q̂QðTkÞ from the priority queue,
either Tk contains Tmax or it does not. If it contains the globally optimal solution Tmax

and we subdivide Tk into two disjoint subregions Tk and Tkþ1 such that
Tk ¼ T2k [ T2kþ1, then the globally optimal solution must be contained in one or
the other subregion. If it does not contain the globally optimal solution, then the re-
gion containing the globally optimal solution is still somewhere else in the priority
queue and is unaffected by the operation. Therefore, if the priority queue contained
a region containing the optimal solution Tmax at the beginning of the loop and the
algorithm does not terminate, then it must contain either the same or some other re-
gion containing the optimal solution at the end of the loop.

Now it remains to be demonstrated that when the algorithm terminates, it termi-
nates with an optimal solution. When the algorithm terminates (in Step 4), observe
that, by construction in the termination step, QðTmaxÞ ¼ Q̂QðTkÞ. Furthermore, be-
cause we are using Q̂Q as the priority in the priority queue, we immediately establish
that QðTmaxÞ ¼ Q̂QðTkÞP Q̂QðTremainingÞ, where Tremaining is any remaining state in the
priority queue. Therefore, further expansion of nodes from the priority queue cannot
ever yield a solution that is better than Tmax.

Note that optimality here refers to the actual, finite precision numerical func-
tion Q, not some idealized mathematical counterpart. Global optimization of Q
interpreted in terms of infinite precision real numbers but implemented using finite
precision arithmetic is also possible, but it requires additional techniques and will
be described in a separate paper.

Theorem 2. Algorithm 1 terminates.

For transformations represented using vectors finite precision numbers (integer or
machine floating point), termination follows simply from the fact that there is only a
finite number of points in transformation space. If we start with a region T, each
dimension can be split in half at most a finite number of times before reaching an
elementary floating point interval. If the maximum number of splits possible before
reaching an elementary floating point interval along any of d dimensions is b, then
the maximum number of distinct transformation regions we can explore is 2bd ,

T.M. Breuel / Computer Vision and Image Understanding 90 (2003) 258–294 263



and each such terminal region will contain only a single transformation. Because we
require that Q̂QðfTgÞ ¼ QðT Þ, where T is the single remaining transformation in T and
the termination condition in Step 4 is trivially satisfied.

Of course, in practice, subdividing transformation space until we arrive at a single
transformation is usually unnecessary. Instead of terminating at the elementary
floating point interval, we can terminate at some larger, chosen tolerance s, that
is, when diamðTÞ < s. This means that the algorithm finds the globally optimal
solution in the d-dimensional discretized transformation space s * Zd \ Tall ¼
fsvjv 2 Zd ^ v 2 Tallg.

We can also think of such solutions as weak solutions [17] to the geometric match-
ing problems in a continuous space of transformations. A weak solution is a solution
that is not necessarily optimal but can become optimal under some small perturba-
tion related to s.

It is also useful to consider how we can compute the termination condition effi-
ciently. In Step 4 of the algorithm, the termination condition is that the region in
transformation space associated with the current state contains a transformation T
such that QðT Þ ¼ Q̂QðT Þ. One simple way of picking such a transformation is to use
the transformation Tc already used in the computation of Q̂QðTÞ. That is, we compute
an upper bound Q̂QðTÞ by evaluating, for each pair m; b on the match list
bkTcðmÞ ( bk < !þ dc, as well as bkTcðmÞ ( bk < !c. The computationally costly
part of this evaluation, the transformation of the model point and the distance com-
putation, is shared, so that this adds almost no cost to the overall computation.

Note that QðT Þ for T 2 T is a lower bound on the maximum value of Q achievable
over T, giving us a range of values that any maxima in T might assume. In partic-
ular, if T0 and T1 are the two regions in transformation space corresponding to the
top and second entries in the priority queue, and if T0 2 T0, then seeing that
QðT0Þ > Q̂QðT1Þ tells us that T0 must contain a globally optimal solution.

While the choice for splitting regions in transformation space in Step 5 is the sim-
plest to explain and will lead to eventual convergence, as a practical matter, there
may be other useful choices. For example, we might want to choose the split that
minimizes the uncertainty in the location of transformed model features. Or, we
might split along multiple dimensions simultaneously.

Related to termination and splitting is the question of computational complexity.
Determining theoretically the average and worst case complexity of these kinds of
branch-and-bound matching algorithms remains an open problem. Heuristic argu-
ments [7] and the empirical results presented below suggest that their average com-
plexity is the same as that of alignment and that cases with worse complexity are
rare, if they occur at all. The running time of the algorithm depends, among other
things, on how well Q̂QðTÞ approximates maxT2T QðT Þ as diamðTÞ ! 0. A more for-
mal theoretical analysis of these relations is clearly desirable.

5. Search strategy

So far, we have described a commonly used branch-and-bound strategy: expand-
ing the most promising search node, no matter at what depth in the search tree it
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may occur. We might call this a ‘‘best first’’ search algorithm. An alternative ap-
proach is to use a ‘‘depth first’’ approach; this was the approach described in the first
version of the RAST (recognition by adaptive subdivision of transformation space)
algorithm [6,7]. The performance of best-first and depth-first strategies for geometric
branch-and-bound matching have not been compared so far in the literature, leaving
us uncertain about whether one or the other strategy might significantly outperform
the other. In particular, we might be concerned that a depth-first search would be
susceptible to ‘‘getting lost in regions of transformation space where no solution will
ultimately be found, potentially resulting in very high running times compared to a
best-first approach.’’

A depth-first search can be implemented by using search depth instead of the
upper bound Q̂Q as the priority in the priority queue. When two nodes have the same
depth, we prefer the node with the higher quality of match value. With this modifi-
cation, we are no longer guaranteed anymore that the first solution that satisfies our
acceptance criteria in Step 4 is, in fact optimal. The algorithm therefore needs to con-
tinue searching until the complete search tree has been examined.

At first sight, this may seem to result in a much larger number of node expansions
and therefore might supposed to be considerably less efficient. What makes this al-
gorithm practical is the observation that when the algorithm has found a candidate
solution in Step 4, we need not expand further any states that we encounter whose
upper bound estimate is less than, or equal to, the quality of the best solution we
have found so far. If we modify the algorithm accordingly, this means that the ad-
ditional cost in terms of runtime of a depth-first search strategy is often modest; fur-
thermore, experimentally, the relative overhead becomes smaller the larger the
geometric matching problem becomes (Fig. 2).

Why might we want to adopt a depth-first search strategy? Because the amount of
memory it requires is much smaller than that of a best-first strategy. Over a common
range of parameters explored in our experiments, the depth-first search approach re-
quires between 1/50 and 1/200 the amount of memory of the best-first strategy (Fig.
3). This was, in fact, the motivation for choosing a depth-first approach in the
branch-and-bound algorithm described in [6,7], since it allowed implementation on
typical workstations at the time, which had 4–16 Mbytes of memory. Even today,
the moderate increase in running times associated with a depth-first search may be
justifiable in return for greatly reduced memory requirements when implementing
these algorithms on embedded systems. A depth-first approach also makes it easier
to tolerate the larger memory footprint associated with splitting regions T into 2n

subregions, rather than using binary splits in Step 5 in Algorithm 1, resulting in per-
formance that can equal or surpass that of a best-first search with binary splits (data
not shown).

A limitation of the depth-first search approach is that it does not permit us to find
multiple distinct solutions to the matching problem using the incremental algorithm
described in Section 8. Instead, the depth-first search must be run multiple times:
first, to find the best solution, and then, to find the second best solution that is
non-overlapping with the first one, on a modified problem from which the features
participating in the match of the best solution have been removed, etc.
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Fig. 2. Running times of the depth-first and best-first search strategies compared. The problem is as de-
scribed in Section 3, with the number of clutter points given by the x-axis. The left y-axis shows the running
time in seconds, the right y-axis shows the ratio of the depth-first running times to the best-first running
times.

Fig. 3. Comparison of the memory requirements of the depth-first and best-first search strategies. The
problem is as described in Section 3, with the number of clutter points given by the x-axis. The left y-axis
shows the number of correspondences (in thousands) that need to be retained in the search queue (propor-
tional to the memory requirements) seconds, the right y-axis shows the ratio of the best-first to the depth-
first memory requirements.
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6. Computation of upper bounds

In the discussion so far, there has been no mention of how to compute the upper
bounds Q̂QðTÞ. The algorithm described in [6] takes advantage of special properties of
linear error bounds under translation, rotation, and scale [2] or affine transformations
that allow this test to be carried out easily and efficiently. This allows Q̂QðTÞ to be deter-
mined using a small number of dot products and results in a tight upper bound.

For other kinds of transformations and error measures, a tight upper bound is
difficult to compute, but we do not actually require a tight upper bound for the al-
gorithm to converge. Therefore, branch-and-bound algorithms can be formulated
using more general upper bounds that are easier to derive [9].

We start by determining a bound on the location of each model point mj under
any transformation T 2 T. This bound can be expressed as any convenient geometric
region, for example a bounding rectangle or a bounding circle in the image plane.
For the purpose of exposition, let us assume that we express this bound as a circular
error bound of diameter d around some point TcðmÞ for some Tc 2 T (preferably
‘‘central’’ in that region). Tc and d can, in general, be dependent on m. That is, we
choose Tc and d such that 8T 2 T : kTcðmÞ ( T ðmÞk6 d. Then it is easy to see (using
the triangle inequality) that

8T 2 T; b 2 R2 : kT ðmÞ ( bk6 kTcðmÞ ( bkþ d: ð3Þ

Finally, we can use this to bound QðTÞ. Let T be any transformation in some sub-
region T of transformation space. Then, by bounding the terms of the sum indi-
vidually using Eq. (3):

QðTÞ ¼ max
T2T

X

m2M
max
b2B

bkT ðmÞ ( bk < !c ð4Þ

6
X

m2M
max
b2B

bkTcðmÞ ( bk < !þ dc: ð5Þ

Given this inequality, we can compute Q̂QðTÞ fairly simply by computing Tc and d and
evaluating the summation and maximization over all pairs of model and image
features.

A simple optimization is to speed up the search for matching image points, that is,
points b that fall within a distance of !þ d by using a point location data structure
[26]. A particularly simple point location data structure is the distance transform,
which has also been applied in branch-and-bound type geometric matching algo-
rithms [4]. Both the use of point location data structures and the use of distance
transforms can become fairly complicated to implement when features with several
different geometric attributes or partial matches are involved. This paper presents
a number of results showing that an approach that is simpler to implement,
branch-and-bound matching based on matchlists, also results in better performance
on many problems.

A matchlist-based approach works as follows. With each state in the priority
queue in Algorithm 1, we associate not just a region in transformation space and
a bound, but also a list of all the correspondences between model features and image
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features that are consistent with matching under the error bounds and the transfor-
mations represented by that region. As we subdivide regions in transformation
space, we only need to examine correspondences that are consistent with the parent
region (this fact requires a simple proof which is left to the reader). This approach
based on matchlists was the approach introduced in [6].

7. Statistical properties of matchlists

A priori, it is not obvious that a matchlist-based approach is faster than an ap-
proach using point location data structures. A matchlist can have a size as large
as the product of the number of model points and the number of image points,
jM j jBj. The evaluation of Q̂QðTÞmight therefore require as many as jM j jBj steps using
a matchlist approach. In contrast, point location algorithms can be implemented
that run in nearly constant or logarithmic time in the size of the number of database
points, suggesting a complexity nearly independent of the number of image points jBj
for the step of evaluating Q̂QðTÞ.

In fact, the initial matchlist in a matchlist-based approach is of size jM j jBj, and
the initial few subdivisions do not reduce the matchlist at all. Only once Tk becomes
small enough so that the uncertainty !þ d of the projected model features will be-
come sufficiently small so as not to include all image features, will the match list
be reduced below that size. The efficiency of a matchlist-based approach to evaluat-
ing Q̂QðTÞ then depends on the size of the average matchlist that occurs during the
search. If most search states are expanded with small matchlists, a matchlist-based
approach may be efficient. If most search states were expanded with large matchlists,
the matchlist-based approach would be hopelessly inefficient compared to ap-
proaches based on point location.

7.1. Average runtime behavior on randomly generated images

The question of the size of matchlists can be addressed by collecting statistics
from actual runs of the algorithm. For the problem defined in Section 3, these results
are shown in Fig. 4. As we can see, the average number of image features per model
feature the matchlist !ll is a little over two, meaning that there are, on average, a little
over two image features on the matchlist for each model feature. This makes it dif-
ficult to outperform the matchlist-based approach using a point location data struc-
ture. First, the matchlist-based approach only computes distances for model features
that are still candidates for matching some image feature. Second, even if the number
of model features considered by the two approaches were similar, the lookup per-
formed by the point location data structure would probably have to take less time
than the time for two computations of km0 ( bk (plus a small amount of bookkeep-
ing overhead) in order for the overall implementation to run faster.

It is instructive to look at these statistics in a little more detail. Fig. 5 contains two
types of curves. The solid curve indicates what fraction of the total number of search
states that are expanded by the algorithm are expanded below a certain depth. We
see that most of the states are expanded between depth 12 and 20. The broken line
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indicates the average number of image features per model feature; it drops sharply
below depth 12, the depth at which most of the nodes are expanded.

There is a fairly simple heuristic explanation for this behavior. The algorithm
must keep subdividing regions in transformation space recursively until it can start
pruning the search tree, leading to an initial exponential growth in the number of
nodes, However, pruning is possible only once the matchlist has shrunk significantly.
Therefore, exponential growth of the number of nodes will tend to occur somewhat
beyond the point where the matchlist has shrunk, resulting in the observed runtime
behavior. The results in Fig. 6 suggest a nearly perfectly exponential growth up to a
certain depth, followed by the onset of pruning.

7.2. Direct experimental comparison of point location approaches and matchlists

Results in the previous section, as well as results (not shown) from execution pro-
filing already suggest that matchlist approaches might outperform point location
based approaches. To test this, the performance advantage of the matchlist-based
approach was also verified directly. Mount et al. [26] describe a branch-and-bound
matching algorithm using a point location data structure. As their point location

Fig. 4. Size of the average matchlist. The matching problem used is as given in Section 3. As in the other
results, the x-axis gives the amount of clutter; the y-axis shows the number of correspondences on the
average matchlist.
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data structure, they use the ANN library published and described by Mount and
Arya [25]. This ANN code was used to conditionally replace the matchlist-based ap-
proach in the implementation of branch-and-bound matching used elsewhere in this
paper.

This results in a controlled experiment comparing the two approaches. The only
variable that differs between the two experimental conditions is whether matchlists
or point location data structures are used in the computation of Q̂QðTÞ. All other as-
pects of the implementation, like the computation of transformations, the test data-
set, and the priority queue implementation, are identical.

Using the point location data structure in place of the matchlist on the randomly
generated problem instances resulted in a slowdown of a factor of 2:43 and 3:75 (for
120 and 10 points of clutter, respectively), confirming the prediction that the match-
list approach outperforms a point location-based approach under the experimental
conditions tested.

7.3. Experiments with the COIL-20 image database

Features extracted from real images are not usually uniformly distributed. To
confirm the results from the previous section, an additional set of experiments on

Fig. 5. Fraction of nodes expanded at different depths, and average number of image features matching
each model feature at different depths. These results are for the problem described in Section 3; the differ-
ent curves are at a clutter of 10, 20, 40, 80, 120, and 160.
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real image data was carried out. For this purpose, edges were extracted from images
in the COIL-20 database [27] using a Canny edge detector. The resulting edges were
approximated by polygons and sampled uniformly at 4 pixel intervals. This gives rise
to collections of edge pixels consisting of between 82 and 283 edge samples for each
image. Furthermore, four objects parts were chosen as model and processed in the
same way, resulting in between 9 and 33 edge samples per model. The four models
and a sample image are shown in Fig. 7. For reasons already outlined in Section 3,
feature orientations were not used to speed up matching.

For the benchmarks, each of the four parts was then matched, using the point
location and matchlist-based implementations, against the same set of 50 randomly
selected images, resulting in a total of 200 runs of the algorithm. The running
times of the two algorithms are shown in the scatter plot in Fig. 8, where each data
point corresponds to one problem instance. The slope of a line fitted to that scatter
plot is approximately 3.7. This reproduces the results obtained for uniformly ran-
dom problem instances obtained on the random problem instances in the previous
section.

In summary, these results suggest that matchlist-based implementations of
branch-and-bound algorithms are likely preferable in many applications: they are
fast, easy to implement, and make available a full set of candidate matches for the
evaluation of the quality of match function QðT Þ.

Fig. 6. Number of nodes expanded at different depths (logarithmic scale). Notice the initial exponential
growth. These results are for the problem described in Section 3; the different curves are at a clutter of
10, 20, 40, 80, 120, and 160.
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8. Multiple distinct matches

In many computer vision applications, an image may contain more than a single
instance of an object. In Algorithm 1, after we have found the first match, rather

Fig. 8. Relative performance of the matchlist method compared to the point location method. Both axes
show running times in seconds. Note the different scales of the axes. The slope of the curve is 3.7, meaning
that the matchlist method runs on average 3.7 times faster than the point location method.

Fig. 7. Sample models and images from the COIL-20 database used in the performance measurements.
Shown are (a) four models matched against the images, (b) a sample image, (c) edges extracted from
the sample image and used by the matching algorithm.
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than terminating, we can continue expanding nodes until we find the next solution.
This will be the solution with the second highest quality.

However, while this is the second-best match, it usually does not represent a sec-
ond, distinct instance of the model in the image, but rather a slight variation on the
first match–the global optimum is usually surrounded by many similar near-global
optima. Trying to exclude such near optimal matches based on a threshold on their
distance in transformation space seems to be difficult: there is no a priori reason to
assume that distinct instance of a model in an image are associated with significantly
different viewing parameters. What distinguishes multiple instances of a model is that
they are usually composed of separate sets of features.

One common approach to finding multiple model instances is that of a greedy
match. In a greedy search strategy, we first find the best instance of the model in
the image. Then, we remove all image features participating in the match from fur-
ther consideration and re-start the search. This will yield a second match involving
only features that were not already used in the top match. This can be repeated to
find additional model instances. Such a greedy strategy can often be justified based
on general viewpoint assumptions—under a general viewpoint, it is unlikely that
multiple model instances share features.

With a simple modification of Algorithm 1, we can obtain multiple distinct in-
stances more quickly and without restarting the search. For this, we introduce the
notion of a weight wb associated with each point b in our collection of image points.
The function QðT Þ is then modified by the introduction of these weights

QðT Þ ¼
X

m2M
max
b2B

wbbkT ðmÞ ( bk < !c: ð6Þ

Initially, theseweights are set to1.Whenwehave found thebestmatch,we set theweights
associated with all the matching image points to 0. The entries in the priority queue do
not require updating since the previously computed upper bound estimates Q̂QðTÞ are
easily seen tobe still upperbounds.That is, if Q̂Q0ðTÞ is the upperboundafter theupdate to
the weights and Q̂QðTÞ is the upper bound before the update, then Q̂QðTÞP Q̂Q0ðTÞ. Next
time any search state is expanded, the upper bounds will use the new weights. This
incremental approach works well in practice and has been used, for example, in appli-
cations of branch-and-bound algorithm to line finding [11] and geometric matching.

Note that the approach takes advantage of the use of matchlists; if point location
data structures or discrete Voronoi diagrams are used in the computation of Q̂QðTÞ,
updating the state of the search to disregard those image features that have previ-
ously participated in a match appears to be a much harder problem because the
point location data structures would have to be updated efficiently dynamically.

9. Other quality-of-match functions

9.1. Feature orientations

Inmany practical applications, point features carry some kind of information about
orientation. For example, samples from the edges found in an image are associated
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with gradient direction information. As already noted in Section 3, using orientation
information can greatly speed up matching, as well as reduce the probability of false
positive matches. We can incorporate this information into the matching process by
requiring that points that match are not only mapped to within a certain error bound
by the transformation, but also that their associated directions are mapped to within
a certain angle of each other. This adds a factor to the quality of match function
(we use jx( yjp to denote the normalized difference in angle, mink2Z jx( y þ kpj):

QðT Þ ¼
X

m2M
max
b2B

bkT ðmÞ ( bk < !c * b jT ðbmÞ ( bbjp < !c: ð7Þ

Orientations are a simple example of properties that change under transformation of
model features into the image plane, but in ways different from location. These kinds
of properties are particularly easy to handle in a matchlist approach [12] because the
only modification to the algorithm that is necessary is to change the quality of match
function to incorporate the additional factors. Furthermore, in a matchlist ap-
proach, these additional constraints will serve immediately to prune the search tree.
Incorporating these kinds of features into a point location framework tends to be
more difficult because it requires the use of point-location data structures over
higher-dimensional spaces with topologies different from Rn.

9.2. Gaussian error and MAP estimates

The same algorithm described above works essentially unchanged for a Gaussian
error model rather than a bounded error model. In the simplest case of Gaussian er-
ror, a fixed Gaussian associated with each image feature, a commonly used likeli-
hood function is given by [22]:

LðT Þ ¼
Y

m2M
max
b2B

maxðGrIðT ðmÞ ( bÞ; P0Þ: ð8Þ

Here, rI is a simple diagonal covariance matrix and P0 is associated with the
probability of having a feature point appear in the image that was not derived from
an instance of a model (the ‘‘probability of clutter’’). A MAP (maximum a posteriori)
estimate of the transformation T is a function that maximizes this likelihood.

Taking logarithms on both sides, rescaling, and introducing a constant /0, we ob-
tain a quality of match function QðT Þ with the same maxima as the likelihood func-
tion LðT Þ and in a more convenient form:

QðT Þ ¼
X

m2M
max
b2B

maxð(/rkT ðmÞ ( bk2;(/0Þ: ð9Þ

Here, /0 ¼ log P0 and /r ¼ 1=2r2. We can also rewrite it a little further to maintain
the property that correspondences whose contributions to the quality of match
function QðT Þ drops to zero can be removed from the matchlist, in analogy to the
bounded error condition

QðT Þ ¼
X

m2M
max
b2B

maxð(/rkT ðmÞ ( bk2 þ /0; 0Þ: ð10Þ
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A Gaussian error model for angles can be introduced in a way analogous to Eq. (7):

QðT Þ ¼
X

m2M
max
b2B

maxð(/rkT ðmÞ ( bk2 ( /r0 jT ðbmÞ ( bbj
2
p þ /0; 0Þ: ð11Þ

The question remains of how to compute the bound Q̂QðTÞ. This, too, is simple. As
before, we pick a transformation Tc and a bound d for T and obtain

Q̂QðTÞ ¼
X

m2M
max
b2B

maxð(/r maxðkTcðmÞ ( bk( d; 0Þ2 þ /0; 0Þ: ð12Þ

As already mentioned above, such a change in quality of match function affects
our termination condition, since it will almost never be the case that Q̂QðTÞ ¼ QðT Þ
for some T chosen at random from T, no matter how small we make the region
T. However, this is nothing unusual: numerical optimizations in general can only re-
turn an accuracy to within machine precision or some lower, chosen tolerance. A
branch and bound approach to finding a solution to geometric matching problems
is simply such a numerical optimization algorithm. For a given tolerance s, we
can look at this kind of problem as replacing the original space of transformations
Tall with a discretized space fs * v : v 2 Z3g \ Tall ¼ sZ3 \ Tall and finding the opti-
mal solution with that discretized space.

Note that Jurie [23] describes a branch-and-bound algorithm for recognition un-
der Gaussian error that relies on a more complicated local numerical optimization
step and uses an alignment method to identify regions over which to perform local
search. Olson [29] also has recently described a similar approach using a Voronoi di-
agram, but has to rely on a separate interpolation step to achieve subpixel accuracy.
We will return to a comparison of a combined alignment and local search approach
with a global branch-and-bound approach in the discussion.

9.3. Hausdorff matching

Bounded error matching computes the largest number of matches compatible
with a given error bound. We can solve the complementary optimization problem
of minimizing the error bound under which some transformation can bring a given
number of model points into correspondence with some image point. This similarity
measure is now commonly referred to as the partial directed Hausdorff distance
[19,30]. Unlike bounded error matching, which has a natural statistical interpreta-
tion in terms of probabilistic location error and a probabilistic occlusion model
[22], it is unclear whether there is a similarly natural statistical interpretation of
the partial directed Hausdorff distance.

We could apply the framework described in this paper directly to the computation
of partial directed Hausdorff matches by formulating a quality of match function
QðT Þ for the Hausdorff distance. However, that is a fairly inefficient approach,
and the algorithms described in [20,30] may be a better choice for such such compu-
tations. Another alternative is to take an algorithm for bounded error matching and
transform it into a partial directed Hausdorff matching algorithm by a binary search
over error bounds [7].
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Recently, some authors have introduced the directed fractional Hausdorff distance
[28]. Since this function is identical to the bounded error measure except for a nor-
malization factor [28], the standard bounded error recognition quality of match
functions discussed elsewhere in this paper apply.

9.4. Line segment features

There are a wide variety of plausible quality of match functions involving models
and images that are represented as collections of line segments rather than point fea-
tures (cf. the work by Grimson [16] for heuristic search methods). We can, for exam-
ple, view a collection of line segments simply as a compact representation of a
discrete or continuous set of points, paying no attention otherwise to the grouping
of points implied by which points are assigned to which line segments. At the other
end of the spectrum of possibilities, we can consider line segments as meaningful en-
tities in themselves; for example, in an idealized line drawing of a 3D scene composed
of wireframe polyhedra, there is a one-to-one correspondence between line segments
and unoccluded edges of the 3D polyhedra. These different possibilities imply differ-
ent quality of match functions. In particular, they affect how partial matches between
line segments are apportioned. The discussion below describes a simple quality of
match measure for line segments that appears to work well in many practical appli-
cations and is easy to compute.

In addition to being a useful model in its own right, the purpose of this section is
to demonstrate branch-and-bound matching for a quality of match function QðT Þ
that involves complicated, transform-dependent error bounds.

A line segment is a pair of points ðp; qÞ 2 R2 ' R2 ¼ R4, and it transforms like
T ððp; qÞÞ ¼ ðT ðpÞ; T ðqÞÞ. We consider the pair unordered and therefore view ðp; qÞ
as the same line segment as ðq; pÞ. The model is a collection of line segments
M ¼ fm1; . . . ;mrg " R4 and the image is a collection of line segments B ¼
fb1; . . . ; bsg " R4. The quality of match between a transformed model line segment
T ðmÞ ¼ ðu; vÞ and an image line segment b ¼ ðp; qÞ is defined as:

qðT ðmÞ ; b Þ ¼ f ðaðT ðmÞ; bÞÞ * gðdistðp; ‘u;vÞÞ * gðdistðq; ‘u;vÞÞ
* overlapðT ðmÞ; bÞ: ð13Þ

The total quality of match QðT Þ used in the experiments below is

QðT Þ ¼
X

m2M

X

b2B
qðT ðmÞ; bÞ: ð14Þ

Here, aðT ðmÞ; bÞ is the angle between the two line segments. The term ‘u;v is the line
through u and v, and distðp; ‘u;vÞ is the distance of p from that line. The term
overlapðT ðmÞ; bÞ is the length of b when projected onto the line segment T ðmÞ along a
direction perpendicular to T ðmÞ. f is a function penalizing differences in orientation
between the two line segments, and g is a function penalizing location error between
the two line segments. For bounded error matching of line segments, we choose
f ðDaÞ ¼ bjDaj < !ac and gðdÞ ¼ bd < !c. For approximate robust least square error
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matching2 we choose f ðDaÞ ¼ maxð0; 1( !(2
a jDaj2Þ and gðdÞ ¼ maxð0; 1( !(2d2Þ.

Computation of the upper bounds Q̂QðTÞ in both cases is carried out by incorporating
the d parameter into these equations in a way analogous to point features.

It is interesting to compare this quality of match function with the one described
by Yi and Camps [31]. Yi and Camps treat line segments essentially as rigid bodies,
parameterized by their center, the logarithm of their length, and their orientation;
errors are measured in terms of the displacement of the center, plus two additional
properties. This parameterization allows them to transform the line matching prob-
lem into a four-dimensional point matching problem under translation, solved using
a generalization of the discrete Voronoi diagram approach described in [19]. One of
the properties of this special quality of match function is that the shape of the error
bounds it implies on location are invariant under rotation.

However, it is unclear that this is a desirable model in many applications. For ex-
ample, a half-occluded line segment in the Yi and Camps model would incur a sub-
stantial location error and might be considered non-matching altogether. In
contrast, the error model presented in this section allows for partial matches and lets
us express quality of match functions in general ways in terms of orientation, prox-
imity, and overlap between model and image line segments; a half-occluded line seg-
ment in the correct location would incur no location error.

If we expressed such a partial match error model in terms of a location error
bound on the center of a model line segment, the error bound would be elongated
along the line segment and this error bound would rotate as the model is trans-
formed. This is an instance of a transformation-dependent error bound and appears
to be difficult to address efficiently without the use of matchlists. The matchlist-based
approach method in this paper is probably the first method for finding globally op-
timal solutions under such error bounds. Experimental results on the LiME dataset
of hard test cases [3] are presented in Section 13.

10. Common transformation spaces and their bounds

In the previous section, we discussed extensively different quality of match func-
tions we might want to utilize in geometric matching problems. In this section, we
look at the other major ingredient to geometric matching problems: the space
of transformations we are considering and the bounding functions that corre-
spond to it.

The derivation of bounding functions corresponding to transformations is not
conceptually hard, but algebraic mistakes are easy to make. The bounding functions
described in this section have been verified numerically using random sampling, and

2 This is only an approximation to the least square matching of line segments considered as point sets,
as used in, for example, [3], but it is easier to compute and has some qualitatively desirable properties. A
full discussion of the relative merits of different quality of match functions for line segment features is
beyond the scope of this paper.
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they are believed to be correct up to clerical errors.3 The author hopes that present-
ing this collection of numerically verified bounding functions in a single place will
help ease the implementation of branch-and-bound methods. No claim is made
for the novelty of these functions; bounds like these have been derived by many au-
thors for a variety of purposes.

Let us recall briefly the connection between quality of match functions and trans-
formation space. In order to apply the algorithms presented in this paper, we need to
obtain an upper bound Q̂QðTÞP maxT2T QðT Þ. We have generally expressed the con-
nection between the two by deriving, given a set of transformations T, a representa-
tive transformation Tc and an error bound d such that we can choose
Q̂QðT; !Þ ¼ QðTc; !þ dÞ. Furthermore, the only sets of transformations T encountered
by the algorithm are axis aligned hyper-rectangles in transformation space Tall.

A different way of looking at this is in terms of the region that a model point m
traces out under transformations in the set T. Hagedoorn and Veltkamp [18] refer to
this area as the swept area. Formally, this set is written as as fTm : T 2 Tg 2 R2. We
are bounding this set by the circle centered at Tc and with radius !þ d . Of course, the
swept area can be bounded in other ways as well; rectangular bounds are convenient
in many applications. For the purposes of this paper, we will restrict ourselves
mostly to circular bounds. Unless otherwise mentioned, all transformations will be
from R2 ! R2.

10.1. Translation

Let us parameterize the transformation by the x displacement tx and the y dis-
placement ty . That is,

x0

y 0

! "

¼
x
y

! "

þ
tx
ty

! "

: ð15Þ

Let T ¼ ½t0x ; t1x & ' ½t0y ; t1y &, and let tmx ¼ 1
2
ðt0x þ t1xÞ, tdx ¼ 1

2
ðt1x ( t0xÞ, tDx ¼ t1x ( t0x , and

equivalently for ty . In fact, for implementing a branch-and-bound matching algo-
rithm under translation, in this particular case, it is easiest to use this bound on
coordinates, rather than a circular bound. The swept area of a model point m ¼
ðx; yÞT is then simply the rectangle ½xþ t0x ; xþ t1x & ' ½y þ t0y ; y þ t1y &. Let us use the
following notation for expressing this rectangular error bound on the coordinates of
a transformed model point:

Tc ¼ ðtmx ; t
m
y Þ

T; ð16Þ

tdx ¼
1

2
ðt1x ( t0xÞ ¼ tdx ; ð17Þ

tdy ¼
1

2
ðt1y ( t0y Þ ¼ tdy : ð18Þ

3 Please communicate any corrections to the author.
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However, the circular bound is easily derived as well. We choose

Tc ¼ ðtmx ; t
m
y Þ; ð19Þ

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðtdx Þ
2 þ ðtdy Þ

2
q

: ð20Þ

10.2. Translation and scaling

Let us parameterize the transformation T ¼ ðtx; ty ; sÞT such that

x0

y 0

! "

¼ s x
y

! "

þ tx
ty

! "

: ð21Þ

Using the same conventions for superscripts as in the previous section, we choose

Tc ¼ ðtmx ; t
m
y ; s

mÞ; ð22Þ

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðtdx Þ
2 þ ðtdy Þ

2
q

þ sD jmj: ð23Þ

Here, jmj is the magnitude of the vector representing the position of the model point;
we can replace this with maxm2M jmj for a less tight bound, albeit at a significant
decrease in runtime performance.

10.3. Translation and non-uniform scaling

Let us parameterize the transformation T ¼ ðtx; ty ; sx; syÞT such that

x0

y 0

! "

¼ sxx
syy

! "

þ tx
ty

! "

: ð24Þ

We choose

Tc ¼ ðtmx ; t
m
y ; s

m
x ; s

m
y Þ; ð25Þ

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðtdx Þ
2 þ ðtdx Þ

2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðsDx mxÞ2 þ ðsDy myÞ2
q

: ð26Þ

Here, mx and my are the coordinates of the model point being transformed; as before,
we can replace these with upper bounds over the set M .

10.4. Isometric transformations

Isometric transformations are translations and rotations, without scale changes.
Let us parameterize the transformation T ¼ ðtx; ty ; aÞT such that

x0

y 0

! "

¼ cos a ( sin a
sin a cos a

! "

x
y

! "

þ tx
ty

! "

: ð27Þ

Here, a is in radians. We choose
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Tc ¼ ðtmx ; t
m
y ; a

mÞ; ð28Þ

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðtdx Þ
2 þ ðtdx Þ

2
q

þ ad jmj: ð29Þ

10.5. Isoform transformations, linear parameterization

Isoform transformations are 2D translations, rotations, and uniform scaling. Let
us parameterize the transformation T ¼ ðtx; ty ; c; sÞT such that

x0

y 0

! "

¼ c (s
s c

! "

x
y

! "

þ tx
ty

! "

: ð30Þ

Note that ðc; sÞT is related to the angle of rotation a and scaling k as

c
s

! "

¼ k
cos a
sin a

! "

: ð31Þ

This case is actually less interesting for its bounds (the parameterization is somewhat
inconvenient) but more for the fact that it allows convex polygonal error bounds in
the image to be translated into convex polygonal error bounds in transformation
space. For more details, see [2,7].

However, for completeness, here are the bounds. First, rectangular bounds using
the notation introduced above for translations:

Tc ¼ ðtmx ; t
m
y ; c

m; smÞ; ð32Þ

tdx ¼ cd jmxjþ sd jmy jþ tdx ; ð33Þ

tdy ¼ sd jmxjþ cd jmy jþ tdy : ð34Þ

In circular error bounds, this becomes

Tc ¼ ðtmx ; t
m
y ; c

m; smÞ; ð35Þ

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðcd jmxjþ sd jmy jþ tdx Þ
2 þ ðsd jmxjþ cd jmy jþ tdy Þ

2
q

: ð36Þ

10.6. Isoform transformations, nonlinear parameterization

Let us use a more convenient parameterization of isoform transformations as
T ¼ ðtx; ty ; a; sÞT, s > 0, such that

x0

y 0

! "

¼ s
cos a ( sin a
sin a cos a

! "

x
y

! "

þ tx
ty

! "

: ð37Þ

The corresponding bounds are

Tc ¼ ðtmx ; t
m
y ; a

m; smÞ; ð38Þ
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d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðtdx Þ
2 þ ðtdy Þ

2
q

þ sd jmjþ ads1jmj: ð39Þ

10.7. Affine transformations, linear parameterization

We define affine transformations as

x0

y 0

! "

¼ a b
c d

! "

x
y

! "

þ tx
ty

! "

: ð40Þ

Again, first, here are the rectangular error bounds:

Tc ¼ ðtmx ; t
m
y ; c

m; smÞ; ð41Þ

tdx ¼ ad jmxjþ bd jmy jþ tdx ; ð42Þ
tdy ¼ cd jmxjþ dd jmy jþ tdy : ð43Þ

In circular error bounds, this becomes:

Tc ¼ ðtmx ; t
m
y ; c

m; smÞ; ð44Þ

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðad jmxjþ bd jmy jþ tdx Þ
2 þ ðcd jmxjþ dd jmy jþ tdy Þ

2
q

: ð45Þ

10.8. 3D recognition

There is a wide variety of 3D imaging transforms possible. A direct application of
those models to the recognition of point features is often impractical because the
complexity is too high; efficiency requires the use of more complex features: line seg-
ments, corners, etc. A complete enumeration of the possibilities goes beyond the
scope of this paper.

To illustrate, let us describe a simple 3D imaging transform: orthogonal projec-
tion under rotations out of the image plane and translations. We leave the derivation
of bounds for other cases to the reader. The imaging transform then becomes (with
the z axis pointing towards the camera):

x0

y 0

! "

¼ 1 0 0
0 1 0

! " cos a 0 ( sin a
0 1 0

sin a 0 cos a

0

@

1

A

1 0 0
0 cos b ( sin a
0 sin a cos a

0

@

1

A

x
y
z

0

@

1

A

þ tx
ty

! "

: ð46Þ

The bounds for this transformation become

Tc ¼ ðtmx ; t
m
y ; a

m; smÞ; ð47Þ

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðtdx Þ
2 þ ðtdy Þ

2
q

þ ad jmjþ bd jmj: ð48Þ
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11. Significance of optimality

It is worth asking whether the optimality guarantees made by these branch-and-
bound methods actually make a measurable difference compared to the matches
found by commonly used approximations like alignment. If even simple, current
methods for geometric matching were to return optimal matches with high probabil-
ity, then the optimality guarantees made by the algorithms presented in this paper
would not be particularly interesting.

The purpose of the empirical comparisons below is not to show that optimal geo-
metric matching is better than any other, possibly heuristic, method that has ever
been described, it is to compare the performance of optimal geometric matching
to a widely understood baseline. Since most vision researchers probably either have
implemented a simple alignment algorithm or a simple Hough transform algorithm,
we compare the quality of the results from optimal geometric matching to the quality
of results obtained by implementations of those algorithms.

For the implementation of geometric matching by alignment [21] used in this
comparison, every possible pair of image features was put into correspondence with
every possible pair of model features. For each such correspondence, the alignment
transformation was computed and the resulting quality of match under the error
bound was determined. That is, for alignment, we compute

Q̂Qa ¼ max
T2Ta

X

m2M
max
b2B

bkT ðmÞ ( bk < !c; ð49Þ

where Ta is the set of alignment transformations.
It is well known that geometric matching by alignment does not always result in

geometrically optimal matches. The reason is that, in general, the optimal transfor-
mation does not equal any of the transformations computed from alignments. Align-
ment algorithms of any form can find some of the missing optimal matches is by
exploring additional transformations around the alignment transformations using
gradient descent or other local search methods (e.g. [3,18,23]). Another approach
to addressing the limitations of simple alignment methods is the error propagation
approach described by, e.g., Alter and Jacobs [1], which allows us to identify a set
of potentially matching image features from an initial alignment; but without addi-
tional mechanisms, even alignment using such precise error propagation still does
not identify the globally optimal bounded error match unambiguously (see also Sec-
tion 14). Modifications to alignment algorithms that restrict the set of correspon-
dences to be considered, for example, based on grouping information or the
propagation of geometric error bounds can only result in a decrease of the overall
quality of match because they will maximize the quality of match over a smaller
set of transformations. So, while there are improvements to alignment methods,
since alignment without local search or error propagation is widely used and ac-
cepted, it is interesting to see with what frequency optimal bounded error matching
finds matches that are not represented by any alignment transformation.

Fig. 9 shows the difference between the number of features returned by an imple-
mentation of an optimal algorithm based on the techniques described in this paper
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and the number of features returned by an alignment algorithm (for a correct imple-
mentation of an optimal algorithm, this difference can, of course, never be less than
zero). The distribution is over the randomized trials as described in Section 3. These
results show that the alignment algorithm actually returns a suboptimal solution in
the majority of the randomized trials, and that on a significant fraction of the cases,
the differences are substantial (recall that the model instance represents 10 points
in the image, although by chance, an optimal match may include additional points
in some trials).

Analogous experiments were carried out with a randomized Hough transform
(RHT) [24]. To ensure maximum detectability with the RHT and reduce noise, the
implementation did not only just sample pairs of image and model features, but ac-
cumulated over all possible correspondences. Furthermore, the RHT implementa-
tion allowed for the addition of jitter to the location of model features, allowing a
stochastic approximation of the actual probability distribution of transformations
in the space of Hough accumulators.

The Hough transform is intrinsically limited in its performance because for any
practical quantization of the transform space, the quantization results in only a
rough estimate of a transformation. Additional techniques, like numerical optimiza-
tion or further hierarchical decomposition, might be used to determine the optimal
solution after the first Hough transform step completes. However, for such addi-
tional techniques to succeed, at a minimum, the candidate bin ought to be the correct

Fig. 9. Histogram of the number of matching image features missed by alignment compared to optimal
matching (histogram of 1200 trials, with clutter from between 10 and 160 points).
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one. For the randomized trials as presented above, using a bucket size of !=2 (where !
is the error bound), in 83.7% of the cases, not even the translational component de-
termined by the Hough transform was within 2! of the correct value, making it un-
likely that post-processing would be able to recover the correct transformation.
Similar results were obtained for other bucket sizes and using jitter (the variety of
possible parameter choices and their unpredictable effect on performance of the
Hough transform is itself a disadvantage of the technique). Some of the limitations
of Hough transform techniques result from their implicit choice of quality of match
measure relative to geometric matching approaches. In particular Hough transform
methods use as a quality of match measure the total number of correspondences be-
tween images and models consistent with some set of transformations; see [9] for an
additional discussion.

Of course, there is a large number of heuristic techniques and parameter choices
that can be used to make Hough transform methods work better in practice on spe-
cific problems. However, branch-and-bound matching, in comparison, returns opti-
mal geometric matches with essentially no further tuning required. In fact, the
techniques described in this paper can be viewed as a reliable way of implementing
a hierarchical Hough transform; for a discussion of the relationship between the two
approaches, see [9].

12. Empirical complexity

To get some idea of the scaling behavior of the branch-and-bound methods, their
performance was evaluated relative to an optimized implementation of alignment on
the problem of matching randomly generated point sets under translation and rota-
tion, but constant scale. The goal is not to prove that the branch-and-bound algo-
rithm is faster than alignment, but to understand its scaling behavior relative to a
well-understood and easily reproducible method for geometric matching.

As noted in the previous section, for recognition by alignment, we pick two points
from the model, two points from the image, and compute a transformation that
aligns the two model points with the two image points. Using that transformation,
we project the remaining model points into the image and count the number of
matching features under the given error bound. In the alignment algorithm imple-
mented for this benchmark, two point location data structures were used to speed
up the matching algorithm (and it was verified experimentally that use of these data
structures indeed results in a substantial speedup).

First, because of the absence of scale changes, only pairs of image features within
a range of distances similar to that of the model features are candidates for align-
ments. These pairs are found quickly using a one-dimensional interval query data
structure. Second, when the model points are projected into the image, image points
that fall within the given error bound of some model point are found quickly using a
two-dimensional point location data structure.

This implementation of alignment was compared on a set of 200 randomly
generated trials to globally optimal branch-and-bound matching using matchlists,
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as described above. Experiments were carried out on a 1GHz desktop PC. Fig. 10
shows the relative performance of the alignment algorithm and the branch-and-
bound algorithm. Under the conditions tested, the branch-and-bound algorithm
scales approximately the same way as the alignment algorithm and, in fact, has a
slightly larger advantage for larger problem instances. These results are in agreement
with a heuristic theoretical analysis presented previously [7,6]. The results suggest
that, at least for a certain range of parameters and problems, branch-and-bound
algorithms have similar runtime complexities and constants compared to alignment
methods.

13. Partial line segment matching on the lime dataset

The results presented in this paper so far have been mostly on randomly generated
point sets. We already noted the advantages of using that kind of data: it matches the
statistical assumptions justifying many quality of match functions, it is easy to repro-
duce, and large amounts of data are easy to generate.

Beveridge and Riseman [3] argue that test cases involving a high degree of sym-
metry are considerably harder than such randomly generated data, and that it is im-
portant to test geometric matching and visual object recognition algorithms on such
harder problem instances. This idea is supported by their practical experience with
matching different kinds of models in the Line Matching Environment (LiME) [3],
and they provide a set of hard test cases for line matching that involve various forms
of symmetry.

In this section, we see the results of applying the branch-and-bound methods of
this paper to those hard test cases. This is a stress test in that not only is the dataset
constructed to be especially hard, but also that, as we observed in Section 9.4, the
error model itself—partial line segment matching—is considerably more complex
than point matching, since it involves transformation-dependent, non-circular error
bounds. In fact, the techniques described in this paper may be the only known and
implemented techniques for finding globally optimal solutions to such problems to
date.

The purpose of this test is foremost to make sure that the algorithm does not
behave unreasonably on those cases. Furthermore, while the dataset contains only

Fig. 10. Running times on 2D matching task. The table shows a comparison of running times of an align-
ment algorithm and an optimal branch-and-bound matching algorithm. The running times are given in
seconds and represent averages of 200 trials. ‘‘nclutter’’ is the number of random, non-model-derived
background features.
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48 model/image pairs and is not large enough to explore independently all the differ-
ent parameters that influence recognition performance, we can draw some simple
qualitative conclusions about the effects of instance size and symmetry on running
times. Finally, the timing results on this data allow the reader to get some additional
idea of how well the algorithms perform on commonly used line segment data with
non-uniform distributions (see Figs. 11 and 12).

The running times of a matchlist-based branch-and-bound algorithm using the
quality of match functions for line segments described in Section 9.4 are shown in
Fig. 13 (these were carried out on a 1GHz PC). The first observation is that robust
least square matching (for these parameter settings) usually takes about 2–3 times as
long as bounded error matching. This is similar to the overhead of robust least
square matching compared to bounded error matching in other conditions, and it
is largely due to the fact that a bounded error match can often terminate the search
early when it discovers that Q̂QðTÞ ¼ QðT Þ for some T 2 T, while a robust least square
match must continue optimizing T until a desired numerical accuracy is reached.

Comparing the performance on different kinds of models, we see that the ‘‘dande-
lion’’ model is the slowest to match, probably for a combination of reasons. First, it
exhibits a high degree of symmetry, so that there are many near-optimal matches.
Furthermore, the model contains many lines which are fairly close to one another,
meaning that model line segments can be brought into unique correspondence with
image line segments only when the uncertainty in the transformation (and hence the
d value) is small (a similar effect is likely also at work for the ‘‘pole’’ model). For a
similar reason, spatially smaller models probably take more time to match than lar-
ger models, even if they are composed of similar numbers of line segments.

While it was not the primary purpose of conducting these measurements, we can
also attempt to compare the absolute running times presented by Beveridge and Ri-
seman in [3] with the running times in this paper. In order to do this, we need to take
into account that they were carried out on different hardware. The system used in
those measurements was a SPARC 10, while the system used for the measurements
in this paper were carried out on a 1GHz PC. The ratio of clock speeds of the two
systems is about 25 (this appears to correspond also to the ratio of SPEC benchmark
scores). The branch-and-bound algorithms, however, outperform the local search
based methods by a factor of 400 on some of the harder benchmarks (e.g., the
‘‘da.4’’ model), suggesting that branch and bound methods might be computing
globally optimal solutions faster than local search methods compute approximate
solutions.

Fig. 11. The set of models used in the line segment matching experiments (see [3]).

286 T.M. Breuel / Computer Vision and Image Understanding 90 (2003) 258–294



Fig. 13. Running times of the line segment based branch-and-bound algorithm applied to the LiME da-
taset [3]. Running times are in seconds. Dark bars represent bounded error matching with ! ¼ 3 and light
bars represent Gaussian error matching with ! ¼ 6. Key: ‘‘da’’—‘‘dandelion’’; ‘‘de’’—‘‘deer’’; ‘‘le’’—
‘‘leaf’’; ‘‘po’’—‘‘pole’’; ‘‘re’’—‘‘rectangle’’; ‘‘tr’’—‘‘tree’’; ‘‘.n’’—image with n suboptimal model instances
as clutter; ‘‘nn’’—image with nn line segments of random clutter.

Fig. 12. Sample match of the ‘‘tr’’ (‘‘tree’’) model in a cluttered scene with 30 line segments. This corre-
sponds to the running times labeled ‘‘tr30’’ in Fig. 13.
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Independent of hardware, we can also compare sensitivity of the two methods to
multiple model instances and symmetry by looking at ratios of running times under
different conditions. Without wanting to claim statistical relevance, let us look at two
examples. First, we find that for the ‘‘dandelion’’ model, the running times for be-
tween one and four model instances vary by a factor of 43 and 91 for the two match-
ing methods described in [3]. In comparison, running times for finding the global
optimal match using branch-and-bound methods under the same conditions varies
only by a factor of 2.2. In terms of dependence on symmetry, if we compute the ratio
of running times for a model with a lot of symmetry, like the ‘‘dandelion’’ model, to
running times for a model with comparatively little symmetry, like the ‘‘leaf’’ model,
we find that the local search methods and branch-and-bound methods are compara-
ble: the highly symmetric model takes approximately ten times as long to match as
the less symmetric model.

As mentioned at the beginning of this section, the purpose of this section was to
test whether branch-and-bound algorithms for geometric matching behave reason-
ably on a set of previously studied hard test cases. Application to this dataset of hard
test cases has failed to turn up any conditions to which branch-and-bound methods
are unduly sensitive; if anything, there are indications that branch-and-bound meth-
ods may be somewhat less sensitive to multiple model instances than local search
methods. While the dataset is small, the results also suggest that the performance
of branch-and-bound algorithms may compare favorably to local search methods.
When the community has settled on a larger set of hard test cases, it would be useful
to repeat this evaluation to arrive at more quantitative results and comparisons.

14. Discussion

We already noted in the beginning that there are a number of related approaches
to branch-and-bound algorithms using matchlists. Let us discuss these in more de-
tail.

14.1. Hierarchical chamfer matching

Hierarchical chamfer matching (HCMA) [4] is an efficient and practical means for
matching images under bounded error models. HCMA can be viewed as a kind of
branch-and-bound algorithm that searches through the space of transformation pa-
rameters in a hierarchical manner. In HCMA, the exploration of transformation
space is driven by sampling parameter space at different points. The condition that
is imposed is that samples in parameter space should be close enough so that neigh-
boring samples do not change the location of transformed model features by more
than one pixel. This parameter step-length is approximated by computing partial de-
rivatives of the location of the coordinates of the transformed model with respect to
the transformation parameters. This is likely to be an excellent approximation in
many practical problems; however, the techniques presented in [4] do not appear
to guarantee a complete exploration of all possible solutions. By organizing the
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search about a recursive subdivision of transformation space, the algorithms pre-
sented in this paper can make such guarantees. The use of a pixel-based representa-
tion in HCMA also somewhat limits its applicability, since it may require the
computation of large bitmaps for high resolution matching problems; matchlist-
based methods are now routinely applied to matching geometric primitives and mod-
els in very large document images with subpixel accuracy.

14.2. Exact error propagation in correspondence methods

Correspondence-based methods, meaning methods like alignment [21] and inter-
pretation trees [16], can be extended with exact error propagation methods like those
described in [1]. Such methods will, given a set of correspondences between image
and model features and given error bounds, predict reliable bounds on the possible
locations of the remaining model features in the image. These locations can then be
used to determine potentially matching image features. This set of potentially match-
ing image features gives us an upper bound on the quality of match involving the
chosen set of correspondences (traditional alignment gives us a lower bound). These
correspond to the upper and lower bounds on the quality of match used by the
branch-and-bound method described above and could be used in a correspon-
dence-based branch-and-bound algorithm.

The key difference between such correspondence-based approaches and the
transformation space-based approaches described here is that the transformation
space-based approaches also give us a guaranteed and simple way of reducing the
uncertainty. If we subdivide the region in transformation space, assuming sufficient
smoothness of the imaging transform, the uncertainty in locations decreases predict-
ably and steadily, and the subdivision into disjoint regions of transformation space
also guarantees that each region is only explored once. Furthermore, subdividing
transformation space to a chosen depth (corresponding to a chosen depth in the
search tree) guarantees us a predictable (though not necessarily uniform) uncertainty
in the resulting projection of model points into the image. As a practical conse-
quence, transformation space-based branch-and-bound methods almost never return
solutions that are not demonstrably optimal (optimality can be demonstrated for a
solution by observing that its lower bound exceeds the upper bound of the next item
on the priority queue).

In contrast, adding another correspondence to a set of correspondences may not
reduce the uncertainty of the resulting alignment at all, or it may force the entire set
of correspondences to become infeasible; as Grimson [16] has shown, the resulting
search problem is hard in general. For correspondence-based searches, there is no
guarantee that exploration to a certain depth will reduce uncertainty to a particular
amount. The LiME dataset [3], used also in the benchmarks above, in fact, contains
many test cases illustrating this point and appear to be particularly hard for corre-
spondence-based approaches: because of the high degree of symmetry, many corre-
spondences do not reduce uncertainty much at all.

It is possible that precise propagation of error bounds in a correspondence-based
approach might also be used to construct algorithms with similar performance
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characteristics. For polygonal error bounds, [5] has already demonstrated such a cor-
respondence-based algorithm, although it is far less efficient than transformation
space based methods, and it has proven difficult to extend to other kinds of error
bounds. This might be an interesting area for future research, since interpretation
tree and correspondence-based methods have a number of desirable practical
properties [16].

14.3. The RAST algorithm

The RAST (Recognition by Adaptive Subdivision of Transformation Space) algo-
rithm [7,6] is a branch-and-bound algorithm relying on subdivisions and upper
bounds in transformation space and is a precursor to matchlist-based methods de-
scribed in this paper. In its original formulation [7,6], it applied to point matching
under arbitrary convex polygonal error bounds and isoform (translation, rotation,
scale) or affine planar transformations. Later, it was extended to matching under ar-
bitrary transformations [9] and matching some parametric models [11]. Matchlists
have their origins in the heuristic search methods extensively reviewed in the book
by Grimson [16], as well as alignment methods [21]. Jurie [23] has extended the
RAST algorithm to optimal matching under a Gaussian error model, also using a
matchlist approach.

14.4. Hausdorff matching

Huttenlocher and Rucklidge [20,30] describe another approach to point matching
under a quality of match function closely related to bounded error models. The au-
thors consider a special transformation space, the space of translations and aniso-
tropic scaling. Like HCMA, their approach relies on a discrete Voronoi surface
and quickly rules out suboptimal transformations. The sampling in the method is
guaranteed only to exclude suboptimal solutions; therefore, the solutions computed
by their algorithm are globally optimal.

14.5. Point location and distance transform approaches

Both Hagedoorn and Veltkamp [18] and Mount et al. [26] have proposed branch-
and-bound type algorithms for geometric matching using point location data
structures for an efficient computation of Q̂QðTÞ. Hagedoorn and Veltkamp [18] also
introduced the term ‘‘swept area,’’ which is a particularly lucid way of naming a key
step in the computation of Q̂QðT Þ. Olson [29] proposes the use of point location data
structures or distance transforms in these kinds of algorithms. These algorithms are
true branch-and-bound algorithm, relying on a recursive subdivision of transforma-
tion space with explicit bounds, and guaranteeing the complete exploration of the pa-
rameter space. They are closely related to Borgefors!s HCMA [4] and Huttenlocher
and Rucklidge!s [20] approach, if we view the Voronoi diagram as a simple and effi-
cient point location data structure. But because, unlike the discrete Voronoi diagram,
point location data structures can determine proximity without quantization, these
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algorithms can guarantee finding approximations to the optimal matches to any de-
sired degree of accuracy.

While the use of point location data structures is appealing at first sight, as the
experiments presented in this paper show, they do not usually result in speedups
on common problems. This actually already becomes apparent when measuring
execution profiles of matchlist-based code: the computation is usually not domi-
nated by distance computations, and hence, the introduction of a point location
data structure would not be expected to help. We have also seen the reason for
this: without using matchlists, a branch-and-bound method needs to transform
and examine every model point during each evaluation of Q̂QðT Þ; since transform-
ing model points is a costly operation, this results in a substantial overhead rel-
ative to matchlist-based approaches even if performing point location took no
time at all. However, this paper is the first that compares the two approaches
empirically, and there may be interesting conditions or computational tricks to
combine the approaches or overcome this issue, and this might be an interesting
area for future research.

The use of point location data structures also significantly complicates the imple-
mentation of branch-and-bound algorithms for geometric matching, since it requires
the careful implementation of an efficient geometric data structure, separately from
the matching algorithm. When features involve orientation information, consists of
line segments (as in Sections 9.4 and 13), or when error bounds are transform depen-
dent or correlated, the resulting data structures require searches over three or higher
dimensional spaces, possibly with variable metrics and topologies that differ from Rn.

A matchlist-based approach, in contrast, effectively performs point location im-
plicitly along with the matching algorithm and requires no separate data structure.
An additional example of the utility of matchlist-based approaches can be found
in [15], which describes two geometric algorithms that rely in an essential way on
matchlists.

14.6. Using alignment to speed up branch-and-bound methods

Another idea that has been examined in the literature a number of times is the use
of alignments to speed up matching in branch-and-bound algorithms. The idea is to
use alignments to generate candidate transformations and then apply some form of
local search to find local optima. If we choose the region over which we perform lo-
cal search carefully, we can, in fact, guarantee that one of the local optima found in
that way actually is also the global optimum [23]. Alternatively, we can use align-
ments to sample the space of potential solutions and be satisfied with finding a good
or optimal solution with high probability [26]. If we incorporate the use of align-
ments to find starting points for further exploration into an algorithm that does
not utilize matchlists, we would expect to see noticeable speedups. The reason is that
the initial alignment cuts down the set of possible correspondences greatly, and
methods that use this combination of alignment and local search generally take
advantage of this fact.
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However, once matchlists are incorporated into the branch-and-bound algo-
rithms, it can be argued that using alignment to start local searches does not result
in improved performance, and may actually slow down matching. One indication of
this is the results presented in Section 12. From those results, we see that, since align-
ment and branch-and-bound methods scale in the same way (and apparently with
similar constants), it seems likely that incorporating alignment to find starting points
for the branch-and-bound method would result in better scaling behavior. Further-
more, if we assume that that the implementation of the alignment method and the
implementation of branch-and-bound method described in Section 12 are of compa-
rable quality, the timings described in that section suggest that performing branch-
and-bound searching both globally and locally is actually less than even just picking
and evaluating all the possible alignments.

We could explain an absence of improvements resulting from the incorporation of
alignment methods into matchlist-based branch-and-bound methods as follows. A
matchlist-based branch-and-bound algorithm will stop exploring regions of transfor-
mation space that do not contain good matches before it has needed to expend much
computation on attempting precise geometric matches. Alignment-based methods,
however, usually pick alignments without being able to take other information into
account and only discover that particular alignments are poor or similar to each
other after already having expended considerably effort on their evaluation.

In fact, historically, the development of matchlist-based branch-and-bound
methods for geometric matching described in [6] resulted from attempts to quickly
eliminate ‘‘uninteresting regions in transformation space’’ in correspondence-
based algorithms with exact, optimal error propagation, described in [5]. The
branch-and-bound method described here retains the matchlist from the correspon-
dence-based algorithm but has become both simpler and more efficient by allowing
transformations to be evaluated at points other than those determined by
alignments.

15. Conclusions

While a number of different approaches have been proposed in the literature for
branch-and-bound style geometric matching algorithms, using various data struc-
tures for estimating upper bounds, the experimental results presented in this paper
strongly suggest that a matchlist approach is the simplest and most efficient ap-
proach under many common conditions. The experimental comparisons presented
in this paper to commonly used approximations to geometric matching problems,
like alignment and the Hough transform, also suggest that optimality really does
yield matches that are of significantly higher quality than those commonly used ap-
proximations. Since it is also the simplest to implement among the branch-and-
bound methods for geometric problems, it should probably be the first choice for
anybody needing to solve geometric matching problems. In addition to the results
presented here, the algorithm has been applied to many practical problems. The in-
terested reader can find further information about applications to appearance-based
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3D object recognition [8], character recognition [10], feature extraction [11], and doc-
ument image analysis [14].

Of particular note are two novel applications of the matchlist-based approach to
complex geometric optimization problems: the results on line segment matching de-
scribed above and the two geometric algorithms described in [15].

The main goal of this paper has been to give readers enough detailed information
to allow them to implement branch-and-bound methods to solve their own geomet-
ric matching problems easily and correctly. To this end, the paper contains some ref-
erence information about implementation strategies, transformation spaces, and
quality of match measures. It also contains a number of experiments that highlight
various behaviors of the algorithm and compare it empirically with alternative im-
plementation strategies.

While this paper has examined a number of basic tradeoffs in the design of
branch-and-bound algorithms for geometric matching, many properties of these al-
gorithms still remain to be explored, both experimentally and theoretically.
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