An Algorithm for Finding Maximal Whitespace Rectangles at Arbitrary
Orientations for Document Layout Analysis

Thomas M. Breuel
PARC, Inc., 3333 Coyote Hill Rd., Palo Alto, CA 94304, USA

Abstract

The analysis of the background structure (whitespace) of
page images has become an important technique for phys-
ical document layout analysis. Globally maximal whites-
pace rectangles have been previously demonstrated to con-
stitute a concise representation of the major layout fea-
tures of documents. However, previous methods for com-
puting maximal whitespace rectangles were limited to axis-
aligned rectangles. This paper presents an algorithm that
finds globally maximal whitespace rectangles on page im-
ages at arbitrary orientations. The new algorithm elimi-
nates the need for page rotation correction prior to back-
ground analysis and can be applied to considerably more
complex page layouts than previously possible. The algo-
rithm is resolution independent and takes as input a list of
foreground shapes (e.g., character or word bounding boxes
or polygons) and a set of parameter ranges, it outputs the
N largest non-overlapping maximal whitespace rectangles
whose parameters (location, width, height, orientation) fall
within the required parameter ranges. Examples of appli-
cations of the method to severely skewed documents, as well
as the UW3 database, are presented.

1 Introduction

Many methods for document layout analysis based on
the structure of the page background have been described
in the literature (e.g., [1]; [4] is a review with pointers to
additional papers). Morphological approaches use structur-
ing elements to “smear” together foreground page elements
and identify large regions of page background. Voronoi-
based approaches compute distance transforms or Voronoi
diagrams for the elements constituting the page foreground
and analyze the boundaries between Voronoi cells[6].

Page background analysis in terms of maximal rectangu-
lar whitespace regions has been explored in detail in [1, 2].
Rectangular regions are natural for describing background
structure because textual regions are usually approximately
rectangular themselves, making the background whitespace
representable as the union of a fairly small number of

whitespace rectangles. The methods described in [1] use
line sweeps to enumerate locally maximal whitespace rect-
angles, and in a postprocessing step select rectangles sat-
isfying optimality criteria. Those sweep algorithms are ef-
ficient, but they tend to be difficult to implement and do
not return results in best-to-worst order. A very easy-to-
implement algorithm that returns results in best-to-worst or-
der was described in [2]. That paper also demonstrated how
optimality criteria can be defined, based on proximity of
the whitespace rectangles to character bounding boxes, that
result in near perfect identification of column boundaries
by whitespace analysis, and how the detection of column
boundaries can be extended into a complete physical page
layout analysis.

Both line sweep and branch-and-bound algorithms find
maximal whitespace rectangles whose sides are aligned
with the page coordinate system. When presented with
pages at even a small rotation angle, such algorithms fail:
rectangular whitespace column separators are potentially
very narrow, and an axis-aligned rectangle fails to “fit in”
properly even at small rotation angles. In fact, the longer a
whitespace column separator is, the narrower it can be and
remain visually salient, exacerbating the problem.

This problem can be addressed by correcting for page
rotation or skew prior to applying such whitespace analysis
techniques. However, determining page rotation very ac-
curately is considerably less reliable in multi-column docu-
ments.

Since, based on prior results, rectangular whitespace
analysis appears to be a highly reliable method for detecting
major layout features in documents whose features are axis
aligned, it would seem conceptually easiest to extend the
method to work on non-axis aligned whitespace rectangles.

2 Non-Axis Aligned Maximal Whitespace
Rectangles

2.1 Geometric Preliminaries

We assume as input to the algorithm an outside bounding
box 7, and a set of axis-aligned rectangular obstacles collec-

tion of rectangles C' = {rg,...,r,} (the algorithm works
without changes for non-axis aligned rectangular obsta-
cles or arbitrary polygonal obstacles). A non-axis aligned
whitespace rectangle s can be described in terms of five pa-
rameters: its center s = (s, Sy), its width s,,, its height
Sn, and its orientation s,,. Without loss of generality, let us
picture the rectangle as being taller and narrow, and refer to
its closer-to-vertical axis as its major axis. The direction of
the minor axis is then v, = (cos ¢, sin «), and the direction
of the major axis is v = (—sina, cos a).

Now, let us assume that we are given four of these five
parameters: the center s., the width s,,, and the orientation
So- Once we have chosen these four parameters, we can
easily determine the maximum whitespace rectangle con-
sistent with them: we project all the obstacles that are closer
than s,, to the major axis onto the major axis and compute
the minimum distance of each projection from the center of
s. Let us call Q(sz, sy, Sw, So) the function that computes
the maximum area achievable for a given set of parameters
Sz, Sy, Sw,and sq.

Now consider all the r; that are close to the major axis
than s,,. We wish to compute the minimum distance of all
those rectangles from the minor axis; this be the maximum
height 3, achievable by the rectangle s under the given pa-
rameters. Then, Q(sz, Sy, Sw; Sa) = Sw Sh.-

In order to compute the distance of each obstacle from
the minor axis, we need to distinguish two cases. If the
obstacle straddles the minor axis, its distance is zero. Oth-
erwise, its distance is the minimum of the distances of each
of its corners p; ; for j = 1...4. We can determine both
cases by considering the dot products v - (p;j — s¢). If
there are two such dot products that have different signs,
then the obstacle straddles the minor axis and its distance is
zero. Otherwise, its distance is min; [v2 - (p;.; — s¢)]-

This minimum-distance rectangle functions a little bit
like the pivot in the axis aligned algorithm. If we iterated
through all the possible centers, widths, and orientations,
we could determine the non-axis aligned maximal whites-
pace rectangle this way—very slowly, however.

What we need is a more efficient way of exploring the
parameter space of possible solutions. If we could deter-
mine for whole ranges of parameters that there is no good
solution possible, we could eliminate large regions of the
parameter space quickly. Fortunately, interval arithmetic [5]
provides us with just that capability.

2.2 Interval Arithmetic

Interval arithmetic replaces the numerical values in arith-
metic expressions with intervals and provides rules for com-
puting with those intervals. Let o be an arithmetic opera-
tor and u = [u,] and v = [v, D] intervals of real numbers.

Then we extend o to intervals by defining

wov=[min wov, max woul
It is easily seen that applying this rule consistently in the
extension of some function f to interval arithmetic, then
computing
[y,?] = f([lvf})

we are guaranteed, for every x € [z,7Z] that y € [y,7],
where y = f(x), and analogously for functions of multi-
ple arguments. f([z,Z]) is called a natural inclusion func-
tion for f(z), and while its interval result [y, 7] does not
represent tight bounds, if f is sufficiently smooth, then the
interval [y, 7] is guaranteed to become narrower as the in-
terval [z, 7] becomes narrower. Interval arithmetic provides
us with an efficient means for computing such extended op-
erators, and there are libraries and compilers that provide
intervals and operations on them as built-ins. For more in-
formation on the subject, the reader is referred to the litera-
ture [5].

2.3 Computing Bounds

Using interval arithmetic, we have now the tools in hand
to structure the search. Instead of finding the maximum
whitespace rectangle for a specific choice of four param-
eter values, we replace sz, sy, Sy, and s, with intervals.
Our overall goal in this section is to extend the function
Q(Sz, Sy, Sw, Sa) to a natural inclusion function. Since the
evaluation of Q(Sg, Sy, Sw, S«) involved some conditionals,
we cannot simply replace its operators with interval equiv-
alents, but need to analyze its evaluation more carefully.

First, we need to determine the distance of each obsta-
cle from the major axis of s. In the non-interval case, ev-
ery obstacle whose distance from the major axis was less
than s, limited the value of s;. However, now that we are
using ranges of parameters, comparing distances with s,
can have three answers: definitely less than s,,, definitely
greater than s,,, or indeterminate. Only in the case that the
obstacle is definitely closer to the major axis of s than any
value in the interval s,, do we use its distance from the mi-
nor axis to limit the value of s;,. When the obstacle is defi-
nitely farther away from the major axis of s than any value
in the interval s,,, we remove the obstacle from further con-
sideration. When the comparison is indeterminate, then we
retain the obstacle for future consideration but do not use it
in restricting the value of s;, further.

The projected distances of the p; from the center of s,
| - (pj — sc)|, then also become intervals. An obstacle
definitely straddles the minor axis if one of these dot prod-
ucts is definitely less than zero and another one is definitely
greater than zero. Otherwise, the projected distances are the
minima of the interval distances of the individual corners of
the obstacle, as before.

24 Search

Using the above methods, we can compute bounds on
Q(Sz, Sy, Sw, Sa) Over parameter ranges easily and effi-
ciently. What remains is to structure the search in such a
way as to be able to quickly exclude large regions of pa-
rameter space that cannot contain good solutions. We take
a branch-and-bound approach over the four dimensional pa-
rameter space, similar to the approach used in [3]. To make
the search efficient, we keep track of points that need to be
involved in further comparisons using matchlists [3]. The
overall algorithm is as follows:

e We maintain a priority queue of potential solution.

e Each potential solution consists of intervals for the four
parameters s, Sy, Sy, Sq, together with a list of potential
obstacles. The cross product of the four intervals defines a
hyper-rectangle in the four-dimensional parameter space.

e The priority queue is initialized with a single element,
consisting of intervals representing the entire range of pa-
rameters to be searched and the r; as candidate obstacles.

e During the search, we remove the top element from the
priority queue.

o If the range of parameters is numerically sufficiently ac-
curate, we return it as a solution; the lower bounds of its pa-
rameter intervals are guaranteed to correspond to a maximal
empty rectangle to within the desired numerical accuracy.

e Otherwise, we split one or more of the intervals of pa-
rameter values in half, giving us a rectangular subdivision
of the four dimensional region in parameter space we were
searching in this step. For each of the parameter subregions
and the set of candidate, we carry out the following steps.

e Using the algebraic methods described in the previous
section, we remove from set of candidate obstacles those
that are definitely further away from the major axis than the
interval s,,..

e Among the remaining obstacles, we compute the interval
5p, of possible minimal distances of those rectangles from
the minor axis.

e Finally, we remove all those obstacles whose distance
from the minor axis is definitely larger than the 55, we just
computed. (Alternatively, we retain the 55 from the parent
region and combine this step with Step 2.4.)

e We enqueue each subregion and its list of remaining ob-
stacles into the priority queue, using its range for s,, - §;, as
the priority.

This algorithm can be implemented in about 400 lines of
C++ code, using small libraries implementing interval arith-
metic and simple data structures. Multiple, non-overlapping
solutions can be obtained efficiently as described in [3].

Two other practical implementation issues remain to be
described. First, we probably do not want to obtain empty
rectangles that extend far beyond the page border. We could
impose this constraint by choosing carefully the parame-

ter regions that the algorithm explores. However, it is both
simpler and faster to create an actual bounding box out of
rectangular obstacles placed around the region we wish to
search; this will impose the bounding box constraint exactly
with no further algorithmic complications.

Second, as observed in previous work on background
analysis using axis aligned rectangles [2], documents con-
tain many locally maximal whitespace rectangles that do
not correspond to semantically meaningful layout compo-
nents. What was shown in that paper is that we can reli-
ably distinguish such spurious whitespace rectangles from
semantically meaningful ones by taking into account the
proximity of a whitespace rectangle to foreground compo-
nents: semantically meaningful components will almost al-
ways separate something; that is, they will have a signif-
icant density of foreground components close to each of
their sides. This additional constraint can be incorporated
easily into the current algorithm. Above, we already the
distance of each obstacle from the major and minor axis us-
ing [va - (pij — se)| and |vg - (pij — sc)|, where p; ; is
one of the corners of the obstacle. If these distances are less
than s,,, the obstacle protrudes inside the rectangle s; fur-
thermore, the sign of the dot product tells us which side of
the axis the obstacle is on. To require a minimum number
of obstacles within a border 3 of the rectangle, we simply
check for the number of obstacles whose distances from the
major axis are between s, and s,, + 3 and whose distances
from the minor axis are between §; and §;, + (3. Further-
more, we retain these additional obstacles on the obstacle
list, so that they will be taken into account by each child of
a search node.

3 Experimental Results

To evaluate the performance of the algorithm, it was ap-
plied to documents with varying degrees of skew, rotated
page images derived from ground truth by bitmap rotation,
and to unaltered documents from the UW3 database. All
images used in the experiments are letter-sized pages repre-
sented at 300dpi (approximately 2550 by 3300 pixels). Vi-
sually comparing the performance on images scanned at an
angle or derived by bitmap rotation from given page images
showed that the algorithm reliably found the rotated whites-
pace region corresponding to the maximal whitespace rect-
angle identified by the algorithm described in [2]. Further-
more, detection of whitespace regions by the algorithm at
an angle was not significantly slower than detection of up-
right whitespace regions. Figure 1 shows a representative
example of such images.

Based on these preliminary results, a large scale evalua-
tion of the performance of the algorithm was carried out on
the UW3 database, which contains a wide variety of docu-
ment layouts (that database does not have much variability

Eﬁ‘ﬂé‘é’gwﬁg AR,

(a) (b)

N
n}

()

Figure 1. Figure illustrating the progress of the branch-and-bound search. In (a) and (b), the hatched
region in the center shows the parameter ranges for s, and s, being explored. The lightest rectangles
(pink) are shown to provide context and do not participate in the evaluation (i.e., they are not on the
obstacle list). The darker, unfilled rectangles (blue) are rectangles on the list of obstacles. The black,
filled rectangles are all the obstacles that have resulted in constraints being placed on s; within the
single iteration depicted by each of the panels. (a) shows the search early on, (b) shows the search
after parameter intervals have become sufficiently small to result in substantial reductions of the list
of obstacles. Panel (c) shows the exploration of parameter space in s, and s, on the set of obstacles
(light gray) and the solution (light gray or green). For clarity, the ranges of the parameters were
restricted slightly. Note that in most areas of the page, the search tree is not explored very deeply.

in terms of skew, but, as noted above, that does not affect
the running times or error rates significantly). The purpose
of those experiments was primarily to determine the perfor-
mance of the algorithm on complex real-world layouts. Two
sets of experiments were conducted. In the first set, the al-
gorithm was presented with the same set of obstacles used
in previous experiments [2]; those obstacles were derived
from the raw bounding boxes for connected components on
the page by removing very small and very large bounding
boxes and grouping very closely spaced bounding boxes to-
gether. Those are operations that can be carried out reliably
even without knowing or correcting for page rotation, as
long as the page is not too severely rotated. The running
times on those experiments are shown in Figure 2 (b). To
test the algorithm on larger inputs and to remove the need
for any kind of processing after connected component anal-
ysis, in a second set of experiments, the algorithm was ap-
plied to the raw set of bounding boxes for all the connected
components of on the page. The running times from those
experiments are shown in Figure 2 (c).

4 Discussion

This paper has described a simple, practical, and robust
algorithm for finding non-axis aligned maximal whitespace
rectangles given a list of obstacles and a bounds on the pa-
rameters. Experimental results show the algorithm to work
efficiently and robustly on real-world documents; the algo-
rithm takes a median of less than a second on preprocessed
bounding boxes (up to 1400 obstacles) and less than eight
seconds for raw bounding boxes (up to 11000 obstacles) for
any page image from the UW3 database. The algorithm
can also easily be modified to use, say, convex polygons in-
stead of axis aligned rectangles to describe the foreground
structure (making the approach entirely rotation invariant),
or find other maximal shapes, like circles, squares, ellipses,
rounded rectangles, etc.

Together with prior results [2] demonstrating the use of
maximal whitespace rectangles and proximity as the ba-
sis of reliable physical document layout analysis, this now
gives us a simple two-step process for recovering the major
layout components of a document:

o Find the non-axis aligned maximal whitespace rectangles
satisfying proximity conditions to foreground components.

T Ty o by :
b iy WEE"‘L“ [

Running Time (in seconds)

EEE

] EEEE

(a)

(b) Number of Obstacles

T T T T T T T T T T T T
0 000 200 00 4000 SO0 G000 700D GO0 0O 10000 700D

(C) Number of Obstacles

Figure 2. Panel (a) shows the optimal solution (solid black rectangle) for a severely skewed mixed
1/2-column document (obstacles are solid dark gray outlines; document is 2592 by 3300 pixels).
Panels (b) and (c) show the running times (as obtained using the “time” command line function on
a 1GHz PC running Debian Linux) of the algorithm by the number of obstacles. Panel (b) shows
running times when using grouped bounding boxes as obstacles and Panel (¢) shows running times
when using raw bounding boxes as obstacles. The horizontal axis shows the number of obstacles
and the vertical axis the running time in seconds. Running times are shown as standard statistical
boxplots (the central line is the median, and the box shows the two quartiles).

e Use those obstacles together with a constrained line find-
ing algorithm [2] for finding the text lines in each column.

This approach obviates the need for a separate document
image deskewing step. The advantage of this new two-step
approach is that it eliminates a potential source of errors
(incorrect skew correction, particularly common in multi-
column documents), and that it allows the system to cope
directly with documents in which text is present in multi-
ple orientations (e.g., scanned books, in which facing pages
often have slightly different orientations). By removing the
need for one software component and processing step, the
layout analysis system can also be simplified and slightly
speeded up; the speedup is a consequence of the fact that
the non-axis aligned maximal whitespace rectangle algo-
rithm has comparable running times to a high quality skew
detection algorithm and makes the initial skew detection
step redundant—after whitespace analysis and constrained
line finding, the page skew is known anyway.

Overall, given this algorithm and the constrained line
finding algorithm described in [2], we have a suite of tech-
niques and algorithms at our disposal that are resolution
independent and work in terms of geometric objects (as
opposed to image processing), that have practical running
times for real-world documents, that compute globally op-
timal solutions with well-defined geometric properties, and
that are concise and easy to implement. A more careful
evaluation of the quality of the layouts found by these meth-
ods as part of an end-to-end document layout analysis sys-
tem remains to be done; this paper has concentrated on al-

gorithmic issues, presenting these methods as tools that can
be used by others in the community, and demonstrating that
such methods have performance that make them practical
for real-world applications.

References

[1] H. S. Baird. Background structure in document im-
ages. In H. Bunke, P. S. P. Wang, & H. S. Baird (Eds.),
Document Image Analysis, World Scientific, Singapore,
pages 17-34,1994.

[2] T. M. Breuel. Two algorithms for geometric layout
analysis. In Proceedings of the Workshop on Document
Analysis Systems, Princeton, NJ, USA, 2002.

[3] T.M. Breuel. Robust least square baseline finding using
a branch and bound algorithm. In Proceedings of the
SPIE - The International Society for Optical Engineer-
ing, page (in press), 2002.

[4] R. Cattoni, T. Coianiz, S. Messelodi, and C. M. Mod-
ena. Geometric layout analysis techniques for docu-
ment image understanding: a review. Technical report,
IRST, Trento, Italy, 1998.

[5] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied
Interval Analysis. Springer Verlag, Berlin, 2001.

[6] K. Kise, A. Sato, and M. Iwata. Segmentation of page
images using the area voronoi diagram. Computer
Vision and Image Understanding, 70(3):370-82, June
1998.

