On the Use of Interval Arithmetic in
Geometric Branch and Bound Algorithms

Thomas M. Breuel

Palo Alto Research Center
Palo Alto, CA 94304, USA
E-mail: tmb@parc.com

Abstract

Branch and bound methods have become established methods for geometric matching over
the last decade. This paper presents techniques that improve on previous branch and bound
methods in two important ways: they guarantee reliable solutions even in the presence of
numerical roundoff error, and they eliminate the need to derive bounding functions man-
ually. These new techniques are compared experimentally with recognition-by-alignment
and previous branch and bound techniques on geometric matching problems. Novel meth-
ods for non-linear baseline finding and globally optimal robust linear regression using these
techniques are described.

Key words: visual object recognition, geometric matching, interval arithmetic

1 Introduction

Extensive research has been carried out over the last few decades on algorithms
for geometric matching (Grimson, 1990). The introduction of branch and bound
algorithms provided perhaps the first practical algorithms for geometric matching
that guarantee globally optimal results (Breuel, 1992; Huttenlocher et al., 1993;
Hagedoorn and Veltkamp, 1997; Mount et al., 1999; Jurie, 1999; Olson, 2001).
In parallel with the development of branch and bound algorithms in computer vi-
sion, interval arithmetic has been developed for applications in computer graphics,
robotics, and global optimization (Jaulin et al., 2001).

This paper describes the implementation of branch and bound algorithms using in-
terval arithmetic and presents experimental results showing that interval arithmetic-
based branch and bound algorithms for geometric matching are practical. This
yields geometric matching algorithm that are numerically reliable, easy to imple-
ment, and that can be used with a very wide variety of quality of match functions.

Preprint submitted to Elsevier Science 5 October 2002

The paper briefly reviews the necessary techniques from branch and bound match-
ing and interval arithmetic, giving the reader the information necessary to apply the
method to their own matching problems.

2 Geometric Model Matching

To establish notation and review geometric matching, let us begin by defining
the problem of geometric matching under translation and rotation (other matching
problems will be considered below). Assume we are given a set of model features
(points in the image plane), M = {m;,...,m,} C R? and a set of image features
B = {by,...,b;} C R?. Optimal matching under a set of transformations T can
then be written as

Topt = argmax Q(T) (1)

where we define the quality of match as a function Q(7")
QT) = max oc([|Tm; — b,|l) (2)
=177

Here, ¢. is a weighting function on the location error. The set of transformations T
can be any of a wide variety of transformation spaces, such as the space of transla-
tions of R?, the space of translations and rotations of R?, or the space of translations,
rotations, and scale changes of R?. For bounded error matching, corresponding to
maximum likelihood solutions under a uniform error model, the weighting function
is ¢ () = 1if = < ¢; 0 otherwise. For robust least square matching, corresponding
to maximum likelihood solutions under a Gaussian error model (Wells 111, 1997),
the weighting function is:

¢c(z) = max(0,1 —) 3)

3 Branch and Bound Algorithms

With these definitions of quality of match functions, finding globally optimal maxi-
mal bounded error, robust least square, or maximum likelihood matches now amounts
to a global optimization of the functions () derived in the previous section. This can
be accomplished using branch and bound optimization algorithms. Applications of
branch and bound algorithms to matching problems have been described in the
computer vision literature (Breuel, 1992; Huttenlocher et al., 1993; Hagedoorn and
Veltkamp, 1997; Mount et al., 1999; Jurie, 1999; Olson, 2001). Let us briefly review
how these algorithms work.

(a) (b)

Fig. 1. Maximum Likelihood Line and Circle Detection
Example of a globally optimal maximum likelihood match for a line and a circle. The image
was captured with a digital camera and the features consist of 2248 points samples from
edges extracted using a Canny edge detector. The likelihood function was calculated using
the interval arithmetic method described in the paper.

Let the entire parameter space T consist of a Cartesian product of parameter ranges
[to, To] X [t1,t1] X ... X [t,, t,]. Here, the notation ¢ and ¢ just denotes two different
real variables, ¢ < ¢. We refer to such Cartesian products of intervals as boxes or
interval vectors. The input to the algorithm consists of the likelihood or quality
of match function to be optimized, Q(7). Let T; C T be a box — an axis-aligned,
hyper-rectangular subset of the entire parameter space. Furthermore, let g, = Q(T})
be an upper bound on the maximum of () over T, that is Q(ﬂ) > maxper, Q(T).
The algorithm maintains a priority queue of boxes, ordered by the upper bounds @;:

N

(1) Let Ty, = T, Compute g, = Q(7p) and insert (75, G,) into the priority queue,
using the upper bound of g as the priority.

(2) Remove the top element from the priority queue and call it (7, ;).

(3) Check for termination, for example based on the desired numerical accuracy
of the solution or other criteria (see below).

(4) Otherwise, subdivide 7; into smaller boxes, for example, by splitting it in half
along a coordinate.

(5) For each T}, compute g, = Q(T,) and insert (T}, 7,) into the priority queue,
using the upper bound g, as the priority.

(6) Continue at Step 2.

This approach to geometric matching has been demonstrated to work well in prac-
tice and has been used in a number of applications (Breuel, 1992; Huttenlocher
et al., 1993; Hagedoorn and Veltkamp, 1997; Mount et al., 1999; Jurie, 1999; Ol-
son, 2001). One technique that greatly simplifies its implementation is the use of
matchlists (Breuel, 2002a). Briefly, in addition to the 7}, we also keep track, for
each node in the priority queue, of a list of correspondences between image and
model features that still result in a non-zero contribution to the overall quality of
match function. For a more detailed discussion, the reader is referred to the refer-
ences.

A key problem in its implementation is the derivation of the bounding function
Q(Tl) Existing algorithms all rely on a case-by-case derivation. For example,
Breuel (1992) relies on the linear relationship described in Baird (1985). Hutten-
locher et al. (1993), Hagedoorn and Veltkamp (1997), and Mount et al. (1999) rely,
explicitly or implicitly, on Lipshitz bounds or uniform continuity.

Another issue with a straightforward implementation of the algorithm is that it is
not necessarily reliable, in the sense that floating point roundoff errors may cause
the algorithm to lose solutions. In particular, without special precautions, a numer-
ical evaluation of Q(T}) is not guaranteed to be an upper bound for maxrer, Q(T).

It turns out that both problems can be addressed through the use of interval arith-
metic. Mount et al. (1999), suggests “propagating uncertainty through” the compu-
tation of Q(7") without elaborating further. Interval arithmetic provides us with a
simple, well-defined, and well-studied means for doing this.

4 Interval Arithmetic

Interval arithmetic was originally proposed as a means of bounding the error of
numerical computations. For detailed information about interval arithmetic and its
implementation, the reader is referred to the references (Jaulin et al., 2001; Hickey
et al., 2001). Here, we will limit ourselves to an informal introduction and a de-
scription of some of the aspects of interval arithmetic we need for the computation

of Q(T).

Let x be any of the standard arithmetic operations, 4, —, or X . Furthermore, let [=
{[u,u)|lu < w; u,u € R} be the set of all closed finite intervals* Letx = [z, 7] € T
and y = [y, 7] € I be two intervals. We extend * to an operation over intervals [x]

by defining:

2[xly = [z, 7] [+ [y, 7]

= [min{u * v|u € [z,7],v € [y, 7]}, max{u * v|u € [2,7],v € [y, 7] }}4)

A function f has a natural extension to interval arithmetic, often denoted [f], that
is defined as follows:

f1([z, 7]) = [nf{f (u)|u € [z, 7]}, sup{f(u)|u € [z, 7]}] (5)

In the rest of this paper, to simplify notation, we will normally make no explicit
distinction between arithmetic operations and functions over the reals and their

1 'We will be using only a simple form of interval arithmetic in this paper that uses no
infinities. For a more general treatment, please refer to the references.

interval equivalents. It should be noted that if we identify the real number x with
the interval [z,], the above equations reduce to arithmetic over the real numbers;
in that sense, interval arithmetic is an extension of arithmetic over the real numbers.

It is easy to see that we can express the standard arithmetic operators more easily
than in Equation 4. For example, [z, 7]+ y,y] = [z+y, T+ 7| and [z, 7] X [y, 7] =
[min(zy, 27, Ty, TY), max(zy, 7, Ty, Ty)| . Furthermore, for a non-decreasing func-
tion f satisfying some additional technical conditions, f([z,Z]) = [f(x), f(T)].
This works for log, exp, and other functions. For functions like sin, abs, tan, sign
and others, a more careful case-by-case analysis is necessary. Interval arithmetic
can also be extended to interval arithmetic modulo 27, simplifying the implemen-

tation of matching algorithms involving angles.

In these definitions of interval arithmetic operations, the bounds themselves are still
real numbers, not finite precision floating point numbers, and as such are subject
to roundoff errors. This means that we cannot carry out interval arithmetic exactly
using floating point computations. However, it is quite easy to find intervals rep-
resentable as floating point arithmetic that include the infinite precision solution.
As it turns out, this is sufficient to guarantee numerical reliability of computations
based on interval arithmetic using finite precision floating point numbers (Hickey
et al.,2001).

For example, let & be floating point addition rounded to machine precision; this is
what a modern processor will compute. Furthermore, let prevfp(z) be the largest
floating point number representable that is smaller than, and different from, x and
let nextfp(z) be the smallest floating point number representable that is larger than,
and different from, x. Then it is easy to see that a+b € [previp(a®b), nextfp(a®b)].
Furthermore, [z, 7] + [y,7] C [prevfp(z @ y), nextfp(Z @ 7)]. This technique can
be easily extended to the other arithmetic operations, as well as standard transcen-
dental functions (Hickey et al., 2001).

These techniques can also be extended to vectors of intervals in the natural way
(Jaulin et al.,2001). For example, a vector (u, v) € R? corresponds to the product of
two intervals [u, 7] x [v, 7] C I? in interval arithmetic. We refer to such a Cartesian
product of intervals as an interval vector or simply a box.

Following standard terminology, we say that an interval function g : I — ' is an
inclusion function for a real function f : R” — R if

Ve el : {vjv= f(u),u € x} C g(z) (6)

That is, ¢ is an inclusion function for a function f over real vectors if g is a
function over intervals such that if an interval vector x includes a vector u, them
image of = under g includes the image of the vector u under f. Let us define
width([z,Z]) = T — x. We then say that g is a convergent inclusion function if,
for any sequence of intervals z; € 1" satisfying lim; .., width(x;) = 0, the inclu-

sion function satisfies lim; .., width(g(z;)) = 0; another standard theorem states
that convergent inclusion functions also satisfy g([x, z]) = f(z).

If a function f : R® — R™ is expressed in terms of arithmetic operators and
standard functions (sin, exp, etc.) and we symbolically replace the real arithmetic
operators and standard functions with their equivalents in interval arithmetic, as
defined in Section 4, we obtain an interval function fy; : I — I'™. It is a stan-
dard theorem in interval arithmetic that this interval function is an inclusion func-
tion for f, referred to as the natural inclusion function. Natural inclusion func-
tions are not necessarily minimal: rewriting an expression into a mathematically
equivalent form might give rise to a different inclusion function. The reason is that
[f o gl(z) C ([f] o [g])(x), with equality not guaranteed. But natural inclusion
functions are convergent if all the operators and functions involved in their con-
struction are continuous. This turns out to be sufficient for ensuring convergence
of the branch and bound geometric matching algorithm. When natural inclusion
functions are expressed in finite precision arithmetic, using the rounding methods
mentioned above, they become convenient means of computing reliable (though
not necessarily tight) bounds for functions over intervals or boxes. The resulting
functions also tend to have useful convergence properties, although this needs to be
established on a case-by-case basis.

5 Implementing Geometric Matching with Interval Arithmetic

Given these preliminaries, it is now easy to apply interval arithmetic to the com-
putation of the upper bound functions Q(ﬂ) Note that, by construction, the 7; are
interval vectors. We can therefore compute the natural inclusion function QJn; of
the interval vector 7.

Theorem. Let [q,q] = Qni(T;). Then, § > maxrer, Q(T).
Proof. This follows directly from the properties of natural inclusion functions. e

Furthermore, when () is continuous, then)y is convergent, a property that is nec-
essary to ensure correctness and convergence of the branch and bound algorithm.

If o = [g,, Qo) and ¢1 = [g,,] are the quality of match values computed for the
top two entries in the priority queue, we know that gy corresponds to a globally
optimal solution when ¢, > g,. The reason is that, because the priority queue is
ordered by upper bounds, we know that any remaining interval [ql., g;] must have an
upper bound that is lower than than g,. When the intervals g and ¢; are still over-
lapping, or when g, — g, is not small enough for the desired numerical accuracy,
we need to subdivide rectangles further until one interval is strictly greater than
the other (assuming that the two corresponding local optima have unequal quality
of match values). If this procedure does not find a solution, the search is termi-

il

(a) (b)

Fig. 2. Nonlinear Baseline Matching and Robust Regression
In Figure 2(a), the largest nonlinear baseline is found in a digital camera image of a page
with significant page curl using the algorithm described in the text (additional baselines
can be found with an n-best version of the algorithm). Figure 2(b) shows linear regression
using the algorithm described in the text. The solid line indicates ground truth. The dashed
line shows the optimal match found using the technique described in the text. The dotted

line is a standard least square regression.

nated when a predetermined limit of numerical accuracy is reached, that is, when
diam(7") < ¢ for some chosen § (0 might, for example, be determined by floating
point machine precision). When terminated like that, a reliable numerical algorithm
may return two (or more) incomparable optima together with their associated qual-
ity of match intervals. The meaning of such a solution is that the quality of match
function cannot be evaluated sufficiently accurately under the given numerical pre-
cision to determine which of the solutions is actually optimal. Note that this is a
limitation of the implementation of the quality of match function using finite pre-
cision arithmetic, not the search algorithm itself. In practice, this case is very rare
for common choices of §.

By combining interval arithmetic with branch and bound algorithms for geometric
matching in this way, we arrive at a global optimization algorithm very similar to
the global optimization algorithms described in Hansen (1980). In fact, many of
the results on convergence described in that work carry over. Geometric branch
and bound algorithms using interval arithmetic differ from the original algorithms
describe in Hansen (1980) in that the geometric algorithms use matchlists or point
location data structures to speed up the computation of () and that a number of
practically important techniques have been worked out in the geometric case to
allow, for example, the computation of n-best matches.

Computation of the natural inclusion function [Q](T") corresponding to a quality of
match function Q(7') is very simple in many modern programming languages using
features like overloading: (") is written down in terms of standard arithmetic op-
erators and functions, but using interval data types, and the compiler automatically
generates the corresponding natural inclusion function. Given suitable definitions

of 2D vectors, real intervals, and 2D interval vectors, this is how a term in the
quality of match function from Equation 1 is computed in a C++ implementation:

interval eval_likelihood_term(vec2 image,vec2 model,ivec2 translation,ivec2 rotation) {
return phi_epsilon(norm(cross(rotation,model)+translation-image));

}

This, and a range of parameters, is essentially the only information a user of the
algorithm needs to change in order to adapt the method to different recognition or
matching problems.

6 Experimental Results
6.1 Performance of 2D Matching

The bounds obtained from an interval arithmetic computation might be consider-
ably worse than those obtained from a manual derivation of bounds, due to prob-
lems like the “wrapping problem” (Jaulin et al., 2001). We need to establish exper-
imentally that this does not present a problem in the application of the algorithm.
This paper therefore compares branch and bound methods with manually derived
bounds and interval arithmetic; recognition by alignment (Huttenlocher and Ull-
man, 1987) is also used as a control.

The first method in these experiments, recognition by alignment, picks two points
from the model, two points from the image, and computes a transformation that
aligns the model pair with the image pair; the transformation is used to project the
remaining model points into the image and count the number of matching features.
Note that this is only an approximation to the bounded error matching problem, not
an exact solution. In the alignment algorithm implemented for these benchmarks,
two point location data structures were used to speed up alignment, one to limit the
set of image feature pairs considered to those consistent with the implied scale af-
ter picking a pair of model features, and a second data structure for quickly finding
matching image features when all model features are transformed using the align-
ment transformation; it was verified experimentally that use of these data structures
indeed resulted in a substantial speedup.

The second method is globally optimal branch and bound matching using match-
lists as described in Section 3 and the references. The geometric component of
the computation of the likelihood function was carried out using manually derived,
circular upper bounds on the swept area.

The third method uses the same code as the second method, except that it substitutes
the use of interval arithmetic for the manually derived formula for the computation
of bounds on the swept area.

nclutter | alignment | bbound, manual | bbound, interval | bbound, opt.
50 0.676 0.62 2.1 1.1
100 2.16 1.8 59 3
150 4.56 35 11 59
200 7.87 6.1 20 10

Fig. 3. Running Times on 2D Matching Task
The table shows a comparison of running times of three different algorithms on a 2D match-
ing task. The running times are given in seconds and represent averages of 200 trials. “nclut-
ter” is the number of random, non-model-derived background features.

The fourth method is similar to the third method but simulates the performance of
an optimizing compiler for interval arithmetic (see below).

Each problem instance was generated by picking 20 points from a spatially uniform
distribution in a 100 x 100 pixel area, deleting (“occluding”) 10 points picked at
random, translating and rotating the remaining points with a uniformly randomly
chosen translation and rotation into an area of size 512 x 512, perturbing the result-
ing locations by adding random vectors of magnitude smaller than the error bound,
and inserting a variable number (nclutter) of clutter points with uniform distri-
bution. This simple model of random instances of the geometric matching problem
has been used by a number of authors (e.g., Mount et al., 1999; Breuel, 2002a) and
has the advantage that it is easy to describe and reproduce. While it does not repre-
sent accurately every conceivable statistical distribution of image feature locations,
it appears to be reasonably predictive of the performance of geometric matching
algorithms on many real world problems involving significant amounts of clutter.

The running times of the methods were determined each on the same 200 problem
instances. It was verified that all the results returned by the branch and bound meth-
ods were identical to each other for each instance. The results of these benchmark
runs are shown in Table 3. Results are average running times per problem instance
on a modern 1GHz desktop PC running Linux and using the GNU C compiler ver-
sion 3.0.2. These results show an average overhead of a factor of 3.5 of the interval
arithmetic implementation relative to the branch and bound implementation using
manually derived bounds, and an overhead of 2.6 relative to the alignment algo-
rithm ? Execution profiling of the implementations suggests that the interval arith-
metic method spends up to 40% of its time in rounding operations. This overhead
can largely be eliminated with a better interval arithmetic library or by using a com-
piler with built-in support for interval arithmetic (e.g., available commercially from

2 Tt should be noted that the features in these random problem instances have no orientation
information associated with them. This makes the optimal matching problem considerably
harder than it would otherwise be.

Sun Microsystems). Such implementations of interval arithmetic change rounding
modes in only a few places, rather than invoking rounding operations for every
arithmetic operation. We can estimate the performance of such an optimized im-
plementation by removing rounding operations from the implementation, and the
overhead of using interval arithmetic drops to an average of 1.7 compared to man-
ually derived bounds.

Note that the method still works and still returns useful solutions if rounding opera-
tions are disabled in the interval arithmetic package. It still retains the advantage of
being easy to implement and easy to adapt to new problems. Disabling the rounding
operations just means that we cannot be certain anymore that no solutions are lost
to roundoff errors.

In summary, these benchmarks on 2D geometric matching suggest that global op-
timization of likelihood functions as they arise in geometric matching problems
using branch and bound methods and interval arithmetic are practical, even if there
is some overhead compared to alignment methods and branch and bound methods
with manually derived bounds. However, in return, the implementation based on
interval arithmetic guarantees globally optimal solutions even in the presence of
numerical roundoff errors, simplifies the implementation of bounding functions,
and hence arguably reduces the risk of programming mistakes.

6.2 Line Detection

Globally optimal line finding using a branch and bound algorithm was previously
described in Breuel (1996). That approach required a careful derivation of error
bounds and careful attention to how parameter space was explored. In contrast,
using the techniques described in this paper, globally optimal line finding under
a Gaussian error model required only expressing in C++ the computation of a
single term of the log likelihood function Q(0,7) = >, ¢.(dist(p;, lp,)), where
dist((z,y),lo,) = |(z,y) - (cosB,sinf) — r|. An example of a match found using
this implementation is shown in Figure 1. In the example, the image was captured
using a digital camera and scaled down to 1024 x768 pixels and 2248 edge points
were extracted. The interval arithmetic algorithm found the globally optimal robust
least square line match under, shown in Figure 1(a), an error bound of 5 pixels in
under a second.

To compare the overhead of the non-interval arithmetic methods with the interval
arithmetic methods on this task, edge samples were extracted from 400 images
from the COIL-20 image database. The task was to find the globally optimal robust
least square match of a line model against these points. The error bound used was
2 pixels, and the required numerical accuracy of the solutions was 10~2 for loca-
tion and 10~ for orientation (these are commonly used parameter values). The two
algorithms for line finding were implemented independently in C++. It was veri-

10

fied that the two implementations returned the same solutions. Running times were
measured and the ratio of running times for the two implementations on each of
the 400 images were determined. The geometric average of this ratio is 1.3, show-
ing that matching using interval-arithmetic has a modest overhead compared to the
manually derived bounds.

6.3 Circle Detection

Similar to line finding, circle finding was implemented using the log likelihood
function Q(0,7) = 3=, ¢c(dist(p;, cuv,r)) and using the weighting function from
Equation 3 with € = 5. The parameter space for circles is three-dimensional, and
in addition to allowing the center to fall anywhere within the image, the range of
radii considered was 30 pixels to 300 pixels. Running times on this data set were
a few seconds on a desktop PC, and the optimal match is shown in Figure 1(b),
suggesting that the method is practical. The only other globally optimal method
for circle finding appears to be the branch and bound method described in Olson
(2001); a performance comparison between that method and the method described
in this paper remains to be done.

6.4 Novel Applications

To show that the use of interval arithmetic makes it easy to create novel geomet-
ric matching methods, two problems for which previously only locally optimal or
heuristic methods were available were solved using interval arithmetic methods. In
both cases, the implementation was no more difficult than expressing the likelihood
function using C++ operators inside a generic driver routine.

Robust Nonlinear Baseline Detection Nonlinear baseline finding is an important
problem in document image analysis. It occurs, for example when pages are cap-
tured with digital cameras, which often exhibit significant lens distortion, or when
pages have significant page curl. An example is shown in Figure 2(a). An image
was captured using a digital camera and thresholded using an adaptive threshold-
ing algorithm. As is common for baseline finding algorithms, the lower center of
the bounding box of each connected component was used as a reference point (in-
dicated in the figure), and a quadratic baseline-and-descender model of the text line
was fitted (Breuel, 2002b). The best match is indicated in Figure 2(a) by a line;
additional matches can be extracted using the n-best techniques described in the
references (Breuel, 2002a).

Robust Linear Regression To perform robust linear regression, we attempt to op-
timize the quality of match function Q(m,b) = >, ¢(|ly; — (max; + b)|). This
is frequently done using expectation-maximization (EM) methods, which are not
guaranteed to return globally optimal solutions. A globally optimal robust linear

11

regression algorithm was implemented using the techniques described above by
expressing ()(m, b) with interval arithmetic and optimizing over b and m using the
methods described above. The test case shown in Figure 2(b) consists of a mixture
of two lines y = 0.7z 4+ 20 + 15, and y = —0.7x + 30 + v, where v, is a noise
component with a Gaussian distribution and 0 = 2. The technique described in
this paper achieved a nearly perfect separation of the two components, returning
an approximation of y = 0.69x + 19.9 for the first component (shown as a dashed
line in the figure). In contrast, a standard least square regression returns a best fit of
= 0.23x 4 23.5 (shown as a dotted line in the figure).

7 Discussion

This paper has presented an approach to geometric matching using branch and
bound methods and interval arithmetic. The shift from an explicit derivation of
bounding functions, as used in prior work on branch and bound matching algo-
rithms, has a number of important implications.

First, in many geometric matching problems of practical interest, deriving bound-
ing functions and implementing them correctly can be difficult and error prone. For
example, in the implementation of the line finding algorithm described in Breuel
(1996), the need for the interior circular arc segment was only noticed after exten-
sive testing. The experience with implementations of globally optimal algorithms
to real-world matching problems described above, several of which are for previ-
ously unsolved problems, shows that creating branch and bound matching methods
becomes as simple as expressing a term of the likelihood function when interval
arithmetic is used, and the resulting bounds are automatically correct.

Furthermore, the use of interval arithmetic also makes geometric matching numer-
ically reliable. That is, unlike other methods for solving such problems, these al-
gorithms guarantee that the algorithm terminates and no solutions are lost due to
roundoff errors 3 .

In addition, the use of interval arithmetic allows us to apply a variety of numerically
reliable and efficient local optimization methods like the Interval Newton method
(Hansen and Greenberg, 1983). This may improve on prior local search methods
(e.g., Jurie, 1999) in that it permits uniform treatment of global and local search.
This remains to be explored in future work.

The experiments presented in this paper on 2D matching and line finding show that,
even though it makes stronger guarantees, using interval arithmetic has comparable
complexity and is only moderately slower compared to manually derived bounds.

3 If two potential solutions cannot be discriminated to representable machine precision,
both solutions are returned and their incomparability is indicated.

12

Implementations of branch and bound geometric matching using interval arithmetic
also demonstrate that it yields useful and efficient, globally optimal matching algo-
rithms in a variety of applications. Note that the applications to robust least square
regression and robust non-linear baseline finding are novel; prior algorithms for
these two problems were both considerably more complicated and not guaranteed
to return optimal results.

Overall, the combination of interval arithmetic with the implementation techniques
described in Breuel (2002a) appears to be currently the best choice for many geo-
metric matching problems: it results in simple implementation that return numer-
ically reliable, globally optimal solutions and are practical and effective for many
geometric problems.

References

Baird, H. S., 1985. Model-Based Image Matching Using Location. MIT Press,
Cambridge, MA.

Breuel, T. M., 1992. Fast Recognition using Adaptive Subdivisions of Transforma-
tion Space. In: IEEE Conference on Computer Vision and Pattern Recognition.
pp- 445-451.

Breuel, T. M., 1996. Finding Lines under Bounded Error. Pattern Recognition
29 (1),167-178.

Breuel, T. M., 2002a. A comparison of search strategies for geometric branch-and-
bound algorithms. In: European Conference on Computer Vision. p. (in print).
Breuel, T. M., 2002b. Robust least square baseline finding using a branch and bound
algorithm. In: Document Recognition and Retrieval VIII, SPIE, San Jose. pp.

20-27.

Grimson, E., 1990. Object Recognition by Computer. MIT Press, Cambridge, MA.

Hagedoorn, M., Veltkamp, R. C., 1997. Reliable and efficient pattern matching us-
ing an affine invariant metric. Technical Report RUU-CS-97-33, Dept. of Com-
puting Science, Utrecht University.

Hansen, E., 1980. Global optimization using interval analysis — the multi-
dimensional case. Numerische Mathematik 34, 247-270.

Hansen, E., Greenberg, R. 1., 1983. An interval newton method. Appl. Math. Com-
put. 12, 89-98.

Hickey, T. J., Ju, Q., van Emden, M. H., 2001. Interval arithmetic: From princi-
ples to implementation. To appear in the Journal of the ACM; also available at
http://www.cs.brandeis.edu/ tim/.

Huttenlocher, D., Klanderman, G., Rucklidge, W., 1993. Comparing images using
the hausdorff distance. IEEE Transactions on Pattern Analysis and Machine In-
telligence 15 (9), 850-63.

Huttenlocher, D. P., Ullman, S., June 1987. Object Recognition Using Alignment.

13

In: International Conference on Computer Vision. IEEE, Washington, DC, Lon-
don, England, pp. 102-111.

Jaulin, L., Kieffer, M., Didrit, O., Walter, E., 2001. Applied Interval Analysis.
Springer Verlag, Berlin.

Jurie, F., 1999. Solution of the Simultaneous Pose and Correspondence Problem
Using Gaussian Error Model. Computer Vision and Image Understanding 73 (3),
357-373.

Mount, D., Netanyahu, N., Le Moigne, J., 1999. Efficient algorithms for robust
feature matching. Pattern Recognition 32 (1), 17-38.

Olson, C. F., June 2001. Locating geometric primitives by pruning the parameter
space. Pattern Recognition 34 (6), 1247-1256.

Wells III, W., 1997. Statistical approaches to feature-based object recognition. In-
ternational Journal of Computer Vision 21 (1/2), 63-98.

14

