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For the last years, artificial intelligence (AI) ap-
proaches have become useful tools in environmental en-
gineering. Here, one relevant application area is the op-
timization of wastewater treatment plants (WWTP).
In this paper, we present several examples for real-
time Control (RTC) tasks and decision support sys-
tems (DSS) for wastewater treatment (WWT), specifi-
cally based on case-based reasoning (CBR). Moreover,
we present an approach for optimizing the prediction
accuracy of these systems. The idea of this approach
is to employ knowledge-intensive similarity measures
instead of simple distance metrics. In order to facili-
tate the modeling of these measures resulting in lower
deployment costs of the CBR systems, we propose a
novel machine learning technique.
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1. Introduction

During recent years, a rising complexity of the
problems in the area of WWT can be observed. On
the one hand, major reasons can be found in the
increasing requirements for purification and the in-
terweaving to a high degree by connections and de-

pendencies between sewer system, WWTP, and re-
ceiving water etc. On the other hand, the technolo-
gies for measurements as well as the Computer-
aided control devices (CACD) have become more
powerful and less expensive. Nevertheless, such
systems are still a cost factor. Due to the fact of
low public budgets, the use of latest technologies
or even expensive enhancements in the WWTP in-
frastructure is often impossible.

Thus, approaches for optimization of existing
plants attract more and more attention, which
make extensive use of the plant-inherent poten-
tials. At this stage, methods and technologies from
AI have been discovered to play an important role.
Even though measuring and control technologies
are improving, the problem of incomplete or miss-
ing data still exists because many parameters are
difficult to determine or cannot be determined at
all. Furthermore, in specific cases, the measured
data might not be representative for the over-
all system. Therefore, it often happens that the
WWTP operator must control the plant rather
with his experience from past events than with so-
phisticated machines. When it comes to captur-
ing and especially drawing conclusions from expe-
riences, AI offers with CBR a powerful technology,
which has already proved its potentials in various
industrial applications (see, e.g., [1]).

In this paper, we will present several examples
for possible applications for CBR in WWT: In Sec-
tion 2, we take a short look at several CBR ap-
proaches for WWT, which can be found in litera-
ture. In Section 3 we will describe an architecture
for a predictive WWTP controller that bases its
decisions for the plant control on past events and
situations captured in cases. The system has been
tailored to sequencing batch reactors (SBR). We
will also present results of two offline CBR models,
which have been developed to predict the influent
flow rate and the sludge settling curves. Section 4
will focus on a DSS based on a CBR approach for
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Identification and Counteraction for Harmful Mi-
croorganisms in WWTPs.

The most CBR systems applied in the WWT
field nowadays employ general distance metrics to
estimate the similarity between problem descrip-
tions [9]. The only way to incorporate specific do-
main knowledge into such measures are feature
weights. However, in order to guarantee accurate
retrieval results in WWT domains, this is often
not sufficient. In Section 5 we will outline meth-
ods for the optimization of the prediction accuracy
of case-based WWT applications. We propose the
usage of knowledge-intensive similarity measures
that allow a more accurate modeling of the appli-
cation specific requirements. In order to reduce the
additional knowledge acquisition effort, we discuss
a novel approach for learning such similarity mea-
sures from case data. Section 6 ends with some
conclusions.

2. Related Work

Recently, an increasing number of publications
can be found that deal with CBR and wastewater
treatment, e.g.:

Krovvidy and Wee [7] developed an experimen-
tal CBR system, which was used to obtain the best
treatment train for a theoretical wastewater treat-
ment problem.

Kraslawski et al. [6] presented a case-based rea-
soning system for the selection of mixing devices
for WWTP.

Sànchez-Marrè et al. [12] developed the DAI-
DEPUR system. The system is based on an inte-
grated multi-level architecture for WWTP super-
vision in real-time. Like the SBR controller ap-
proach (see Section 3) to use multiple case bases
for the different control tasks, DAI-DEPUR main-
tains several knowledge bases that are connected
for solving the global control task. In contrast to
the SBR controller, DAI-DEPUR is kept more gen-
eral with respect to the supported WWTPs. Fur-
thermore, different knowledge-based approaches
besides CBR are deployed.

Cortés et al. [3] described an approach to put
forward a Knowledge Management Methodology
for EDSS.

Rodŕıguez-Roda et al. [11] presented a system
for supervision and control of the activated sludge
process of a continuous flow reactor plant (WWTP

Girona, Spain), which is based on a CBR part,
a knowledge based part and an adaptative con-
troller. Rodriguez-Roda et al. [10] also presented
a hybrid supervisory system to support the oper-
ation of WWTP Granollers (Spain).

Fenner and Saward [5] described a methodol-
ogy to produce a performance assessment model.
The model should identify changes in the inter-
nal conditions of sewer pipes. Amongst other data,
they built up a case base of performance histories.
The past performances are used to predict suitable
management strategies in a new situation.

Comas et al. [2] developed a tool for automatic
learning and reuse of knowledge in activated sludge
processes, which is based on a wastewater treat-
ment simulation model and a CBR tool.

In the next two sections, two CBR examples for
RTC and EDSS will be described in detail. Both
systems were developed for full-scale wastewater
treatment plants.

3. Example - Real Time Control (RTC)

3.1. Introduction

One of the several types of wastewater treat-
ment technologies, which are commonly used in
the world, is the SBR technology. In contrast to
a continuous flow plant, in a SBR all treatment
processes take place in one single reactor step after
step as illustrated in Figure 1. The time between
the beginning of the fill and the end of the treat-
ment process is called a cycle. The SBR technol-
ogy has a high process flexibility and treatment ef-
ficiency, because with the help of modern CACD it
is possible to adapt the duration of a cycle, the du-
ration of the different steps within each cycle and
the volumetric exchange ratio to the current re-
quirements. Unfortunately, most of the SBR plants
are still using fixed timer based control strategies;
until now, measuring devices are predominately
only used for monitoring.

3.2. Description of SBR-WWTP Messel

The WWTP Messel (Figure 2), which was put
into operation in 2000, is a modern SBR plant and
was designed for approx. 5,000 population equiva-
lents. The plant was designed for biological phos-
phorus removal, nitrification, denitrification, and
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Fig. 1. The concept of SBR

a maximum flow rate of 230 m3/h. The plant is
equipped with a modern CACD and numerous
online measurement equipment. According to the
static dimensioning, the plant is operated with a
cycle duration of 8 hours (h) during dry weather
flow, but during combined sewage flow it is neces-
sary to reduce the cycle duration to 6 h and thus to
increase the hydraulic capacity. The effluent limits
of WWTP Messel are very low (e.g.: 45 mg/l COD,
3 mg/l NH4-N), because the receiving waters are
very small and sensitive. Even though the WWTP
Messel is a small plant, it is a very complex tech-
nical system. Consequently, it is not quite easy to
operate such a system efficiently. This particularly
applies, because the WWTP is not permanently
manned and is operated by only one person.

Therefore, a research project has been initiated
to develop RTC strategies in simulation as well as
in full-scale and to assess the economic and ecolog-
ical benefits of RTC approaches [19]. In the first
part of the research project, very detailed com-
puter models of the combined sewer system and
the WWTP were used to develop several control
strategies. These strategies are based on ammo-
nia and nitrate sensors, as well as sludge blanket
and suspended solids probes. The results of the
WWTP simulation and full-scale operation show
that it is possible to reduce the cycle duration dur-
ing combined sewage flow in almost every case to
only 4 h without exceeding the low effluent limits.
This leads to an increase of the hydraulic capacity
of the plant up to 50 % by using the developed con-
trol strategies. In several cases, it should be even
possible to reduce the cycle duration to less than
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Fig. 2. Scheme of WWTP Messel

4 hours. With the help of the control strategies it
was also possible to further increase the treatment
efficiency significantly. E.g., it was possible to re-
duce the average total nitrogen (TN) effluent con-
centration from 6.4 to only 2.9 mg/l TN (0.1 mg/l
NH4-N) and thus to reduce the nitrogen emissions
into the receiving water by more than 50 %. But,
despite these positive results, there are still several
problems, e.g.:

– Due to the discontinuous principle and the
limited capacity of the buffer tank, it is nec-
essary in case of rainfall to reduce the cylce
duration as early as possible.

– The optimization potential depends on sev-
eral factors, e.g., influent load and wastewater
temperature, but these parameters can vary
significantly and sometimes rapidly.

– According to the German law, it is not allowed
to exceed the official effluent limits.

– Depending on the actual operating condi-
tions, it can be useful to use different opti-
mization criterions (e.g., increase of treatment
capacity vs. energy saving).

That means, the whole potential for optimiza-
tion can only be used, when a control strategy is
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used, which is able to act and not only to react.
Consequently, we developed a method that is ser-
viceable for a controller being able to predict as
early as possible the duration of a cycle, which is
necessary to achieve the treatment target. Further-
more, the controller also should be able to predict
other important operating data.

3.3. A Case-Based Predictive Controller

From our point of view, it seemed to be promis-
ing to develop a predictive controller based on a
CBR approach because of the following reasons:

– Beginning and end of the treatment process
are exactly defined. With a few restrictions,
this is also valid for the different treatment
steps of the cycle, which helps to determine a
case structure.

– It is important that the system works fast be-
cause the time delay between the beginning of
a rainfall event and an increase of the inflow
rate can be quite short.

– The practise shows that AI systems for WWTP
must deliver clear and understandable results,
because otherwise the system will not be ac-
cepted by the operators. Consequently, CBR
has a clear advantage, because the methodol-
ogy is easy to understand.

– Numerous of online monitoring data are avail-
able. With cycle durations between 3 and 9 h
the database will grow and learn very fast, i.e.
case and data acquisition is not a problem. In
order to ensure efficient retrieval when dealing
with huge case bases, one may apply differ-
ent strategies. One possibility is to store only
actually useful cases while throwing away re-
dundant and less useful cases (e.g. see [14]).
Another possibility is to employ efficient re-
trieval approaches [8,13].

3.3.1. Control System Architecture
Modern SBR plants often have a lot of on-

line measurement equipment. However, as a con-
sequence of higher treatment standards, reduced
prices for sensors, etc., a further increase in on-
line monitoring, especially for quality parameters
(e.g., NH4, NO3) can be expected. Due to this
fact, it will be possible to document the curves
of important processes within each cycle. Later
on, it would be possible to calculate the duration
of each treatment step, which would have been

sufficient to reach predefined effluent limit values.
The opportunities for a case-based predictive SBR
controller resulting from these circumstances are
promising. However, due to the enormous amount
of measurement data, it would not make sense to
use only one CBR model to predict the required
cycle duration and composition, because the data-
base would have to be extremely large. So, it is
promising to work with multiple domain models.
Figure 3 shows a part of our proposed system ar-
chitecture. The different control strategies for the
WWTP and the sewer system are connected via
an interface (CACD) that mediates between our
predictive control system and the controllers for
the WWTP and the sewer system.
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Fig. 3. Principle of the predictive SBR controller

The interface provides us with all measured data
and forwards the control data resulting from the
predictions depending on the current situation.
Our predictive controller consists of a CBR sys-
tem as the core part, which operates on multiple
case bases and domain models, respectively, with
respect to the WWTP subsystem to which the
measured data (situation) belongs. Speaking more
specifically, almost each process stage in the cycle
depicted by Figure 1 is represented by its own case
base. The exceptions are the “settle” and “draw”
(also known as “decant”) phases that are sum-
marized in one case base and “idle/sludge excess”
phase, which we will not support with respect to
time optimization due to its very short duration.

New measured data is taken as an input to our
CBR system, which generates the adequate prob-
lem descriptions for querying the different case
bases. As we are dealing with a quasi-independent
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series of process steps in the regarded cycle (i.e.
a new step can only be started after its predeces-
sor having finished), we can optimize (predict) the
processing time of each individual step and add
the predicted duration of each single step in or-
der to obtain the overall cycle duration. The cases
are problem-solution pairs, where the current situ-
ation (measured data) represents the problem part
and the solution is given by the respective control
data for this situation. Due to the structure of the
data, we are working with flat domain models.

The subsequent control data for each single
treatment step is derived from the retrieval result
of the n most similar cases from past situations.
Adapting the solutions from the respective n cases
generates the solution for the current situation.
However, the adaptation method depends on the
process phase. The new solutions are forwarded
to the cycle controller unit, which processes them
and gives the final solution back to the CACD. De-
pending on the results of the different case bases,
the cycle controller will estimate the total dura-
tion of the cycle and create the composition of
the cycle. The system has been implemented with
CBR-Works (empolis - knowledge management,
Inc.). Until now, we have only implemented a few
test components of the described overall architec-
ture. So far, our system only simulates the control
process offline, i.e. the generated solutions are not
to be returned to the CACD interface.

3.3.2. Example “Influent Flow Rate”
For specific tasks and questions, it is reasonable

trying to predict the influent flow rate curve of
the next few hours. Such an information can be
useful to control the filling of an equalization basin
etc. But due to several reasons (e.g., infiltration
water), even during phases of dry weather flow, the
influent curve can vary significantly (Figure 4).

Hence, it is not very helpful to base a control
strategy on an average inflow rate curve. Conse-
quently, a CBR model has been set up to predict
the dry weather influent flow rate curve of WWTP
Messel for the next 24 hours. The initial case base
of this model were all influent flow rates, which
were measured in 2003 during dry weather flow
conditions (124 curves). The following 5 attributes
have been chosen for the model:

Minimum of the daily influent flow rate of the
past 21 days (local similarity: polynomial func-
tion), because this attribute is suitable to estimate
the influence of the infiltration water flow rate.

Weekday, because the changing life rhythm of the
people during the week has a significant impact on
the influent rate curve of WWTP Messel as well
as the different school holidays resp. bank holidays.
Finally, the attribute summertime/wintertime was
used. To describe the local similarities of the last
four attributes, similarity matrices were used. The
predicted influent flow rate curve is a weighted
function of 3 historical curves, which have been
measured under the most similar operation con-
ditions. Even though the CBR model is simple,
the results are very good (Figure 5): In this figure
the measured and the predicted influent flow rate
curve for a 24 hour interval are almost identical.

Curves of the Influent Flowrate in 2003 (WWTP Messel) 
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Of course, not in every case it is possible to
reach such good results. Nevertheless, even with
this simple model, it is possible to predict the flow
rate per hour in 80% with a deviation of less than
5 m3/h resp. in 95% with less than 10 m3/h; the
maximum deviation was 33 m3/h.
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3.3.3. Example “Settle/Decant”
During the settle and decant phase, first the wa-

ter/biomass separation takes place and then the
treated wastewater will be decanted. Due to the
fact that even a small sludge displacement from
the reactor into the effluent of the plant can cause
an exceeding of the official effluent limit values, the
settle and decant phase was dimensioned for un-
favorable operational conditions. In order to point
up the potential for optimization, an example is
depicted in Figure 6. As a consequence of the sta-
tic dimensioning, the duration of the settle and de-
cant phase in case of WWTP Messel takes in to-
tal 140 min. In reality, the operational values are
usually much better than the comparable design
values. Therefore, sludge level and suspended solid
probes were installed at the decant devices to in-
vestigate the potential for a reduction of the settle
and draw phase. The results of this investigation
show that in many cases it would be possible to
reduce the settle and decant phase up to 70 min
and thus to increase the hydraulic capacity up to
almost 20%. Furthermore, the monitoring shows
that in most of the cases it would be possible to
increase the volumetric exchange ratio from 40%
to approx. 50% (+145 m3; see Figure 6); this could
further increase the hydraulic capacity. Due to the
high optimization potential of the settle and de-
cant phase, it was decided to develop the CBR
subsystem “Settle/Decant” first.
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In the first step, more than 120 sludge settling
curves, which have been measured under different
operational conditions, were analyzed and evalu-

ated statistically. It could be observed that the set-
tling velocity of the sludge blanket mainly depends
on two factors: The initial settling velocity mainly
depends on the sludge volume at the beginning of
the settle phase. Furthermore, it could be observed
that the settling velocity depends on the last phase
before the settle phase starts. For example, in case
of a mixed react phase, it takes at least 10 min
until the sedimentation begins. In case of an aer-
ated react phase, the turbulence at the beginning
of the sedimentation phase is smaller, thus the floc-
culation process is faster and the sedimentation
process can start in less than 5 min. Consequently,
the cycle type, the water level in the reactor, the
sludge volume, and the water temperature were
chosen as attributes in the respective CBR model.
In order to create the case base, in the second step,
30 representative curves have been selected. Then,
the calibration and validation process was started.
The local similarity measures are mainly given by
linear distance functions (Euclidean distances) be-
tween the query values and the respective case val-
ues. Only the cycle type with its two values ’dry
weather’ and ’rain weather’ has been modeled as
a simple similarity matrix. The global similarity
function is a weighted sum of the local similar-
ities. The solution part of the cases is given by
the courses of the respective sludge heights, repre-
sented by curves (sludge settling curves).
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The results produced by this subsystem are very
promising. Despite the fact that the database is
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rather small, the model is able to predict the
sludge settling curve well. Thereby, the predicted
sludge settling curve is a weighted function, cal-
culated with the help of 3 measured curves, which
have been measured under the most similar oper-
ation conditions. Figure 7 shows an example for a
good prediction of the sludge settling curve. The
measured and the predicted curve are almost iden-
tical. Of course, not all predictions are as good as
the example in Figure 7. Figure 8 shows an exam-
ple for a worse prediction. However, even in this
worse case the maximum difference between mea-
sured and predicted curve is only 0.5 m. It has
to be taken into consideration that the measure-
ment inaccuracy of the sludge blanket probe can be
up to 0.2 m. Furthermore, in practice such worse
predictions would not cause serious problems, be-
cause with the help of a sludge blanket probe-
based and/or a suspended solids probe-based feed-
back decant controller, which survey the decant
phase, it would be easily possible to close the de-
canter in case of a sludge displacement danger im-
mediately.
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Fig. 8. Example for a worse prediction

3.3.4. Future Work
As a consequence of the good results reached

with the different CBR models, other components
of our architecture should be developed, i.e. we
will create the domain models and the respective
CBR subsystems. Thereby, the monitoring estab-
lished within the research project serves as a data

source for the other case bases. Furthermore, it is
planned, to use the CBR software to explore the
specific experiences of the operators and to use
CBR as a training tool. In the next 2 years, our
overall system should then be verified in full-scale
by feeding the so generated control data into the
modern CACD of WWTP Messel.

4. DSS Harmful Microorganisms

4.1. Introduction

Increasing quantities of wastewater made en-
largements of treatment plants necessary. Then,
trying to optimize the costs for running the plants
by reducing the precipitation and minimizing the
oxygen supply for the biological system in the
plant sometimes leads to new problems; from the
ecological and biological points of view, optimiza-
tion can cause undesired side effects. Environmen-
tal conditions can appear that favor filamentous
organisms, which can cause foam effects or later
even lead to harmful bulking sludge or scum for-
mation [4]. We can observe this phenomenon in a
growing number of WWTPs during recent years;
especially during spring and autumn time. One
crucial factor amongst others is the loss of biomass
needed for the biological purification in the sys-
tem. The responsible harmful microorganisms af-
fect nearly all biological processes for WWT. Addi-
tionally, the bulking sludge problem does not only
influence the WWT in a negative way but also the
sludge treatment. If sludge dominated by filamen-
tous bacteria reenters the anaerobic sludge treat-
ment foaming of the digester contents can occur.
As a consequence, the digester can over boil.

The managers of WWTPs with bulking sludge
problems consider this one of the most impor-
tant problems to be solved. Nowadays, various ap-
proaches for counteractions exist to eliminate the
problem-generating microorganisms [4], e.g., de-
ployment of lime, polymers or pulverized lignite,
installation of selectors, in/decreasing of the oxy-
gen, etc. Usually, bulking sludge problems have
their individual aspects depending on the WWTP
where they occur. Therefore, the next problem has
to be seen in finding the right solution. This task is
even harder to solve, as different harmful types of
microorganisms can exist in the sludge. The same
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counteraction that kills one of these types of bac-
teria can help the growth of others.

We conclude that the only efficient way for sup-
pressing the excessive growth of the specifically
responsible microorganisms is their identification
and the closely related goal-directed selection of
treatment means. Our starting points are the pos-
itive and negative experiences experts made in the
treatment of bulking sludge problems. Their ex-
periences serve as successful suggestions for solu-
tions respectively the knowledge about unsuccess-
ful treatments (failures). So, the aim was the devel-
opment of DSS that supports the decision process
for the selection of adequate counteractions. The
system is fed by a query that describes parameters
of the WWTP. We will have a closer look at the
technology behind the scenes of our expert system
and the underlying domain model in Sections 4.2
and 4.3.

4.2. The Case Representation

It is typical for CBR applications that the case
representation consists of two major parts: a prob-
lem description and a solution description. In the
following, we give an overview of the structure of
these two parts that make up the domain model
for our system.

The aim of the problem description is to char-
acterize the current situation on a WWTP when
a problem caused by uncontrolled reproduction
of harmful microorganisms is observed. Unfortu-
nately, even WWTP experts are not able to de-
termine the relevant influences exactly. Therefore,
all information that may have significant impact
on the microorganism problem is considered in the
problem description. Basically, the information of
the problem description is divided into the follow-
ing four parts, represented by particular concepts
in an object-oriented domain model:

WWTP data: This part contains relevant infor-
mation about the WWTP where the problem
occurred. This kind of information includes
attributes that describe the structure and op-
erating parameters of the specific plant.

Already performed counteracts: Here, all available
data about already performed counteracts
against the sludge problem is stored. These
pieces of information are also essential be-
cause it contains important hints about the

responsible microorganism species. For exam-
ple, if a counteraction that works usually very
well against microorganism M has been ap-
plied, but the bulking sludge problem is still
present, this is a clear advice that microor-
ganism M is not the responsible species in the
current situation.

Environmental data: Due to the fact, that the oc-
currence of microorganism problems crucially
depends on the current environmental circum-
stances (e.g., wastewater temperature, sea-
sonal occurance), this information is also a
core component of the problem description.

Quality information: Additionally, some attributes
describing the quality of the particular case
data are introduced. Because the case base
contains currently observed problems as well
as problems described in specific WWT liter-
ature, it is useful to assign each case a respec-
tive confidence level.

The aim of the corresponding solution descrip-
tion is the qualitative and quantitative identifica-
tion of the species of microorganisms measured in
the described bulking sludge problem. Therefore,
the solution description contains one attribute for
each major microorganism species relevant with
respect to the sludge problem. The value range of
these attributes is the interval of real values. These
values correspond to the results of a microscopic
examination of activated sludge samples. Though
the described application can be characterized as
a classification task, the solution description is not
a simple class identifier like in common similar ap-
plications. The complete representation consists of
40 attributes describing the problem part and 11
attributes describing the solution part.

4.3. Project Summary

The approach presented in this example was
developed as a part of research project ZER-
BERUS. In a preliminary stage of the project, the
WWTP managers’ experiences had been learned
using a mail questionnaire. All relevant data was
extracted from the questionnaires and transformed
into cases. So, we gathered approximately 70 cases
until now. Starting from this point, we divided the
project into two major stages. On the first stage,
we concentrated on the identification of the harm-
ful microorganisms that caused the bulking sludge
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problem. A WWTP manager can specify a current
problem and query the system’s experiences to find
out what might be the responsible bacteria. The
second stage can generate an individual treatment
solution for the queried problem situation. The so-
lution will be based on the specific WWTP con-
ditions and the retrieved solutions from the most
similar experiences in the case base. The WWTP
manager’s feedback on the quality of the generated
solution will be used to improve our system by a
certain learning effect. If the generated suggestion
- which counteraction to take - was successful or
unsuccessful this new experience will be integrated
in the case base. In 2003, the implementation of the
DSS was completed (see www.zerberus-online.de).

5. Optimizing Prediction Accuracy

The success of any CBR application crucially
depends on the quality of the employed similarity
measure used to retrieve the most useful cases with
respect to the current problem situation. Unfortu-
nately, the actual utility of a case or its solution
part, respectively, is first known, once it has been
applied to the current problem situation. Hence, a
similarity measure only represents a heuristics to
approximate the a priori unknown utility function
during retrieval. In CBR this heuristic is based on
the assumption that similar problems have simi-
lar solutions, where the “similarity” between prob-
lems is often interpreted as similar appearance
measured by some distance metric.

In many existing CBR applications in the WWT
field, however, the employed distance metrics are
often quite general and do not encode much knowl-
edge about the underlying application domain. Ex-
amples of such metrics are the specific forms of
the Minkowski metric or the Heterogeneous Value
Difference Metric (HVDM). Here, the only possi-
bility to consider specific domain knowledge is the
usage of feature weights. A comparative study on
the use of these kinds of similarity metrics in en-
vironmental domains is given by Núñez et al. [9].

However, as typical for any heuristics, its qual-
ity can be increased significantly if it is possible
to incorporate as much as possible meaningful do-
main knowledge. In particular when dealing with
symbolic data, the use of feature weights is often
not sufficient in order to obtain a good approxi-
mation of the underlying utility function. Knowl-

edge about the relationship between the valid val-
ues of symbolic attributes is an important aspect
to be considered when estimating the utility of
given cases. Also for numeric attributes a domain-
specific model of the similarities between the pos-
sible values can significantly increase the utility
approximation. In order to be able to encode such
knowledge efficiently, commercial CBR tools pro-
vide the possibility to model so-called local simi-
larity measures for each individual attribute. De-
pending on the data type of the attribute, local
similarity measures can be represented by similar-
ity tables or special similarity functions (for more
details see [15]). The similarity values computed
by these local similarity measures finally have to
be aggregated, e.g. by using a weighted sum.

Experiments in other CBR domains have shown
that the additional use of local similarity measures
can improve the retrieval quality significantly [15].
Also for the WWT applications described in the
previous sections, such knowledge-intensive simi-
larity measures have led to good results. However,
in order to be able to model such measures accu-
rately, one has to acquire a lot of specific domain
knowledge.

This knowledge acquisition can be realized in
two different ways. On the one hand, one may in-
terview a domain expert in order to obtain the
knowledge to be encoded into the similarity mea-
sure manually. On the other hand, one may also
apply machine learning techniques in order to ex-
tract knowledge from some given training data au-
tomatically.

In the example applications described previ-
ously, up to now we have applied the first ap-
proach. However, for several reasons we plan to
optimize the employed similarity measures, and
therewith also the prediction accuracy of our sys-
tems, by applying machine learning techniques:

– Depending on the particular application, we
have to deal with very complex problem de-
scriptions. Here, it is very hard to define an
optimal similarity measure manually.

– Often the relationships and influences of the
different parameters are unknown and hence
also domain experts are unable to define ac-
curate similarity measures.

– Even if the impact of the parameters is known
in principle, the determination of quantitative
aspects of similarity measures, such as exact
feature weights or numerical parameters of lo-
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cal similarity measures, is a very difficult job
that often can only be done intuitively.

– In particular in the WWT domains, each CBR
application has its one characteristics due to
the individual configurations and boundary
conditions of the underlying WWT plants.
Therefore, one usually cannot use exactly the
same similarity model for each application but
needs measures that have been optimized for
the individual applications and plants.

– By learning the similarity measure more or
less automatically one may decrease the de-
ployment costs of a CBR application signifi-
cantly. This is a very important aspect to be
considered when thinking about a commer-
cial deployment of the CBR technology in the
WWT field.

A lot of approaches to learn one important
part of the similarity measure, namely the fea-
ture weights, have been developed up to now [18].
Núñez et al. [9] have presented some statistical-
based weighting techniques and they have eval-
uated them also using two environmental data-
bases. However, all these approaches address clas-
sification tasks only. In general, they try to find
a measure that assigns a higher similarity to
cases containing a correct classification than to
cases containing an incorrect classification. This
approach is only applicable when the occurring
classes are quite simple (e.g., only described by
a simple class identifier) and disjunctive. Never-
theless, as described in the precedent sections our
“classes” are really complex objects (e.g. influent
flow rate curves or 11-dimensional vectors). There-
fore, a hard distinction between correct and incor-
rect classes is insufficient. In our scenario, cases or
solutions, resp. can rather be judged as “better” or
“worse” predictions of the actual solution while an
exact match is very unlikely due to the complexity
of the solution descriptions.

Another problem is that existing learning ap-
proaches are not suited to learn local similarity
measures, which are usually represented as simi-
larity functions or similarity tables. However, in
particular local similarity measures can be used
to encode a lot of domain knowledge in order to
obtain a good approximation of the cases utility.

5.1. Learning from Utility-Feedback

To avoid this problem, we plan to apply a novel
learning approach for optimizing the prediction ac-

curacy of the described CBR applications. The ad-
vantage of this alternative learning approach (see
[15] for a detailed description) is that it allows flex-
ible learning of both, feature weights and local sim-
ilarity measures and that it is not restricted to clas-
sification tasks. The basic assumption of this ap-
proach is the existence of some similarity teacher
who is able to estimate the relative utility of re-
trieved cases with respect to a given set of training
queries. This means, the teacher has not to decide
absolutely whether a given case is useful or not,
but must only be able to compare given cases with
respect to their utility resulting in statements like
“case x is more useful than case y”. Such a kind
of feedback leads to partially ordered lists of cases
representing the desired outcome of a similarity-
based retrieval for given training queries. The task
of the learning algorithm then is to find a similar-
ity measure leading to these optimal retrieval re-
sults as close as possible. Here, genetic algorithms
have been applied successfully [16].

5.2. Exploiting Solution Similarity

Utility

Solution Similarity 

Problem Similarity 
Actual Problem 

Solution

?

Actual Situation 

Case Base 

Old Problem 

Solution

Case 

known      utility 

Fig. 9. The concept of solution similarity

To apply the described learning approach in the
previously described application scenarios we need
some similarity teacher who is able to provide the
required utility feedback. Basically, such a similar-
ity teacher has not necessarily to be represented by
a human expert but can also be realized by some
evaluation procedure. For our applications we plan
to apply an approach based on a leave-one-out test
and a novel concept, that we call solution simi-
larity [17] represented by an additional similarity
measure that compares solution parts of cases in-
stead of problem parts (see Figure 9). This con-
cept allows us to exploit utility knowledge implic-
itly contained in the huge amount of available case
data by measuring the utility of retrieved cases
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during a leave-one-out test. This approach assumes
that it is much easier to define a reasonable solu-
tion similarity measure than a problem similarity
measure. In fact, if we recall the structure of the
solution parts occurring in our applications, we see
that it is easy to define meaningful solution sim-
ilarity measures. For comparing influent flow rate
curves one could use, for example, the integral of
the difference between two curves. Since we know
the correct solution (here a curve) of a given prob-
lem during a leave-one-out test, such a measure
allows us to estimate the prediction quality of re-
trieved curves and hence the utility of the corre-
sponding cases. This allows us to generate utility
feedback automatically to be used as input for the
learning algorithm.

6. Conclusions

Despite the fact, that CBR is a powerful tech-
nology, which has already proved its potentials in
different industrial applications, CBR is still not
widely used in the field of wastewater treatment
until now. Although approaches for optimization
of existing plants attract more and more the at-
tention, they are still based in almost all cases
on Fuzzy Logic, Neuro Fuzzy, Genetic Algorithms,
and Neural Networks. Nevertheless, as discussed in
this article there are some examples that show that
the use of CBR in the field of wastewater treat-
ment could be very promising, especially in case of
DSS and RTC.

However, existing applications in the WWT field
often achieve only suboptimal prediction accuracy
due to the relative simple similarity measures typ-
ically used for retrieving relevant cases. In or-
der to optimize the prediction accuracy of WWT
applications, it seems to be necessary to employ
knowledge-intensive similarity measures that take
the application and domain specific characteris-
tics into account. The drawback of such similar-
ity measures is the additional modeling effort and
the corresponding costs. In our point of view, the
proposed machine learning approach allows to in-
crease the benefit of case-based WWT applications
by improving the prediction accuracy and simul-
taneously by reducing the deployment costs. This
may help to make the CBR technology more in-
teresting for commercial applications in the WWT
field. Consequently, there is a good chance, that
CBR will be far more common in environmental
engineering during coming years.
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