Learning Similarity Measures: A Formal View based on a Generalized CBR Model Armin Stahl

Problem:

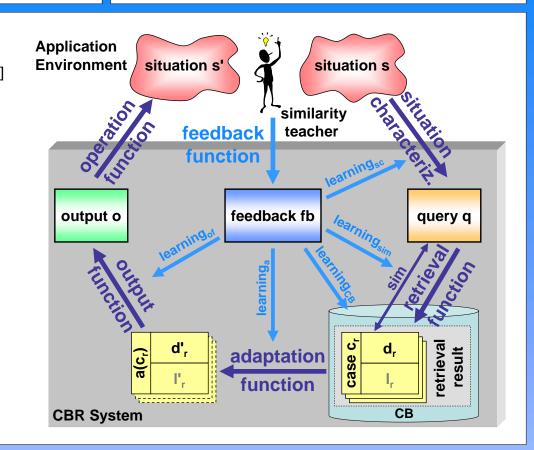
- Various approaches for learning similarity measures exist, but
- a clear methodology for applying them is still missing.

Important questions:

- What is the desired semantics of the similarity measure?
- What kind of training data is suitable and how can it be acquired?
- What type of similarity model has to be learned?
- Which learning techniques are suitable to achieve best results?

Objective:

- Development of a formal foundation for
 - analyzing requirements
 - selecting accurate similarity models
 - acquiring training data
 - choosing accurate learning techniques
 - future research



A Formal and Generalized CBR Model:

- Drawbacks of traditional CBR cycle: [Aamodt & Plaza, 1994]
 - limited to pure problem-solving tasks
 - assumes cases to be problem-solution pairs
 - · does not explicitly consider learning of general knowledge
 - neglects the interaction with application environment
 - does not consider novel CBR techniques (e.g. explanations)

Contributions of novel model:

- formal mathematical view
- suited to describe arbitrary CBR applications
- cases may represent arbitrary knowledge chunks
- new phases for interaction with application domain (sc, f, op)
- explicit processes for learning each knowledge container

Goal of CBR system:

Maximization of utility u(s, o) of output $o \in O$ given situation $s \in S$ with respect to the domain specific utility function $u: S \times O \rightarrow [0,1]$

Goal of Learning Process:

- Acquisition of (partial) knowledge about domain specific utility function u
- Generation of measure sim which approximates $u(s, o_r)$ for all $s \in S$ and $c_r \in CB$

Desired Semantics of Similarity Measures:

Determining the most useful case:

 $\arg\max sim(q,c_r) = \arg\max u(s,o_r)$

Separating useful and useless cases:

$$\forall c_i \in CB^+, c_j \in CB^- : sim(q, c_i) > sim(q, c_j)$$

Ranking the most useful cases:

$$\forall c_i, c_j \in CB^u, sim(q, c_i) > sim(q, c_j) \Leftrightarrow u(s, o_i) > u(s, o_j)$$

Training Data:

- Absolute Case Utility Feedback (ACUF):
 - training data provides absolute utility values, i.e. $u(s, o_j) = x$ with $x \in [0,1]$
- Relative Case Utility Feedback (RCUF):
 - the utility of outputs is determined relatively to other outputs, e.g. $u(s, o_i) > u(s, o_j)$

 $u(s, o_r) =$

 $u(s, of(q, a(q, c_r))) =$

 $u(s, of(sc(s), a(sc(s), c_r)))$

 $c \in CB \setminus CB^u$ $\land sim(q,c_i) > sim(q,c)$

Approximating the absolute utility of cases:

 $\forall c_i \in CB : sim(q, c_r) \approx u(s, o_r)$

Future Work:

Development of novel learning techniques for
approximating absolute utility values (→reliability)
extending probabilistic approaches to using RCUF

Implementation of feedback-function f using HCI methods

Learning Techniques:

Gradient Search:

- suited for learning feature weights
- can use ACUF and RCUF [e.g. Stahl, 2004]

Genetic Algorithms:

- suited for learning local similarity measures
- can use ACUF and RCUF [Stahl & Gabel, 2003]

Probabilistic Similarity Models:

• known approaches only rely on ACUF [e.g. Breuel, 2003]

German Research Center for Artificial Intelligence (DFKI) Image Understanding and Pattern Recognition Group Kaiserslautern, Germany

Contact: www.iupr.org/~stahl Armin.Stahl@dfki.de