
Using Evolution Programs to Learn

Local Similarity Measures

Armin Stahl, Thomas Gabel

Kaiserslautern University of Technology, Computer Science Department
Artificial Intelligence - Knowledge-Based Systems Group

67653 Kaiserslautern, Germany
stahl@informatik.uni-kl.de, tgabel@rhrk.uni-kl.de

Abstract. The definition of similarity measures is one of the most cru-
cial aspects when developing case-based applications. In particular, when
employing similarity measures that contain a lot of specific knowledge
about the addressed application domain, modelling similarity measures
is a complex and time-consuming task. One common element of the sim-
ilarity representation are local similarity measures used to compute simi-
larities between the values of single attributes. In this paper an approach
to learn local similarity measures by employing an evolution program —
a special form of a genetic algorithm — is presented. The goal of the ap-
proach is to learn similarity measures that sufficiently approximate the
utility of cases for given problem situations in order to obtain reasonable
retrieval results.

1 Introduction

When developing case-based applications, the definition of accurate similarity
measures is one of the most important tasks. Even if a reasonable amount of
high-quality case knowledge is available, the overall problem-solving capability
of a CBR system strongly depends on the similarity measure employed. Only if it
is possible to retrieve cases that are really useful for the current problem-solving
situation, the full potential of the available case knowledge can be exploited.

According to the traditional CBR paradigm, namely “similar problems have
similar solutions”, the concept of similarity can be characterised as a heuristic
used to estimate the utility of cases for particular problem-solving situations.
However, the specific semantic of the term “similarity” generally depends on the
employed similarity measures. In traditional CBR applications similarity often
was interpreted as a kind of similar look. Similarity measures that are defined
according to this semantic only consider the syntactical differences between the
entities to be compared. Popular examples are the Hamming distance, the simple
matching coefficient, the Euclidean distance and other simple distance metrics. In
what follows, we call such measures knowledge-poor similarity measures (kpSM).
While such measures can easily be defined, the drawback of them is that they
do not consider the particular coherences of the addressed application domain.

This often leads to bad retrieval results due to an insufficient approximation of
the cases’ utility.

Hence, in many recent CBR applications the term similarity is interpreted
differently. Instead of only measuring syntactical differences, here, the utility of
cases is approximated by considering the specific semantic of the case knowledge.
This means, particular knowledge about the domain has to be encoded into
similarity measures in order to obtain a well-founded utility approximation [1].
A very simple form of such knowledge-intensive similarity measures (kiSM) are
specific feature weights that are used to express the different importance of the
single case features.

Unfortunately, the use of kiSM is generally coupled with a significant draw-
back. To be able to define such measures, at least a partial understanding of
the underlying application domain is required. However, CBR is often applied in
domains where this understanding is nearly missing completely. And even if the
domain is partially understood, the acquisition and formal representation of the
required domain knowledge usually leads to additional development effort. This
additional effort may prevent the use of kiSM, although they might significantly
increase the efficiency and/or competence of the CBR system to be developed.

One possibility to avoid the mentioned drawback is the application of machine
learning techniques to simplify the acquisition of similarity knowledge. Unfor-
tunately, existing approaches to learn similarity measures are mostly restricted
to classification domains only and cannot be employed directly in other appli-
cation domains like e-commerce or general knowledge management scenarios.
Further, existing approaches focus mainly on learning feature weights. However,
when employing more sophisticated kiSM, major portions of the domain knowl-
edge are usually encoded in complex local similarity measures used to compute
similarities between single attribute values.

In this paper an approach to learn local similarity measures by using an
evolution program — a special form of a genetic algorithm — is presented.
The described approach bases on our general framework for learning similarity
measures that has already been presented in [11, 12]. First we will discuss the
basic difficulties that arise when defining kiSM manually and we review our
general learning framework. After that we describe a new learning algorithm
used to extend the framework on learning local similarity measures. To show
the general applicability of the algorithm the results of a first experimental
evaluation are presented. Finally, we close with a discussion of related work and
an outlook on future research issues.

2 Defining Knowledge-Intensive Similarity Measures

In contrast to simple syntactical measures, the definition of accurate kiSM re-
quires a difficult knowledge acquisition and engineering process. To guarantee
reasonable retrieval results, knowledge about the utility of cases for particular
problem situations has to be acquired and formalised. Basically, this knowledge
strongly depends on the underlying application domain and the concrete appli-

cation scenario of the CBR system to be developed. For example, the following
aspects might influence how to estimate the utility of cases:

– Consider a traditional CBR scenario, like a classification or diagnosis task.
Even if the domain is not completely understood, domain experts often pos-
sess partial knowledge about the relationship between problems and solutions.
So, they know, for example, upper bounds for tolerable differences between
the query and the cases’ attribute values to ensure that a case is still relevant
for a given problem situation.

– A different situation occurs in e-commerce or general knowledge management
scenarios. Here, the utility of cases is not only determined by the domain,
but also by the individual preferences of the customers/users. To be able
to provide personalised recommendation functionality, the CBR system has
to employ similarity measures that consider the preferences of individual
customers/users or at least the preferences of certain customer/user classes.

– When providing case adaptation functionality, the semantic of the similarity
measure is different to that in a retrieval-only system. Here, it is not appro-
priate to estimate the utility of a case for the given query directly. Instead,
the similarity measure must approximate the utility of a case with respect
to the available adaptation possibilities, i.e. it has to guarantee the retrieval
of easily adaptable cases [10, 7].

When defining kiSM, one is often confronted with major problems that com-
plicate or even avoid a good approximation of cases’ utility. The kind of problems
arising depends on the particular application scenario, for example:

– In traditional classification/diagnosis scenarios, insufficient explicit domain
knowledge might be available. Possible reasons are, for example, a poorly
understood domain, or the fact that an experienced domain expert is not
available or too expensive.

– Even if an experienced domain expert is available, s/he is usually not familiar
with the similarity representation formalisms of the CBR system. So, the
formalisation of the provided knowledge might be very expensive because it
might only be available in natural language.

– The knowledge about the real utility of cases might be not available at
all during the development phase of the CBR system. When applying per-
sonalised similarity measures in an e-commerce or knowledge management
scenario, the knowledge can only be provided by the users themselves during
the use of the system.

– The knowledge might only be available in another representation form. For
example, to estimate the adaptability of cases, one has to transfer adaptation
knowledge into the similarity measure.

2.1 Representing Similarity Measures

In the following we assume an attribute-value based case representation and a
commonly used structure to represent similarity measures consisting of

1. local similarity measures used to compute similarities between values of in-
dividual attributes,

2. attribute weights used to express the importance of individual attributes with
respect to the utility approximation,

3. an amalgamation function used to compute the final similarity value for a
given query and a case, based on local similarities and attribute weights.

Because this paper deals with local similarity measures we focus now on this
part of the entire similarity representation. Generally, the representation of local
measures strongly depends on the data type of the corresponding attribute. The
two mostly used kind of types are numeric types, like Integer or Real, and differ-
ent symbolic types, like unordered symbols, ordered symbols, and taxonomies.
In this paper, we focus on two common representation formalisms that can be
used to represent local similarity measures for numeric and symbolic data types.
To reduce the dimensionality of similarity measures, commonly used commer-
cial CBR tools derive similarity for numeric attributes from the difference of the
values to be compared, leading to following definition:

Definition 1 (Similarity Function). Let a be a numeric attribute with a de-
fined value range of Da = [dmin, dmax]. Under a similarity function for Da,
we understand a function sima : [(dmin − dmax), (dmax − dmin)] −→ [0, 1] that
computes a similarity value out of the interval [0, 1] based on the difference be-
tween a case value c = dx and a query value q = dy with dx, dy ∈ Da.

Definition 2 (Similarity Table). Let a be a symbolic attribute with a defined
list of allowed values Da = (d1, d2, . . . , dn). A n × n-matrix with entries xi,j ∈
[0, 1] representing the similarity between the query value q = di and the case
value c = dj is called similarity table for Da.

Figure 1 shows two examples of local similarity measures that might be used
in a product recommendation system used to recommend personal computers.
The first measure is a similarity table for a symbolic attribute RAM-Type and
the second measure represents a similarity function for a numeric attribute CPU-
Clock. The semantic of these measures is an estimation of the utility of the tech-
nical properties of a given PC with respect to the given customer requirements.
For example, if the customer wants to buy a PC with DDR-RAM and gets a
PC with SD-RAM this leads to a significantly decreased similarity (0.5) because

��������������

��

���

��

� �

��	

��� ���

���

�����

��

��

��	
 ������������������������
�����������������

�����������

�������� 	
��	���

��������	

� �

��

���
��

Fig. 1. Examples of Local Similarity Measures

the performance of SD-RAM is poor compared with the performance of DDR-
RAM. On the other hand, the similarity with respect to the CPU-Clock is only
decreased if the case value is smaller than the query value. A higher value always
leads to a similarity of 1.0 because the customer will probably be satisfied if he
gets an even faster PC, provided that other properties still match his demands
(e.g. the price).

2.2 Bottom-Up Procedure

To allow a comfortable definition of local similarity measures, common CBR
tools1 provide powerful graphical modelling tools. Nevertheless, manually defin-
ing accurate local similarity measures is still a complicated and time-consuming
task. It requires an analysis of each attribute to identify its influence on the
utility of cases. Further, the estimated influence has to be encoded into an ap-
propriate similarity measure by using the modelling facilities of the employed
CBR tool. However, this bottom-up procedure has some general drawbacks:

– The procedure is very time-consuming. For example, consider a symbolic
attribute with 10 allowed values. This requires the definition of a similarity
table with 100 entries!

– Sometimes its not possible to estimate the influence of each attribute suffi-
ciently due to the lack of reasonable domain knowledge. However, domain
experts are often able to estimate the utility of whole cases for particular
problem situations.

– Due to the complexity of the representation, users often make definition
failures by mistake. Unfortunately, the identification of such failures is very
difficult.

– Usually the quality of the completely defined similarity measure is not vali-
dated in a systematic way. Existing approaches (e.g. leave-one-out tests and
measuring classification accuracy) only measure the overall performance of
the CBR system, that is, of course, also influenced by other aspects, for
example, the quality of the case data.

2.3 Alternative Strategy: Learning

In [12] we proposed an alternative strategy for defining kiSM that can be char-
acterised as a top-down approach compared with the bottom-up procedure de-
scribed in the previous section. The basic idea of this approach is to acquire only
high-level knowledge about the utility of cases for some set of given problem sit-
uations. The necessary low-level knowledge required to compute the utility of
cases for new problem situations is then extracted from the acquired high-level
knowledge by employing machine learning techniques.

Figure 2 illustrates the basic idea of this approach. Generally, it requires
some kind of similarity teacher that is able to provide the mandatory training
1 For example, the commercial CBR shells CBR-Works and Orenge of empolis

knowledge management GmbH, formerly tecinno GmbH.

data [12]. This training data can be described as a set of corrected retrieval
results called case order feedback. This means training queries are used to perform
retrievals based on some initial similarity measure. The task of the similarity
teacher is then the analysis of the obtained retrieval results with respect to the
actual utility of the retrieved cases for the given queries. Obvious deficiencies
have to be corrected by reordering the cases. Note, that the approach does not
require feedback for all retrieved cases. Even information about the utility of a
single case might be useful, for example, in an e-commerce scenario where the
customer does not buy the most similar product but another one contained in the
retrieval result. Of course, then a greater number of training queries is required
to obtain a reasonable training data set. To be able to compare the obtained
retrieval results with the case order feedback provided by the similarity teacher,
a special error function has to be defined that measures the “distance” between
the two given partial orders. Finally, the task of the learning algorithm is to
minimise this error function by modifying the initial similarity measure.

��������

�����������	���
���

�����

������

������

������

������ ������ ������

�	
�
	�

������

�����

����	��

�����������
�������

������

������ ���������

������

������

������

������

������ ����� ������

�
�
���
	��������	��

�������� ���������	
���

�
�
���
	�
�������

Fig. 2. Learning through Utility Feedback

Generally, the actual learning task, i.e. the minimisation of the error function,
can be performed by any accurate learning algorithm. For example, in [11, 12] we
used a gradient descent algorithm to learn attribute weights. Below we present an
approach that employs an evolution program to learn local similarity measures.

3 Learning Local Similarity Measures

3.1 Evolution Programs

Evolution programs and genetic algorithms, respectively, are search algorithms
based on the mechanics of natural selection, natural genetics, and the principle
of the “survival of the fittest”. In every generation a new set of artificial crea-
tures (individuals) is created using pieces (genes) of the genome of individuals
of the previous generation (crossover). Occasionally, mutations are introduced,

sometimes leading to improved fitness. For the foundations of and more details
on EPs and GAs the reader is referred to [8, 5].

For the following reasons we decided to employ an evolutionary program for
the purpose of optimising local similarity measures:

– Evolutionary strategies have proved to provide powerful and robust mecha-
nisms for the search for an optimum in complex search spaces.

– Optimisation techniques that try to minimise an error function’s value with
the help of its derivation, such as gradient descent methods, are difficult to
apply here. Since local similarity measures depict complex entities that are
characterised by several parameters, it is not feasible to find an adequate
error function that can be derived with respect to these parameters.

– Local similarity measures can adequately be represented as individuals within
an evolutionary process.

In standard genetic algorithms individuals are commonly represented as bit
strings – lists of 0s and 1s – to which evolutionary operators, such as crossover
or mutation, are applied. One drawback of that representation is the difficulty
in incorporating constraints on the solution that a single individual stands for.
Moreover, the calculation of the similarity between a query and a case (as de-
picted in Section 2.1) is mainly based on real-valued numbers, which can only
be extracted from bit strings in a round about way. For these reasons we de-
veloped an evolutionary algorithm that makes use of “richer” data structures
and applies appropriate genetic operators, while still being similar to a standard
genetic algorithm.

3.2 Representation of Individuals

In order to be able to learn local similarity measures as defined in Definition 1 and
2, i.e. similarity functions and tables, we have to settle on how to represent the
respective individual. Further, we need a formalism that maps those individuals,
as used in the evolutionary algorithm, to a local similarity measure.

Assume an arbitrary similarity function sima according to Definition 1. Since
sima is continuous in its value range Da it is generally not possible to describe
it with a finite number of parameters (in certain cases that may be possible, but
in general it is not). Thus, we employ an approximation based on a number of
sampling points:

Definition 3 (Similarity Function Individual, Similarity Vector). An
individual I representing a similarity function sima for the numeric attribute a
is coded as a vector V I

a of fixed size s. The elements of that similarity vector are
interpreted as sampling points of sima, between which the similarity function
is linearly interpolated. Hence, it holds for all i ∈ {1, . . . , s}: vI

i = (V I
a)i ∈ [0, 1].

The sampling points are distributed equidistantly over the value range Da

of attribute a. Figure 3 illustrates how a local similarity measure for a numeric
attribute is modelled. The length s of the similarity vector may be chosen due

sampling (s=7)

“Target“ Similarity Measure

c-q c-q

Representation as Individual
index sim value

1 1.0
2 1.0
3 1.0
4 1.0
5 0.2
6 0.05
7 0.0

Approximated Similarity Measure

c-q

Sampled Similarity Measure

usage

Fig. 3. Representation of Similarity Vectors as Individuals

to the demands of the application domain: The more elements V I
a contains, the

more accurate the approximation of the corresponding similarity function, but
on the other hand the higher the computational effort.

Similarity tables, as the second type of local similarity measures of concern,
are represented as matrices of floating point numbers within the interval [0, 1].
The definition following is in the main no different to Definition 2, however, we
need it due to the notation it introduces:

Definition 4 (Similarity Table Individual, Similarity Matrix). An indi-
vidual I representing a similarity table for a symbolic attribute a with a list
of allowed values Da = (d1, d2, . . . , dn) is a n × n-matrix M I

a with entries
mI

ij = (M I
a)ij ∈ [0, 1] for all i, j ∈ {1, . . . , n}.

3.3 Specialised Genetic Operators

Genetic operators are responsible for the creation of new individuals and have a
major influence on the way a population develops. The operators we use are quite
different from classical ones since they operate in a different domain (real-valued
instead of binary representation). However, because of underlying similarities,
we divide them into the two standard groups: mutation and crossover operators.

Mutation Operators Operators of this class are the same for both kinds of
local similarity measures we are dealing with. They change one or more values of
a similarity vector V I

a or matrix M I
a according to the respective mutation rule.

Doing so, the constraint that every new value has to lie within the interval [0, 1]
is met. The second constraint that needs to be attended concerns the reflexivity
of local similarity measures. The similarity between a query q and a case c should
always be 1.0, if it holds q = c. As a consequence, the medial sampling point
of a similarity vector should be 1.0 as well as the elements mI

ii of a similarity
matrix for all i ∈ {1, . . . , n}. Since any matrix can be understood as a vector, we
describe the functionality of our mutation operators for similarity vectors only:

– Simple mutation: If V I
a = (vI

1 , . . . , vI
s) is a similarity vector individual, then

each element vI
i has the same chance of undergoing a mutation. The re-

sult of a single application of this operator is a changed similarity vector
(vI

1 , . . . , v̂I
j , . . . , vs), with 1 ≤ j ≤ s and v̂I

j chosen randomly from [0, 1].
– Multivariate non-uniform mutation applies the simple mutation to several

elements of V I
a . Moreover, the alterations become smaller as the age of

the population is increasing. The new value for vI
j is computed after v̂I

j =
vI

j ± (1 − r(1− t
T)2), where t is the current age of the population at hand, T

its maximal age, and r a random number from [0, 1]. Hence, this property
makes the operator search the space more uniformly at early stages of the
evolutional process (when t is small) and rather locally at later times.

– In-/decreasing mutation represents a specialisation of the previous operator.
Sometimes it is helpful to modify a number of neighbouring sampling points
uniformly. The operator for in-/decreasing mutation randomly picks two
sampling points vI

j and vI
k and increases or decreases the values for all vI

i

with j ≤ i ≤ k by a fixed increment. Assume, the local similarity measure
for the attribute CPU-Clock (see Section 2.1) as the optimisation goal and
an individual I for whose similarity vector it holds: vI

i < 0.9 for all i < s
2 .

Here, a mutation, that increases the similarity value for several neighbouring
sampling points left of the y-axis, will bring I nearer to its optimisation goal.

Crossover Operators Applying crossover operators, a new individual in the
form of a similarity vector or matrix is created using elements of its parents.
Though there are variations of crossover operators described that exploit an
arbitrary number of parents, we rely on the traditional approach using exactly
two parental individuals, IA and IB .

– Simple crossover is defined in the usual way: A “split point” for the particular
similarity vector or matrix is chosen. The new individual is assembled by
using the first part of the parent IA’s similarity vector or matrix and the
second part of parent IB’s.

– Arbitrary crossover represents a kind of multi-split-point crossover with a
random number of split points. Here, we decide by random chance for each
component of the offspring individual whether to use the corresponding vec-
tor or matrix element from parent IA or IB.

– Arithmetical crossover is defined as the linear combination of both parent
similarity vectors or matrices. In the case of similarity matrices the offspring
is generated according to: (M Inew

a)ij = mInew

ij with mInew

ij = 1
2mIA

ij + 1
2mIB

ij

for all i, j ∈ {1, . . . , d}.
– Row/column crossover is employed for similarity tables, i.e. for symbolic

attributes, only. Rows and columns in a similarity matrix contain coherent
information, since their similarity entries refer to the same query or case
value, respectively. Therefore, cutting a row/column by simple or arbitrary
crossover may lead to less valuable rows/columns for the offspring individual.
We define row crossover as follows: For each row i ∈ {1, . . . , n} we randomly
determine individual IA or IB to be the individual for that row. Then it holds
mInew

ij = mIP

ij for all j ∈ {1, . . . , n}. Column crossover is defined accordingly.

3.4 Controlling the Learning Procedure

Given a particular attribute a and the mandatory training data (case order feed-
back, see 2.2), our algorithm settles how to represent local similarity measures

for that type of individuals. It then proceeds through evolutionary techniques
(each of the genetic operators described above is employed with a specified prob-
ability), creates new similarity measures while abolishing old ones, in order to
search for the fittest individual, whose corresponding local similarity measure
yields the minimal value of the error function for the training data. The control
structure of our implementation is similar to a standard genetic algorithm [5]
and proceeds at a high level as follows:

1. Generate an initial population Pa of random local similarity measures for
the respective attribute.

2. Evaluate each I ∈ Pa by assigning a fitness value and a lifetime value.
For the computation of a local similarity measure’s fitness we use a slight
modification of the index error (see [11]), a distance measure that regards
the number of realignments that are necessary to make the retrieval results
(for a specific set of queries), to which that measure leads, match with the
case order feedback given by the similarity teacher. Of course individuals
with smaller fitness values are considered to be fitter, since the mentioned
error function has to be minimised. Moreover, we assign a lifetime value to
each individual that corresponds to its fitness value, telling for how many
generations the individual is maximally allowed to remain in the population.

3. Randomly select mating partner from P .
4. Create a set Po of new individuals by applying crossover operators and re-

producing mutation to the selected mating partners.
5. Mutate the individuals in Po (adaptive mutation).
6. Increase age for each I ∈ Pa, evaluate each I ∈ Po, and form Pa := Pa ∪ Po.
7. Remove dead (lifetime below 0) and the most unfit individuals from Pa.
8. Repeat step 3 and following.

The algorithm is also capable of learning several local similarity measures
simultaneously. Given a set of attributes {a1, . . . , am}, for which local similarity
measures are to be learnt, a population Pai is generated for each attribute ai.
Thus, it is possible to optimise the local similarity measures for all attributes of
the case representation simultaneously.

4 Experimental Evaluation

To evaluate the presented learning algorithm we have chosen a similar exper-
iment as already described in [11]. The idea of this experiment is to learn a
similarity measure that considers the provided adaptation possibilities during
the retrieval of useful cases. When providing adaptation functionality, it is gen-
erally insufficient to determine how well a case matches the current problem
situation in order to obtain an accurate approximation of the utility of cases.
Instead, the similarity measure has also to pay attention to the adaptability of
cases [10, 7]. For example, consider again a product recommendation system for
the PC domain. In Figure 1 we have already shown local similarity measures
that might be used to estimate the utility of PCs with respect to the customers’

requirements. However, these measures have to be modified if the used CBR
system also provides possibilities to adapt retrieved PCs. Then, the measures
shown in Figure 4 might be more accurate. Here, the similarity between SD-
RAM and DDR-RAM (bold) is always considered to be 1.0 due the compatibility
of these RAM types. The similarities concerning the RD-RAM (grey shadowed)
are not changed because this RAM type is incompatible with the other types
and therefore adaptation is impossible. Further, the similarity function for the
CPU-Clock is also modified. The assumption here is that it is possible to replace
slow CPUs against faster ones as long as the difference between the clock rates
does not exceed a critical value2 x.

��������	��������������

��

���

��

� �

��	

���
��

���

������

��

��

��	

��

������

���

������������������������
�����������������������������
 ��������������������������
���������������� �������

�������� 	
��	���

Fig. 4. Considering Adaptability in Local Similarity Measures

4.1 The Experiment

The case model of our PC domain consists of 11 attributes a1, . . . , a11 (5 numeric
and 6 symbolic attributes) that describe the technical properties of a PC. For
each attribute we defined a local similarity measure used to estimate the utility
of particular PCs for a given query. However, these similarity measures do not
consider the customisation possibilities provided by a set of adaptation rules.

To obtain the required training data S we have generated case order feedback
by creating 600 queries randomly, performing adaptation of all retrieved cases
(in our experiment 20) and reordering the (adapted) cases by measuring their
utility with help of the initially defined similarity measure. For our experiments
(see Figure 5) we divided S at the ratio of 1 : 2 into a subset Strain of training
examples and Stest of test examples used for evaluation. Prior to the utilisation
of our evolutionary algorithm we learnt the 11 attributes’ feature weights wi

with the help of the approach introduced in [11]. When learning the involved
local measures simai , we make use of these optimised feature weights and do not
modify them any further. Our learning algorithm creates and manages a popu-
lation of appropriate individuals for each attribute (5 populations of similarity
vectors and 6 of similarity matrices). In a kind of round-robin optimisation the
delineated evolutionary techniques are applied to these 11 populations and thus
the PC domain’s local similarity measures are optimised simultaneously.

Evaluating the learning results, we determine a new retrieval result (based on
the learnt similarity measure) for each query contained in the training examples
2 Motherboards usually only support a limited CPU clock range.

of Stest. Regarding the quality of these case orders we revert to the quality mea-
sure CR1i and CR3i as defined in [12]. These measures express the percentage
(in relation to |Stest|) of those retrievals that return the optimal case as most
similar one and, respectively, among the 3 most similar ones. The optimal case
for a specific query q is determined by Stest and denotes that case which yields
the highest utility for q after having been adapted.

�� ��

�
�
�
�

�
�
�
�

�
�
�
�

����������	
������� �	�
��	
������������

���
��

�
�
��

	
���
��

����������
����

�
�
������

�
�����������
 ��������������

�
������

�����������
�
���

�

��
���

�����

��������
� ��!�

���
����

����

������

	
���
��
	
�����

�
�

�
�

�
�

���

�
�

�
�

�
�

���

�
�

�
�

�
�

���

Fig. 5. The Experiment

To achieve an understanding of the amount of training data needed we have
repeated the procedure of similarity measure optimisation for incrementally in-
creasing subsets of Strain. Further, we have focused on our learning algorithm’s
convergence behaviour and analysed the quality measures’ development by time
(by number of evolutionary generations). In order to obtain statistically signif-
icant results we have repeated the described learning process 10 times, using
newly generated training and test data, and calculated the worst, average, and
best values for the mentioned quality measures.

4.2 Results

Figure 6a) shows the gradual optimisation of the global similarity calculation
due to the number of evolutionary generations, making use of all 200 training
examples from Strain (evaluated on Stest). Here, in the left part of the chart
the initial improvement resulting from feature weight learning is to be seen. The
right part illustrates the further improvement of the quality measures as yielded
by the optimisation of local similarity measures. After about 300 generations
the evolutionary algorithm converges to an optimum, on average enhancing the
value of quality measure CR1200 from 36.3% to 45.6%, and CR3200 from 66.3%
to 75.3%3. Figure 6b) illustrates the influence of the size of the training set Strain

on the quality of the learning results. Here, at each case the worst, average, and

3 Note, that a single run of the optimisation process in the presented application
domain for |Strain| = 200 and for 200 evolutionary generations takes about 7 hours
on a P-IV machine with 1.8 GHz.

best value (reached after 300 generations of the evolutionary algorithm) of CR1i

and CR3i are shown.

���������	
��������
�

�

��

��

��

��

��

��

��

��

	�

�
�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

���������������������������������

���

�

��

��

��

��

���

���
���

��������
�������
�������� �����������������
����������������

����	�����������������������������

�

��

��

��

��

��

��

��

��

	�

�
�
�

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

 !��������"��#���

���

�

��

��

��

��

��

��

��

��

	�

������

�������

�����	

���
����

������

����	

��
����

��������
�������
�������� �����������������
����������������

Fig. 6. Evaluation Results

The results presented here indicate the fundamental capabilities of our ap-
proach to learn local similarity measures with the help of an evolutionary al-
gorithm. In a domain where case adaptation is applied, our algorithm clearly
improves the quality of a similarity measure so that it takes the possibilities
of case adaptation into consideration. With respect to the required amount of
training data, we expected to need more training examples compared with the
learning of attribute weights to achieve reasonable results due to the much more
complex search space. And indeed, in our experiment about 100 training exam-
ples are required to ensure stable learning results. Using smaller training data
sets, the algorithm sometimes tends to over-fit the presented data leading to
poor results on the independent test data. Nevertheless, assumed that enough
training data is available, the experimental results show that our approach is
able to improve the retrieval quality clearly. At least in the presented applica-
tion scenario the amount of training data is not a crucial problem because it is
generated automatically and so the risk of over-fitting is marginally low.

When omitting prior feature weight optimisation and starting the local op-
timisation for the fixed weights of the given utility measure, the learnt local
similarity measures result in an even more noticeable improvement of CR1 and
CR3. The reason is that it is obviously possible to simulate the effect of feature
weights partially with accurate local similarity measures.

5 Related Work

When talking about learning in CBR, traditionally the focus lays on the acquisi-
tion of new case knowledge. Concerning the learning of similarity measures, ex-
isting approaches are restricted to learning attribute weights. Several techniques

have been developed to improve the accuracy of case-based classification sys-
tems [13, 2, 14, 9, 15]. However, these techniques are difficult to apply in domains
without classified case data, like e-commerce and general knowledge management
domains. An alternative approach to learn customer preferences in e-commerce
is presented in [3]. The training data used here, called return-set selections, is
comparable with the case order feedback presumed by our approach. However,
it also focuses only on attribute weights to represent preferences of customers.

Another research field that deals with the retrieval of information that may
have different utility for the user is Information Retrieval (IR). To ensure the
retrieval of documents that have a high utility for the particular user, some
systems acquire relevance feedback about the retrieved documents from the user.
This feedback is used to learn the actual user context represented by the user’s
query extended with additional key terms to obtain a more specific query [4].

Work that applies a genetic algorithm to learn the retrieval index and fea-
ture weights in a design domain, namely tablet formulation, is presented in [6].
Here, the learning is driven through the available case data by defining a fitness
function that measures the retrieval quality of a special leave-n-out test.

6 Conclusion and Outlook

In this paper we have presented an approach that can be seen as a first step to-
wards the learning of knowledge-intensive local similarity measures. Such mea-
sures are commonly used in many current application domains, in particular
when employing powerful commercial CBR shells that provide graphical mod-
elling tools. The advantage of our learning approach is that it avoids some ma-
jor problems that arise when defining similarity measures manually. On the one
hand, it may simplify the definition process clearly, on the other hand, it may
also help to define similarity measures that represent a better approximation of
the underlying utility function. In our point of view, the major strength of the
learning approach is its more goal directed fashion compared with the manual
procedure. Instead of tuning numerous single representation elements of the en-
tire similarity measure, like weights and local similarity measures, the similarity
definition is directly based on the expected outcome of the similarity compu-
tation, namely the utility of cases for particular problem situations. However,
like other machine learning techniques, the success of the approach strongly de-
pends on the available training data. Only if acquiring the required training
data requires less effort than a manual definition of the similarity measure, the
learning approach might be useful. A typical example are domains that require
case adaptation. Here, the training data might be generated automatically like
described in Section 4. However, in [11] we have already discussed other do-
mains and application scenarios where our learning framework might be applied
successfully.

An interesting issue for future research is the consideration of additional, easy
to acquire background knowledge during the learning process (see also [11]). This
might decrease the risk of over-fitting small training data sets and therefore could

also decrease the amount of training data required to obtain accurate learning
results. Further, additional experiments with real-world application domains are
necessary to show the general applicability of our approach.

References

1. R. Bergmann, M. M. Richter, S. Schmitt, A. Stahl, and I. Vollrath. Utility-oriented
matching: A new research direction for Case-Based Reasoning. In Professionelles
Wissensmanagement: Erfahrungen und Visionen. Proceedings of the 1st Confer-
ence on Professional Knowledge Management. Shaker, 2001.

2. A. Bonzano, P. Cunningham, and B. Smyth. Using introspective learning to im-
prove retrieval in CBR: A case study in air traffic control. In Proceedings of the
2nd International Conference on Case-Based Reasoning. Springer, 1997.

3. K. Branting. Acquiring customer preferences from return-set selections. In Pro-
ceedings of the 4th International Conference on Case-Based Reasoning. Springer,
2001.

4. A. Göker. Capturing information need by learning user context. In Working Notes
of the Workshop on Learning about Users, 16th International Joint Conference in
Artificial Intelligence, 1999.

5. J.H. Holland. Adaptation in Natural and Artificial Systems. The University of
Michigan Press, 1975.

6. J. Jarmulak, S. Craw, and R. Rowe. Genetic algorithms to optimise CBR retrieval.
In Proceedings of the 5th European Workshop on Case-Based Reasoning. Springer,
2000.

7. D. Leake, A. Kinley, and D. Wilson. Linking adaptation and similarity learning.
In Proceedings of the 18th Annual Conference of the Cognitive Science Society.
Hillsdale, NJ: Lawrence Erlbaum, 1996.

8. Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer, 1996.

9. F. Ricci and P. Avesani. Learning a local similarity metric for case-based reasoning.
In Proceeding of the 1st International Conference on Case-Based Reasoning, pages
301–312. Springer, 1995.

10. B. Smyth and M. T. Keane. Retrieving adaptable cases: The role of adaptation
knowledge in case retrieval. In Proceedings of the 1st European Workshop on Case-
Based Reasoning. Springer, 1993.

11. A. Stahl. Learning feature weights from case order feedback. In Proceedings of the
4th International Conference on Case-Based Reasoning. Springer, 2001.

12. A. Stahl. Defining similarity measures: Top-down vs. bottom-up. In Proceedings
of the 6th European Conference on Case-Based Reasoning. Springer, 2002.

13. D. Wettschereck and D. W. Aha. Weighting features. In Proceeding of the 1st
International Conference on Case-Based Reasoning. Springer, 1995.

14. W. Wilke and R. Bergmann. Considering decision cost during learning of feature
weights. In Proceedings of the 3rd European Workshop on Case-Based Reasoning.
Springer, 1996.

15. Z. Zhang and Q. Yang. Dynamic refiniement of feature weights using quantitative
introspective learning. In Proceedings of the 16th International Joint Conference
on Artificial Intelligence, 1999.

