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Recognizing Objects in Still Images and Video
Streams
Adrian Ulgesa ulges@informatik.uni-kl.deIUPR Research GroupTechnical University Kaiserslautern
March 2006
AbstractThis paper addresses the problem of recognizing objects in visual me-dia. Though the �eld has come a long way, this task is far from beingsolved for generic objects in arbitrary scenes. Nevertheless, recent devel-opments have made object recognition more successful and 
exible, withits most promising applications in multimedia indexing and retrieval.The main purpose of this paper is to give a survey of object recognitionin both still images and video. Also, a self-built prototype is describedfor the recognition of items presented to a camera. In experiments, aglobal, histogram-based method and a local, patch-based approach werecompared, with the latter showing a higher robustness to scene changes.

1 Introduction
Upcoming multimedia applications allow users to deal with documents contain-ing text, sound, images, and video at the same time and have a fundamentalimpact on the way we handle information. This \multimedia revolution" hasbeen made possible by new developments in information technology, above allbroad-band networks, mass storage, fast signal processors, software making theproduction and consumption of multimedia content foolproof, and e�cient cod-ing algorithms.These advances pose both chances and challenges: chances because multime-dia has the potential to fundamentally change how we gather information, howwe are entertained, and how we organize the everyday information we get intocontact with. For example, a stronger focus on visual representations makes itpossible to perceive plenty of information at a glance (in contrast to text, whichmust be read in a sequential, ine�ective manner). Also, video has found its wayto the internet due to advanced streaming techniques.Using this technology, we are also able to gather vast amounts of multimediadata ranging from private photo collections to distributed large-scale databases
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(e.g., Google Image Search o�ers access to about 880 mio. images according toa press-release from 2004). The capacity of accessible information has grownto a sheer ocean { the user himself becomes the bottleneck, since we are notable to consume this complete ocean. We have to thoroughly pick the sipswe take { which means that information must be selected and tailored to theuser's needs and wishes. This leads to a more \personalized" way of structuringinformation, with concepts like video-on-demand becoming more popular (e.g.,Apple PodCasts1) and allowing users to pick what they want to see in contrastto TV broadcasts.However, the strong growth of multimedia data also poses di�culties andchallenges. Multimedia databases usually hold vast amounts of information thatcannot be captured at one glance. Elaborate visualization and browsing tech-niques can overcome this information overload to a certain level, but are oftenoverstrained by the sheer capacity of visual information. This is particularlytrue for video content where the time dimension poses additional problems: theamount of information is usually much higher than for still images, and it is notstraightforward to visualize a video at one glance. A survey of research in thisarea is given by Bashir and Khokhar [Bashir 03].
Data overload makes the access of information di�cult. This is why e�cient,user-friendly indexing and querying of multimedia databases must be realized.This paper focuses on the domain of visual information, for which three basicquerying techniques have been explored: query-by-example (QBE) { the sys-tem delivers images similar to a sample {, query-by-sketch (QBS) { the systemreturns images showing features of a sketch drawn by the user {, and query-by-keyword (QBK) { the system returns images �tting a keyword typed in by theuser {, with the latter currently being o�ered by commercial large-scale searchengines as Yahoo and Google.One important question in how to realize such queries is if (and how) tointegrate the visual content of an image or video. While this is essential forQBE and QBS, state-of-the-art QBK systems sneak around it by exploitingmeta-information like the document title.One more step would be to determine the semantic of image and videocontent, which means to identify certain entities like objects, sites, and events.This is not essential for any of the three approaches: While QBK can evenneglect content, QBE and QBS evade semantics by focusing on low-level genericfeatures like color (e.g., see the IBM QBIC system [Faloutsos 94, Niblack 93]).However, it is obvious that multimedia retrieval can bene�t from exploitingthe content of visual documents. Recognizing the entities present in images andvideo streams is the ultimate way to bridge the \Semantic Gap" [Bashir 03]between the raw bitstream of a video (or generic low-level features derived fromit based on color, texture, or shape) on the one hand, and meaningful, compactdescription of objects, scenes, and events on the other.1http://www.apple.com/itunes/podcasts/
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Since the human visual system performs very well at recognizing entitiesfrom visual information, a simple way would be to manually label multimediadocuments. Unfortunately, this is intractable due to the sheer amount of infor-mation. Instead, an automatic labeling of multimedia documents is required.Such an automatic semantic indexing is a multidisciplinary task: signal process-ing is used to obtain low-level features and clues, and methods from informationretrieval provide similarity measures for indexing and querying. Computer vi-sion is the core concept of extracting semantics, trying to infer the presence ofobjects from low-level clues.
This computer vision problem { recognizing the presence of entities in imagesand video { is the focus of this paper. Though the �eld has come a long way anda lot of work has been done in this area, the problem is far from being consideredsolved. This is due to a bunch of di�culties some of which are inherent whencapturing natural scenes, while others are due to appearance variation of objectsthemselves.Due to these problems, state-of-the-art visual search engines o�er only weakextraction of semantics from visual content (e.g., the PhotoBook system2 pro-vides a face recognition module). However, object recognition is extremely in-teresting for practical applications due to its enormous potential for multimediaindexing and retrieval.
The purpose of this paper is to describe the state of the art in object recog-nition from visual information in form of still images and video. A survey ofresearch work is given, challenges of the �eld are pointed out, and some ex-perimental results are presented. The remainder of this paper is organized asfollows: there is a bunch of problems related to objects in visual content, rang-ing from the detection of simple objects to object categories. To clarify theseterms, de�nitions of these problems are given in Section 2. Afterwards, a sur-vey of research work is given in two Sections (3 and 4). We start with methodsfor still images, which can be divided into the two general approaches of localand global methods (Section 3). Afterwards, extensions to multiple views ofthe same object, and particularly object recognition in video are addressed inSection 4. Some of the ideas presented in the survey part have been imple-mented in a system called VideoObjects, which learns and recognizes objectsthat are presented to a webcam. The prototype is described in Section 5.1. Inquantitative experiments, the performance of a global and a local approach werecompared. The results are outlined in Section 5.2.Finally, a conclusion is given and challenges of the �eld are pointed out inSection 6.

2http://vismod.media.mit.edu/vismod/demos/photobook/
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2 Problem De�nitions
The problem of recognizing objects in images and video can be subdivided intoseveral subproblems that are strongly related but di�er in particular details,di�culty level, and input medium. While these speci�c terms are often mistakenor subsumed as \object recognition", a detailed de�nition of problems (and theirspeci�c di�culties) is presented here.The listing of problems goes from \easy" to \di�cult" corresponding to theway that object recognition has come throughout the last years.
2.1 2D Object RecognitionThe �rst problem of object recognition in visual media focuses on the recognitionof particular objects. Thereby, the pose of the object is strongly constrained:

2D Object Recognition is the decision whether an object ispresent in an image. The object is speci�ed by either a set of sampleimages showing the object, or by a symbolic description. The objectmay be shifted, scaled, or rotated in the image plane.
This de�nition does not include the exact localization of the object in theimage. Also, it strongly constraints the pose of the object, since no in-depthrotation is allowed. Two cases in which this assumption is well-founded area constant viewing angle (e.g., in OCR of scanned documents, where lettersare parallel-projected, or for �xed cameras in industrial vision applications), orobjects for which the change of appearance can be neglected and certain featuresremain present over the whole range of viewing angles expected (e.g., for 
atobjects like text). Another popular application in this area is face recognition.Nevertheless, the problem is far from being trivial, since the appearance ofthe same object may di�er strongly between images. This variation occurs dueto several reasons:1. features from the background { so-called \clutter"2. partial occlusions of the object3. while in-depth rotation is neglected so far, the object may undergo a sim-ilarity transformation { scale, rotation in the image plane, and translation{ between several snapshots.4. changing lighting conditions5. changing imaging conditions like noise and blurVariations of all these factors can in
uence recognition and can lead it wrong,especially if the scene changes between learning and recognition.

4



(a) (b)
Figure 1: sample images from a 3D object recognition database [Nene 96]. Somefeatures vanish, while others appear between the two views.
2.2 3D Object RecognitionThe assumptions on the object pose made in the last section are only true forspecial cases of viewing angle or object shape. To apply object recognition in amore general framework, we de�ne 3D object recognition:Like in the 2D case, the problem of 3D Object Recognition is thedecision whether an object is present in an image or not. Unlike inthe 2D case, the image may show the object in any arbitrary pose.This de�nes object recognition for arbitrary scenes, where it must be takeninto account that for many objects the appearance strongly depends on the pose.Besides the di�culties presented in the last section, this is due to the followingreasons:6. self-occlusion: object features are rarely stable but can in general only beobserved from a certain viewing angle. Especially when coming with astrong depth structure, objects tend to occlude their own features makingrecognition di�cult. This can be observed in Figure 1, where some featuresvanish between the two views on an object, while others appear whenswitching between views7. in-depth rotation causing changes in the spatial constellation of featuresOne way of overcoming these di�culties is to extract 3D object models. Un-fortunately, such approaches usually require a controlled imaging environmentor a painful calibration such that they will be neglected here. Instead, manyresearchers stick with appearance-based approaches that do recognition by imagefeatures only.
2.3 Object Recognition in VideoAnother object recognition problem results from using videos instead of stillimages as input:
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Object Recognition in Video is the decision whether an object ispresent in a video stream. The pose of the object may vary betweenframes and is not constrained.
Object recognition in videos is strongly related to 3D object recognition,since a video usually provides a set of views of the object in several poses.However, there are also di�erences: on the one hand, video is less constrainedin a way that the pose of the object is usually not known. On the other hand,additional information comes with the temporal order of frames. Usually, thisinduces a strong similarity between adjacent frames as well as motion that canbe used to segment a foreground object from the background { a concept thatcan be helpful to reduce the in
uence of clutter.

2.4 Object Category RecognitionAnother important problem addressed in more recent research is the recognitionof object categories instead of individual objects.
Object Category Recognition is the decision whether an in-stance of a certain object category is present in an image. Theobject category is speci�ed by either a set of sample images showingsome instances, or by a symbolic description.

Object Category Recognition leads to a wider range of applications than thedetection of speci�c objects { for example, it allows for a more natural indexingand querying of visual content. A user will usually not ask for a speci�c instanceof an object, but rather for general concepts, e.g.\Give me all images showingthe frontal view of a car".On the other hand, object category detection is a more di�cult task, sinceappearance variations do not only stem from changes of the capturing condi-tions listed in Section 2.1, but also from distances between the instances of anobject class. In fact, objects within the same semantic category may look ratherdi�erent, as can be observed for faces in Figure 2. However, for most objectcategories there are fundamental characteristics shared by nearly all instances(e.g., the \eye" feature in a face). An object category recognition system has tomodel these shared properties, while spurious object-dependent features (e.g.,glasses or a hat) have to be �ltered out as well as scene-dependent ones (e.g.,background clutter).Many approaches in this area have concentrated on speci�c object categories,like faces [Viola 04] or text [Chen 04]. However, we will also address more recentwork providing generic ways to build models for arbitrary object categories,e.g.[Fergus 03].
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Figure 2: samples of an object category (image taken from [Jesorsky 01]).
3 Recognizing Objects in Still Images
This section gives an overview of state-of-the-art methods for the problemsintroduced in the last section where still images are assumed as input. Themethods presented are divided into global and local approaches, although thissubdivision is somewhat fuzzy and some hybrid methods can be found. Whileglobal methods base recognition on one global feature vector per image and makedecisions on image level, local approaches view an image as a set of local samples(from now on referred to as patches) such that recognition makes decisions onpatch-level.Similar terms have also been used by Schiele and Crowley before [Schiele 00],who compared a global and a local version of a histogram-based approach. Asimilar study for object recognition in video will be presented in this work afterthe survey (see Section 5.2).Global methods will be introduced �rst (Section 3.1), followed by local onesand a discussion of both (Sections 3.2 and 3.3).
3.1 Global ApproachesThe underlying concept of global object recognition methods is that the ap-pearance of an object is described by a global feature vector, and classi�cationis carried out on a global level. Nevertheless, the speci�c features and decisionrules used may be manifold.A listing of some global object detection approaches is given in the following.
Histograms Histograms can be seen as discrete, empirical approximations ofprobability density functions. They provide compact, global measures of imagefeatures, and have been used for object recognition in various ways.A simple way to use them is to associate a histogram with each image andrecognize object via the similarity of these histograms.Horecki et. al. [Horecki 99] use an extended approach to localize objectsin a cluttered scene. Color histograms are learned from object images withminor background in
uence and afterwards used to track the object in a slidingwindow. This gives so-called interest maps, peaks of which are potential objectpositions. The performance of several similarity measures for histograms arecompared as well as color spaces used.Schiele and Crowley [Schiele 00] use histograms of gray value image proper-ties, more precisely Gaussian derivatives indicating the local gradient strength.
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The fundamental bene�t of histograms is that if the features are chosenproperly, histograms are invariant to rotation and scale changes. Their applica-bility for object recognition under these transformations has been validated inexperiments [Schiele 00].
PCA Nayar et. al. [Nayar 96] view images as vectors with pixel intensitiesas components. Unfortunately, classi�cation using this representation su�ersfrom the high dimensionality of these vectors. Principal Component Analysis(PCA) is used to overcome this problem: a basis of eigenvectors is chosen basedon the distribution of data. Given this eigenbasis, samples can be projected toa low-dimensional subspace spanned by the �rst k eigenvectors such that thevariance of the data is preserved as far as possible [Duda 00].PCA yields a low-dimensional, compact representation for each object imagein this so-called eigenspace, making rapid indexing and retrieval of visual infor-mation possible. The method is also well-known in face recognition as eigenfaces[Sirovich 87].Nayar et. al. [Nayar 96] also present an extension of the approach to 3Dobject recognition { while in face recognition frontal views are assumed, Na-yar et. al. work with images taken from multiple perspectives of an object.Since these images are assumed to be taken from regular, known view angles, aneighborhood relationship is established over shots of similar illumination andperspective. Consequently, the representation of an object is a set of pointsin eigenspace linked according to this neighborhood relationship { a so-calledeigenspace manifold. Images of unknown objects can be classi�ed by projectingtheir PCA representation to the object manifolds and measuring the distance.
Splines on Gradient Fields Javed et. al. [Javed 04] developed a globalmethod for object recognition in video. They extract the �eld of gradient ori-entations from each frame and �t a spline to it. The coe�cients of this splineinterpolation serve as feature vectors for classi�cation.
Recognizing Objects by their Motion Arbel et. al. [Arbel 00] examineif objects can be characterized by their motion structure in video, neglectingtexture and color information. When moving an object parallel to the focalplane of the camera and assuming constant velocity, the motion of a pixel isrelated to its distance from the camera via the laws of perspective projection.This gives a characteristic \depth map" for objects, which is used as a featurevector for classi�cation after applying PCA.
Wavelet Coe�cients A highly elaborate approach has been developed bySchneiderman [Schneiderman 00b, Schneiderman 00a]. According to the au-thors, the method is the �rst one that can handle object categories and changesof object pose at once.This is achieved by training separate detectors for separate poses (e.g., oneclassi�er for each of 8 possible frontal views of cars as illustrated in Figure 3).
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The design of the single classi�ers is then based on local patterns pi, which areempirically chosen groups of wavelet coe�cients from a wavelet transform of theimage. This yields features at di�erent scales, positions, and orientations.

Figure 3: sample images taken from a 3D object category recognition problem. Eightviews of cars taken from [Schneiderman 00b], where a separate classi�er is trained foreach view.
The core of the probabilistic model is the class-conditional density

P ( image j object ) =Yi P (pij object ); (1)
where independence is assumed between di�erent patterns. This does not holdfor the wavelet coe�cients within the same pattern such that the probabili-ties P (pijobject) are derived from a joint histogram for each pattern learnedin training. Consequently, intra-group dependencies are respected to achieve abalance between model compactness and model accuracy. To recognize objectsin cluttered scenes, object recognition is applied to a sliding window over theimage.According to the authors, the method handles intra-category appearancevariation well. It gives impressive recognition rates for images of cars and faces.However, two major issues remain unsolved: �rst, the training images usedseemed high-quality, which means that the object takes most of the image andthe clutter has a minor in
uence (see Figure 3). Second, the choice of waveletcoe�cients is highly ad-hoc. It is unclear whether the coe�cients used are agood choice for other object categories.The approach is strongly related to local, patch-based methods, since the\pattern" features used represent local properties, in contrast to, color his-tograms for example, where each bin represents pixels spread over the image.However, in contrast to manually chosen features coming with an implicit se-mantic, patch-based approaches view an image or video frame as a set of localgeneric samples derived without knowledge of the image.
3.2 Local ApproachesGlobal methods as introduced in the last section model the appearance of anobject in terms of global features like color histograms or gradient �elds. They
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Figure 4: patch-based object recognition: an image is modeled by a set of localfeatures derived from it (in this case, circular regions of di�erent scales). Objectrecognition is based on these patches (image derived from [Fergus 03]).
often have problems if an object is not dominant in an image but the appear-ance is in
uenced by features from the background called \clutter". Anotherproblem related to this is partial occlusion of the object. The in
uence of thesephenomena on global methods is often unpredictable.This is why recent research e�orts have concentrated on localmethods, whichdescribe an image by a set of local features (or patches) as illustrated in Figure4. In this visualization, patches at certain points of interest are highlighted.Typically, local methods extract such patches and associate each of them witha so-called local descriptor representing the appearance of the local surrounding.The presence of the object is equivalent to the presence of a certain con�gurationof local features, which refers both to the appearance and the spatial constellationof patches (e.g., the most discriminative features for the motorbike in Figure 4might be two dark circles { one on the left, one on the right { corresponding tothe tires.This local approach { often referred to as patch-based or part-based objectrecognition { is usually applied without segmentation. To a certain amount {e.g., according to Fergus et. al. [Fergus 05a] the object has to \occupy a reason-able proportion of the image" {, it has the potential to overcome backgroundin
uence and partial occlusion using methods of Robust Statistics [Huber 82].Many methods have been published in this area, which have successfullybeen applied to object detection [Schmid 97], 3D object detection [Lowe 01]and object category detection [Csurka 04, Fergus 03].Instead of listing the approaches one by one, we present a categorization thatfocuses on four key aspects of local object recognition. Though all methods havethe patch-based view of an object in common, they di�er signi�cantly in theirway of handling the following four key questions:1. Which interest regions are used for the positions of patches?
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2. What local descriptors are used to model the appearance of patches?3. How is the spatial constellation of patches modeled?4. What Pattern Recognition methods are used for classi�cation?In the following, we present answers to these key questions from the literature.
3.2.1 Interest Region DetectorsA wide variety of local feature detectors has been proposed { for example, see[Mikolajczyk 05] for another overview. One criterion for a good feature is itsrepeatability: since the fundamental purpose of local features is to represent aproperty of the object and abstract from the speci�c capture conditions, featuresshould be detected reliably even in case of scene changes. Also, features shouldbe discriminative in a way that they are unique and can easily be matchedbetween images showing the same object. Note that repeatability and distinc-tiveness can be contrary goals { discriminative features are probably associatedwith large image regions, which are prone to occlusion and warping and thusless reliable.Due to the vast amount of work on this topic, the following listing is in-complete. Its purpose is to describe some of the most popular ideas to achievedistinctiveness and repeatability including point, contour, and region features.Furthermore, the last passage discusses a quantitative evaluation of several in-terest region detectors.
Corners Conceptually, a corner is a point where the gray value changes inmultiple directions at once. In contrast to edge points, its location can beuniquely determined by its local surrounding, so that corners make good featuresto track and have extensively been used in stereo vision and motion estimation.Two classical corner detectors are the Harris detector [Harris 88] and SUSAN[Smith 97].Unfortunately, these feature detectors neglect e�ects of pose changes. Likeall image features, corners are subject to an appearance change if the distance ofthe camera varies (this causes a scale change in the image) or due to a change ofviewing angle (locally, this e�ect is approximated by an a�ne transformation).This is not taken into account by basic corner detectors { they are neitherscale nor a�ne invariant.
Scale and A�ne Invariance To some extent, a lack of feature invariance canbe overcome by processing the input image at di�erent scales. An alternativeway [Mikolajczyk 04] is to extend the conventional Harris detector and deter-mine a characteristic scale for each keypoint (see also [Lindeberg 98]). There-fore, a range of scales is searched to maximize an information measure called the\Harris cornerness". In a second step, the local surrounding is transformed toan isotropic state based on its second moment matrix [Mikolajczyk 04]. Thus,the resulting interest regions are not only assigned a characteristic scale, but
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also an elliptical shape that follows a�ne transforms of the local surrounding.This is why the resulting feature detector is called a�ne invariant.The e�ect is illustrated in Figure 5: for each keypoint, a characteristic localsurrounding is determined (Figure 5(a)). If this local surrounding is warpeddue to a pose change of the object, the feature is tracked reliably and the localsurrounding is adapted (Figure 5(c)).The resulting region detector has the capability not only to track a featurein a distorted image, but also to compensate for the distortion of the localsurrounding { this boosts matching between images the better the more preciselythe projected elliptical neighborhoods overlap.

(a) (b) (c)
Figure 5: due to a pose change, the local surrounding of 5(a) is distorted in 5(b). Acircular neighborhood as in 5(b) is not suitable to describe the patch, since it covers adi�erent potion of image content. However, an a�ne region detector compensates forthis fact by warping the local surrounding 5(c) such that the neighborhoods in 5(a)and 5(c) cover the same image region (image taken from [Mikolajczyk 05]).

Salient Points Another problem with corner detectors is that the resultingfeatures are usually not distributed regularly over the image but often focused inregions of strong contrast. A way to overcome this is the wavelet-based salientpoints method by Loupias and Sebe [Loupias 99]. The basic idea is to search thecoe�cients in the wavelet transform Wf of the input image f for peaks called\salient points". For more details, see Appendix B.Salient points have fundamentally di�erent properties compared to cornerdetectors. Since strong wavelet coe�cients do not demand strong derivativesin multiple directions, salient points can as well be edge points. On the onehand, these may be valuable features for object detection { e.g., Berg [Berg 04]argues that some objects may show only few corners. On the other hand, edgepoints make rather bad features for matching in motion tracking or stereo vision,because their position is not uniquely determined.Salient points are inherently extracted at multiple scale levels, since they aresearched for in the whole wavelet transformWf . And there is another propertythat distinguishes salient points from corners: due to the hybrid nature of each
12



coe�cient (it corresponds to both a scale and a location), salient points are morespread over all image regions and not restricted to areas with strong contrast, asfor other interest point detectors. This is illustrated by examples in [Loupias 99].

Figure 6: one- and two-dimensional examples for a di�erence of Gaussian functions(image taken from4 ). If convolved with a signal at the right scale, regions with strongcontrast to their surrounding give extrema. Note the strong similarity to the Laplace(or \Mexican Hat") operator.

Di�erence-of-Gaussians (DOG) Another method is to convolve the imagewith a di�erence of Gaussians function and detect maxima obtaining so-calledblob features. This approach is followed by the popular SIFT operator [Lowe 04].It operates in the discrete scale space of the input image, which is obtained fromconvolving the image with Gaussians at several scale steps [Lindeberg 99]. Ateach level, the image is convolved with a di�erence of Gaussians (DOG), whichis illustrated in Figure 6. The resulting signal in scale space is searched formaxima yielding features with an inherent scale.The features detected are blobs, regions of strong contrast to their surround-ing. A perfect example for this is a white circle on black background. If con-volved with a DOG at the right scale, it gives a strong peak.Rotation invariance can be achieved by further enhancements. For example,a characteristic rotation angle can be assigned to each feature by computing adominant gradient direction in the local surrounding [Lowe 04]. Furthermore,a gradient-based local descriptor is used (see Section 3.2.2).
Sample Points A simple alternative to interest region detectors is to obtainpatches simply from sampling the image regularly or randomly. In [Deselaers 05],such patches were used for object recognition and found helpful, especially forprominent large monotonous areas: in these, only few interest points will bedetected, but nevertheless they provide a strong property to discriminate be-tween objects. This can be exploited by sample points (a similar idea has beenfollowed in [Schiele 00]).
Maximally-stable Extremal Regions Matas et. al. [Matas 02] developedanother interest region detector and applied it for stereo matching. While other4http://www.liden.cc/Visionary/Visionary d.html
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operators so far extracted point features, their approach operates on image re-gions. The method is based on the Watershed transform5: starting from amaximal threshold, the image is iteratively binarized while lowering the thresh-old step-wise down to the minimum. During this process, the topology of imageregions changes, and bright regions are fused more and more { however, some ofthem may evade these fusions over a wide range of threshold values, especiallyif they have a strong contrast to their surrounding. These regions are picked asinterest features.
Local Entropy Gilles [Gilles 98] characterizes the saliency of features by therandomness of a local surrounding. Using a sliding-window approach, maxima inthe entropy of the local histogram are used as feature points. This approach doesnot take scale into account. Furthermore, the method gives many local maximain case of complicated, strongly textured areas. Kadir and Brady [Kadir 01]argue that such areas are not salient, since the saliency of an observed feature {the fact that a feature is noticed \at one glance" { demands (besides geometricaspects and complexity) rareness. Similarly, Schiele[Schiele 00] characterizessalient points as \unique points that are helpful to distinguish objects".Both problems with Gilles' approach { lack of scale and lack of true saliency{ can be faced by entropy maximization over scale space. It is argued thatfeatures are more salient if they are stable only over a small range of scalesinstead of a wide one [Kadir 01]: e.g., consider an edge point and a typical blobfeature, a white circle on black background. While the edge point will havethe same entropy no matter how the surrounding is scaled, the more distinctiveblob gives a strong maximum of entropy at a particular scale only. From thesethoughts, a saliency measure is derived that is supposed to suppress stronglytextured, but self-similar areas.
Curve Features A last feature class beneath points and regions are curvesin an image, which are of special interest if the outline of an object is morediscriminative than its texture. One example based on Canny [Canny 87] edgesis described in [Fergus 05b].
Performance Evaluation A quantitative comparison of some popular a�nefeature detectors can be found in [Mikolajczyk 05], where interest features fromreference images were tracked in distorted image versions (blur, illuminationchange, 3D viewpoint change, rotation, scale). Each local feature is associ-ated with an elliptic neighborhood which makes the feature a�ne invariant (asillustrated in Figure 5).The quality of an a�ne keypoint detector is now measured using two criteria:the repeatability with which a keypoint is tracked in the distorted image andits accuracy, the percentage of overlap between matched neighborhoods. In5http://cmm.ensmp.fr/~beucher/wtshed.html
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[Mikolajczyk 05], these criteria were evaluated quantitatively over a set of testimages6. The ground truth for tracking interest features between images isdetermined by estimating a homography between the reference image and itswarped version.Results indicate that Maximally-stable Extremal Regions [Matas 02] and theenhanced scale and a�ne invariant version of Harris [Mikolajczyk 04] performedwell [Mikolajczyk 04].
3.2.2 Local DescriptorsFollowing the patch-based approach, local features are not only characterized bytheir position in the image but also by the local appearance of the surroundingpatch. Like for feature detection methods, there is a wide variety of meth-ods to extract feature vectors that describe patch appearance, so-called localdescriptors.The fundamental purpose is to describe object properties independently fromthe speci�c capture. Thus, invariance is a basic goal for local descriptors as wellas for feature detectors. Ideally, the local descriptor should remain the sameunder varying illumination, scale, or rotation. Often, invariance is di�cult toachieve and subsumed by the weaker property of robustness, which allows minorchanges.Another goal is a high distinctiveness of the descriptor. It can be di�cult tosatisfy both criteria at the same time: for example, the local gray value meanin a local surrounding is invariant to rotation, but on the other hand it has arather weak distinctiveness.To overcome a lack of invariance, several workarounds have been suggested:for scale invariance, local patches can be processed at multiple scale levels. Forillumination, the gradient strength is used instead of the absolute gray value,or an adaptive gray value normalization is done. Rotation invariance can beachieved by using histograms or by determining a characteristic orientation foreach patch based on local features like the dominant gradient direction in a localsurrounding [Lowe 04].An evaluation of local descriptors has been presented by Mikolajczyk andSchmid [Mikolajczyk 03], who tested the performance of local descriptors inthe context of matching between two slightly modi�ed image versions (rotation,scale, 3D viewpoint change as for stereo tasks, blur, and illumination). The localdescriptors were tested for several interest region detectors. It was found thatthe SIFT descriptor performed best. However, these results do not necessarilyhold for object category detection. First, the requirements for a local descriptormay be di�erent since matching shall occur under a higher appearance variation.Second, setting up a ground truth for quantitative testing is painful.In this section, we list some popular local descriptors.6http://www.robots.ox.ac.uk/~vgg/research/a�ne/
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Pixel Values A straightforward way to describe a patch feature it to usepixel values in a local surrounding. This is simple but usually yields very high-dimensional feature vectors making a later processing painful. Furthermore,image patches contain noise and high frequencies, which might have a negativein
uence on similarity measures for matching. For example, Lowe [Lowe 04]states that raw image content is sensitive to changes of 3D viewpoint or slightrotations. This is also found in the context of stereo matching [Ulges 04].
PCA A standard technique to reduce the dimensionality of sample vectors isPrincipal Component Analysis (PCA) [Duda 00]. Using a linear eigenanalysis,high-dimensional samples (e.g., vectors of local pixel values) can be projectedto a lower-dimensional subspace, whose basis of eigenvectors is chosen such thatthe variance of samples is optimally preserved.
DCT One problem with PCA is that it demands learning the basis of eigen-vectors from a training set. Experimental results in [K�olsch 03] show that likethe PCA favors low-frequency components over details, and that comparablelocal descriptors can be obtained by applying the Discrete Cosine Transform(DCT) to the image and selecting a subset of low-frequency components fromthe DCT-transformed patch. This o�ers a data-independent way of dimension-ality reduction.
SIFT The SIFT feature extraction method by Lowe [Lowe 04] does not onlyprovide a keypoint detector, but also a local descriptor. Its general idea is illus-trated in Figure 7: the local surrounding of a feature vector is partitioned intobins, and for each bin a histogram of gradient orientations is computed. Takingthe bins of all histograms together yields a descriptor of gradient orientations inthe patch. Due to a clever weighting and interpolation, the descriptor changessmoothly with variations of the local surrounding.The model is biologically inspired { the human visual system perceives gra-dients in a similar manner showing robustness to small shifts on the signal.The resulting descriptors are claimed to be scale invariant due to featuredetection in scale space, rotation invariant due to estimating a characteristicorientation, and robust against illumination changes (the gradient is used in-stead of image intensities). They have proven a very good performance in aquantitative evaluation [Mikolajczyk 04].
Di�erential Invariants Other researchers have used certain local invariantsas descriptors. These can be based on gray values, e.g.using moments, or onGaussian derivatives that are obtained by di�erentiating the input image Iconvolved with a Gaussian kernel N :

Li(x) := ( @@xiN � I)(x):
The de�nition of higher-order derivatives is straightforward.
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Figure 7: an example for the SIFT descriptor: a local neighborhood is divided intospatial bins, for each of which a histogram holds the local gradient distribution. Com-bining these histograms give the feature vector (image taken from [Lowe 04]) { in thisexample, there are 4 bins, each with 8 arrows corresponding to 4 gradient orientations.This yields a 4� 4-dimensional feature vector.
If Gaussian derivatives are combined properly, descriptors can be obtainedthat are rotation invariant. Examples are the LaplacianPi Lii(x) or the squaredgradient magnitudePi Li(x)Li(x). The resulting features are called di�erentialinvariants.A sequence of third-order di�erential invariants has been used as a local de-scriptor in [Schmid 97]. The choice of features in this case is rather limited, sinceonly certain combinations of Gaussian derivatives lead to rotation invariance.Furthermore, results in [Mikolajczyk 03] indicate a rather weak distinctiveness.

Feature Discretization A common way to speedup feature matching is toapply an additional discretization (also referred to as feature clustering) as apost-processing [Keysers 06, Fergus 05a]. Typically, the feature vectors are re-placed by the outcome of a clustering on training data (e.g., using k-means). Inrecognition, a patch p is not presented by its feature vector, but by the clusterC(p) it is assigned to.First, this reduces the amount of data to 1 dimension per patch. Second,it reduces the number of potential correspondences when it comes to matchingpatches from two sets (e.g., an image and an object model) by demanding thatmatches belong to the same cluster.Feature discretization is also used by another group of object recognitionapproaches inspired by methods from the text processing domain (e.g., see[Sivic 03, Fergus 05a]). In this context, the clusters resulting from discretiza-tion are often referred to as a vocabulary of visual words, which are clusters ofsimilar patches.
3.2.3 Using the Spatial Constellation of PatchesThe local features of many real-world objects tend to appear in repetitive spatialconstellations { one example is the motorbike illustrated in Figure 4, anotherone is a human face with eyes, nose, and mouth at �xed positions relatively to
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each other.In the last Section, it was described how to extract those local featuresand how to describe their appearance. Now, the next question is how to ex-ploit spatial relationships between those features. This leads to the so-calledcorrespondence problem of �nding matches between an object model and an im-age to be recognized. Solving this problem is one of the bottlenecks in objectrecognition, since the space of potential correspondences is usually vast. Manystrategies to face this problem and exploit spatial constellation are introducedin the following, ranging from simple heuristics to approximation techniques tostatistically optimal search strategies.
No Spatial Relationships Like for local descriptors, we start with the mostsimple way, namely to neglect spatial relationship between patches completely.According to this approach, an object (or object category) is usually character-ized only by the local descriptors of its patches. This leads to various decisionstrategies that will be discussed in Section 3.2.4. An alternative is to work withdiscretized descriptors and use their distribution over the clusters of the \visualvocabulary" described earlier in this section: given clusters C1; ::; CN and animage with patches p1; ::; pn, this distribution is de�ned by

(#pi : C(pi) = Cj)j=1;::;N (2)
Note that this sequence is a patch histogram holding information similar toa word vector in text processing. While the latter holds information on thefrequency of words in a text document, (#pi) provides the same information for\visual words" in an image.Approaches neglecting spatial relationships are popular due to their sim-plicity [Deselaers 05, Fergus 05a, K�olsch 03] and have also shown a surprisinglygood performance in practice. It seems that these approaches work well forobject recognition but run into problems when it comes to object category recog-nition, especially for object classes where color and texture vary but shape isvery discriminative (e.g., \co�ee cups").
Histograms of Relative Positions Another approach using feature dis-cretization has been proposed by Agarwal et. al. [Agarwal 04], who builda vocabulary of visual words by clustering. For recognition, a binary vectorV = (v1; ::; vn) is extracted for each image where the coordinates vj indicate thepresence of a patch belonging to cluster Cj { just like in text processing, wheredocuments can be represented as boolean vectors of word occurrences.Furthermore, the approach is extended to take spatial relationships intoaccounts using bins of relative positions between patches. Given a referencepatch, the image space is partitioned into 20 bins using 5 distance levels and4 direction levels, and V is extended with additional coordinates vkij indicatingthe presence of visual word wj in bin k (k = 1; ::; 20) relative to an occurrenceof wi.
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Obvious problems with this approach are its very high-dimensional featurevectors in the order of several mio. dimensions (which is tried to be overcomeusing a winnows classi�er suitable for sparse samples) and a lack of robustnessagainst slight position changes.
Heuristics for Joint Optimization The object recognition approach of Burlet. al. [Burl 98] views the spatial relationships and appearance in one proba-bilistic framework. Given an image I represented by its patches X = x1; ::; xn,the likelihood ratio is used for classi�cation:

� = p(Ijobject)p(Ijbackground)� is rewritten using a latent vector random variable X, which represents hy-potheses for positions of object patches in the image:
� = PX p(IjX; object) � p(Xjobject)p(Ijbackground)This converts to the following log-likelihood ratio, if independence of patchappearances is assumed. Furthermore, a single optimal constellation hypothesisX0 is assumed since summing over all positions is infeasible:

log � =Xi log p(xijX; object)p(xijbackground) +K � logX0
Optimizing log � means to jointly optimize local appearance (the �rst term)and spatial constellation (the second one). The factor K can be used to balanceboth in
uences.For recognition, a part detector is run to extract the patches pi. Then, theconstellation hypothesis X0 is chosen and the likelihood ratio can be computed.The key step is the choice of X0 from the patches. Therefore, three heuristicsare discussed:1. for each match in the object model, �nd a \most similar" match in thescene based on appearance only. This automatically leads to a spatialcon�guration (\appearance implies shape")2. �nd an optimal shape match neglecting appearance. This yields appear-ance correspondences. (\shape implies appearance")3. �nd a set of reliable initial matches. If assuming a transformation of atmost four parameters between the images (e.g., a similarity transformconsisting of isotropic scale, rotation, and translation), each pair of suchmatches implies a global constellation for all other parts. Optimize log �0repeatedly varying the pairs of initial matches (\joint optimization")Optimality cannot be guaranteed for any of the methods. Approaches (1) and(2) are greedy techniques. The last method uses a local optimization, whichfaces the problem of bad starting values.
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Least Squares Lowe [Lowe 01] follows a voting approach. Between patches ininput image I and in the modelM , correspondences f(xIi ; XMi )g are established.In an additional postprocessing, spatial constellation is exploited by demandingthese matches to give a consistent global similarity transformation T�. T� mapsfeature locations from I to M . The transformation parameters � are obtainedusing least-squares, thus minimizing the localization error:
E(�) =Xi (XMi � T�(xIi ))2

The decision whether I matches M is made by thresholding with the leastsquares error.The approach has two inherent problems: First, matching and transforma-tion estimation are separated such that errors in matching cannot be undone inparameter estimation. Second, least squares optimization is strongly in
uencedby such outliers.
RAST A method that overcomes both weaknesses of Lowe's approach is theRAST algorithm [Breuel 92], which solves correspondence and parameter es-timation in a joint framework. Keysers [Keysers 06] follows this approach tosolve the correspondence problem in object recognition. RAST does not modelmatches explicitly, but �nds a global mapping T� between a model and an im-age (e.g., a 4-parameter similarity transform). The input consists of an objectmodel O consisting of patches o1; ::; om and an image X with patches x1; ::; xn.Each patch consists of image space coordinates and an appearance vector �,e.g.xi = (�i; �i). Given O and X, RAST searches the parameter space f�goptimizing the likelihood of the observed image. Independence of patches isassumed:

�̂ = argmax� p(XjO; �)
= argmax� Y

i p(xijO; �)
For the class-conditional density p(xijO; �), a truncated Gaussian N is chosen:

p(xijO; �) = � NT�(oi� );�2(xi) 9oi� : NT�(oi� );�2(xi) > TT else
This models the presence of background features: if the image patch xi occursdue to the object, the corresponding model patch oi� will be similar to xi andmapped near to xi such that T�(oi�) � xi. A diagonal covariance matrix �2I isassumed, as well as a uniform distribution T for background patches. . Afterfurther simpli�cation and taking the logarithm, we obtain

�̂ = argmax� X
i qO;�(xi)
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where qO;� gives \quality votes" for each image feature:
qO;�(xi) = ( 1� jjxi�T�(oi� )jj2�2 9oi� : jjxi � T�(oi�)jj2 < �20 else

As mentioned above, patch vectors contain both the location and appearance:xi = (�i; �i). Consequently, jj:jj is the Euclidean distance in the joint domainof image coordinates and intensities.In practice, location and appearance are dealt with separately. The appear-ance can be discretized and matches are accepted only within the same cluster.The distance measure jj:jj is replaced with the Euclidean distance for imagecoordinates only.Optimizing the likelihood is done by searching the parameter space f�g ina branch-and-bound manner, guaranteeing a global optimum. Note that whileother methods like in Burl et. al. [Burl 98] try to establish correspondencesbetween patches explicitly, the RAST algorithm yields matches implicitly once� is known. Classi�cation of the image I might be done using the overall quality,which is an equivalent to the log-likelihood.
The Constellation-Based Model A highly elaborate approach in the areaobject recognition is the constellation-based model, which views the appearanceof patches and their spatial constellation (the overall shape of an object) in ajoint probabilistic framework.The model is inspired by the work of Burl et al.[Burl 96] as it is based onmaximizing appearance and shape terms in a joint likelihood. Several varia-tions can be found in the literature [Weber 00, Fergus 03, Fergus 05b]. Whileearlier work is focused on object recognition and skips automatic learning, laterapproaches even include learning object category models in an unsupervisedmanner from weakly labeled images [Fergus 03]. Neglecting some variations be-tween the concrete approaches, this section tries to present the essence of themodel.

The Model: The central idea is that a set of characteristic patches Mforms the model for the object or object category to be recognized (e.g., the eyesand the nose are characteristic for human faces). Given a new image, patchesP are extracted that make potential candidates for these object patches. Aso-called hypothesis h : P !M [ fbackgroundg maps image features to modelpatches. The space of possible hypotheses may become vast: jhj 2 O(jM jjP j),and distinguishing \good" hypotheses from \bad" ones is a key problem.For each hypothesis, a class-conditional density p(P; h j �) is derived usinga complex model including distributions for the appearance, scale, and spatialconstellation of patches. The concrete realization of these distributions candepend on the approach { Fergus et al.[Fergus 03] choose Gaussian distributions,while Weber et al.[Weber 00] discretize the appearance of patches by a precedingfeature clustering.
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The parameters � of these distributions describe the appearance of an ob-ject, including distributions for the appearance of characteristic patches as wellas for their spatial constellations. � is derived from a set of training images.
Recognition: In recognition, we theoretically have to marginalize over allhypotheses to obtain the likelihood p(P j�) =Ph p(P; hj�). The basic questionis how to handle the amount of hypotheses. If summing over all hypotheses in abrute force manner, the number of model features must be kept very low (e.g.,jM j = 5). Another approach is to only sum over a subset of promising hypothe-ses, or to even search for an optimal hypothesis in a greedy manner [Burl 96]by picking pairs of features and inferring the remaining patches. Other work byFergus et al.[Fergus 05b] replaces the joint density for the spatial constellationof patches with a star-based model including only pairwise dependencies witha so-called \landmark" patch. In this case, sums over the hypothesis space canbe evaluated in O(jM j2 � jP j) instead of O(jM jjP j). However, the selection of astable landmark is an open problem.
Learning: An open question left is how to determine the parameters � {to learn object category models { from sets of unsegmented images labeled withobject names. While this has not been addressed by earlier approaches, recentwork like [Fergus 03] faces the problem, especially two key di�culties:
� part selection: Select the most discriminative patches that represent the\essence" of an object category best. Ignore clutter patches.
� estimate the associated model parameters � that determine where modelpatches are to be expected in the image and what appearance they have.Both problems can be addressed at once by data �tting using an ExpectationMaximization (EM) algorithm (for a short introduction, see Appendix A). Thisgeneric scheme is an iterative technique to �nd a maximum-likelihood solutionfor parameters � in the presence of missing data. EM is extremely suitable inour case, since we have missing data in form of occluded object patches (theones for which h(p) = background). EM also has the capability to \select" thebest model parts in a maximum likelihood sense and ignore clutter.
Discussion: With the complexity of the constellation-based model comesa high 
exibility. Since both appearance and shape are modeled via parametersin one joint framework, the model is capable of a wide range of object categories,for some of which the appearance might be more restricted (e.g., for \spottedcats" the texture is more discriminative while the shape may vary), while othersare characterized more by a restricted shape (e.g.tea cups).One surprising fact is that only very few (in the order of 5) patches havebeen used in the corresponding object models so far. One reason for this isthat learning is very time-consuming. Another one is that more model patches{ thus, more parameters { might lead to over�tting for the small training setsused.
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Although only very few patches per object category are used so far, errorrates seem competitive.
3.2.4 Classi�cationThe last key question to be answered is how to make a good decision whetheran object is present in the image based on local features.This topic is also strongly related to the way appearance and shape are mod-eled. Many approaches that take shape into account { e.g., the constellation-based model [Fergus 03] { use probabilistic frameworks. In these cases, thedecision rule follows directly from the model using Bayesian methods. Conse-quently, we will not discuss these approaches further but focus on approachesthat neglect spatial relationships. An overview and comparison of some methodsis given in Deselaers et al.[Deselaers 05].
Patch Histogram Similarity One simple way is to associate an image withits patch histogram as introduced in equation (2). A new object image can thenbe classi�ed using histograms of a set of training images.
Naive Bayes On a local level, the patches X in an input image are viewedas samples. Usually independence is assumed, which leads to a Naive Bayesapproach: P (XjO) =Yi P (xijO)
A feature discretization is used to cluster patches into classes such that theclass-conditional probabilities P (xijO) can be obtained as relative frequenciesfrom histograms.
AdaBoost Another possibility [Opelt 04] is to view the presence of a patchin an image as a binary weak classi�er and combine these using AdaBoost[Freund 96]. Given a set of training images with object labels viewed as sets ofpatches X = fXi = fxi1; ::; xinigg, the method precomputes a distance betweeneach feature-image pair:

d(xij ; X) = minx2X jxij � xj
Iteratively, the feature xij is picked that minimizes classi�cation error whenthresholding over all images, and AdaBoost reweights all images such that \dif-�cult" ones are given more attention. The resulting classi�er is a linear combi-nation of the weak \patch classi�ers" obtained in each iteration. The methodhas also successfully been applied before to speci�c object categories like faces[Viola 04] and text [Chen 04]. Its recognition rates for object detection on stan-dard databases seem competitive.
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Direct Voting Direct Voting is another appearance-only approach viewing animage as a set of local features x1; ::; xn. From a set of training images, patchesX1; ::; XN associated with object labels L(Xj) are extracted. The decision ruleis the following: for each feature xi, the nearest neighbor in the training setN(xi) := argminXj jXj � xij gives a vote for its object label L(Xj):
voteL(xi) = � 1 L = L(N(xi))0 else (3)

Object classi�cation is then based on the majority of votes:
L̂ := argmaxL X

xi voteL(xi) (4)
The method has a statistical foundation as is shown in Appendix C. Fur-thermore, it has proven to perform well in practice [K�olsch 03, Lowe 01]. Thisis why we follow a similar approach for object recognition in video (see Section5).

3.3 Discussion of Global and Local ApproachesA fundamental criterion to judge object recognition approaches is their robust-ness with respect to appearance variations. The reasons and characteristicsof such variations may be manifold (e.g., see Sections 2.1 and 2.2), includinglighting changes, geometric transformations, and background in
uence.A look at global methods reveals that they may cope well with some of thesechanges { e.g., color histograms are invariant to geometric transformations likescale, rotation, and shift.
On the other hand, the majority of global approaches are strongly a�ectedby background in
uence in form of clutter and occluded object features, whichoften has an unpredictable in
uence on global feature vectors and makes suchapproaches less 
exible { usually, they demand objects images free of occlusionand with minor background in
uence [Arbel 00, Nayar 96, Horecki 99].One way to overcome the problem of background clutter is to segment theimage and extract features only from its object region. For still images, a hugequantity of segmentation approaches exists ranging from low-level methods likethe watershed transform or region growing to elaborate ones like Markov random�elds [Geman 84] or normalized cuts [Shi 00]. Still, dividing an image into theright regions is a painful task when it comes to unknown objects like in genericobject recognition. This is aggravated by the fact that segmentation is in generalsubjective [Martin 01].The situation may be somewhat easier when it comes to objects in video con-tent. If the object moves in a di�erent way than the background, this knowledgecan be exploited using motion segmentation. Black and Anandan [Black 96]have pointed out the di�culties in this �eld and presented robust methods. Foran even more comprising overview of the �eld, see [Smolic 01].
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Nevertheless, most global methods su�er from a lack of robustness. This hasalso been observed by Schiele and Crowley [Schiele 00], who studied a globalapproach based on so-called receptive �eld histograms (RFHs). Like color his-tograms, RFHs measure the distribution of a pixel property over an image,just that they replace color by Gaussian derivatives. First, a global method ispresented that matches RFHs of images using several similarity measures forhistograms. This approach is then compared to a method that views an imageas a set of local features x1; ::; xn (in [Schiele 00], these were Gaussian deriva-tives at positions obtained from sampling over a regular grid). An object O ischosen by a Bayesian decision assuming equal priors and feature independencesuch that the posterior rewrites as:
P (Ojx1; ::; xn) = Qi p(xijO)PkQi p(xijOk) (5)

Such an approach is considered as local, since an image is viewed as a set of localsamples. This di�erentiation is somewhat arti�cial as is revealed by takinga closer look at the posterior. When sampling in steps of 1 (at every pixelposition), we can rewrite the decision Ô based on Equation (5) as
Ô = argmaxOk P (Okjx1; ::; xn)

= argmaxOk
Y
i p(xijOk)

= argmaxOk
Y
x HOk(x)HI(x)

= argmaxOk
X
x HI(x) logHOk(x) (6)

where x runs over all possible feature values, HOk is the model RFH correspond-ing to object Ok, and HI is the RFH corresponding to the image.What equation (6) states is that when sampling densely our \local" decisioncriterion just rewrites as a new similarity measure for global histograms, ren-dering the di�erence between the global and the local approach useless in thisspecial case.Nevertheless, we keep the di�erentiation in general since it is based on theway of viewing images globally or as sets of local samples. Another reason forthis is that local approaches have { in contrast to global ones { proven thecapability to deal with partial occlusion and clutter in a natural way: only asmall fraction of features gives erroneous, unpredictable \votes", and the globaldecision is robust against a certain fraction of background clutter. This hasbeen validated in experimental results by [Schiele 00], and similar observationshave been made in experiments described in Section 5.2. Although the globalapproach showed robustness to some degree, it was not able to compete withthe local probabilistic method in the presence of occlusion [Schiele 00] and back-ground changes (Section 5.2).
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4 From Still Images to Video
The object recognition methods introduced in the last two sections all dealwith still images. One straightforward way of transferring the concepts to videostreams is to view video as a set of multiple views showing an object at variousposes. When observing multiple views of the same object in such a manner,appearance changes are a problem, especially when features disappear due toself-occlusion. This poses problems e.g.for the constellation-based model: usu-ally, there is just no single unique constellation of patches that is su�cient tocharacterize multiple views of a 3D object. The problem turns into a 3D objectrecognition problem as introduced in Section 2.2. Furthermore, there comes ad-ditional information with video (besides audio tracks or closed captions) in formof the temporal relation between frames, and in form of the fact that consecutiveframes should be similar assuming smooth pose changes.Consequently, this section starts with approaches from 3D object recognitionand afterwards introduces some video-speci�c concepts.
Inherent Treatment of Multiple Views Some classi�cation concepts fromthe 2D case can be transfered naturally to multiple views, e.g.direct votingas introduced in Section 3.2.4: since all features of an image are stored in adatabase and recognition is done by Nearest Neighbor classi�cation on patchbasis, a video is simply represented by all patches from all frames.The same expansion can be made for most global methods, where matchingis done by NN classi�cation on frame basis.
Training View-Speci�c Classi�ers An alternative way is to train a setof view-speci�c classi�ers for view classes of an object, as has been done in[Schneiderman 00b]. For example, all frontal views of cars are partitioned into8 subsets (see Figure 3). Note that this approach as it is introduced is notgeneric { whenever a new object category shall be introduced, new view classes{ so-called aspects { must be determined manually.
Aspect Graphs The approach introduced in the last section does not includean automatic grouping of similar views: the car views illustrated in Figure 3have been selected manually. Automatic approaches to do this have to respectthe structure of the system of views, which is an individual property of anobject. More formally, the problem is to automatically generate an aspect graphof the given object as illustrated in Figure 8. Images of an object (in this caserepresented by the object silhouettes) correspond to positions on the unit sphere.Some of these images hold the same features and are very similar { they areclustered to so-called aspects. Edges between adjacent aspects correspond to so-called \accidental" views were the appearance of the object changes distinctly.Cluster representatives for some aspects are displayed in Figure 8 { appearancechanges between the samples can be observed, e.g.the presence or absence ofthe kangaroo tail.
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Figure 8: an aspect graph (image taken from [Cyr 04]).
A method to automatically construct an aspect graph has been presentedby Cyr and Kimia [Cyr 04]. The input is a set of views V = fVig of the object,which are assumed to be taken from the same distance and sample the wholehemisphere in regular steps. Due to this controlled setup, a neighbor relationover V is given for views taken from an adjacent angle.The construction of an aspect graph is now viewed as a problem of segment-ing V into clusters of adjacent and similar views (\aspects"). For each aspect,a representative is stored and used for NN-based recognition.One key problem for clustering is to measure the similarity of images, forwhich Cyr and Kimia propose two metrics based on the object silhouette. An-other one is the clustering algorithm itself { therefore, a greedy region growingscheme is proposed. Starting from singleton clusters of isolated images, similarclusters are iteratively joined. To avoid undersegmentation with large, heteroge-nous clusters, two clusters only combined to a new aspect A � V if A satis�esthe following constraint. Assume that rA is the representative of aspect A:

8Vj 2 A; Vk 2 (V nA) : d(rA; Vj) < d(rA; Vk)
View Clustering Like Cyr's approach [Cyr 04], Lowe [Lowe 01] clusters sev-eral views on an object. Nevertheless, the methods di�er in some signi�cantaspects: �rst, the approach is based on local SIFT features and not on globalsimilarity measures. Second, images are not assumed to be taken in a con-strained setup such that no neighborhood relationship between adjacent viewsis given. This makes the approach suitable for general, unconstrained video.Third, the aspect graph does not contain edges on aspect level. Instead, linkson patch-level are introduced between similar patches from di�erent aspects.Thus, the object model is just a set of aspects, where an aspect is a set of
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similar views of the same object, and a view is just a set of patches. Learningis equivalent to storing all patches and their links.Both classi�cation and learning are done using an enhanced direct voting:for each new image, patches xIi are extracted and matched to the database ofmodel patches xMj using NN. Each such match votes for one { or via the linksbetween similar patches for several { aspects. From these votes, a posteriorP (AjxIi ) is derived for each aspect A. By thresholding P (ajxIi ) it is decidedwhether an object is present in the image.Though no quantitative evaluation is presented, the approach looks promis-ing for a test image, where it was able to detect multiple objects in a clutteredscene. Another bene�t is that no constrained capture environment is needed(solely, the object is required to take on a su�cient fraction of the image space).This is why a related approach was followed in the prototype system outlinedin Section 5.1.
Using the Temporal Order of Frames Javed et al.[Javed 04] exploit thetemporal structure of video in a Markov framework. Given video frames M =(m1; ::;mT ), each one is assigned to one aspect (determining both object andpose). This yields hypotheses in form of sequences of aspects A = (a1; ::; aT ).Using a Markov property we obtain

P (AjM) =  TY
t=2P (at; at�1jmt)! � P (a1jm1)

/  TY
t=2P (mtjat; at�1)P (atjat�1)P (at�1)! � P (a1jm1)

�  TY
t=2P (mtjat)P (atjat�1)P (at�1)! � P (a1jm1) (7)

where the likelihood P (mtjat) is learned in a feature space of gradient orienta-tions. The pose transition probability P (atjat�1) is modeled as a distributionover the 3D unit sphere (the angle corresponding to aspects is assumed as knowndue to a controlled setup) favoring slow transitions over abrupt ones. Unfortu-nately, the experimental results presented are not very convincing. Only fourobjects are presented without clutter or occlusion.Note that the Markov approach outlined in equation (7) relies on knowledgefrom previous frames by boosting the probability of an aspect respecting theprevious one. An alternative to modeling a transition probability explicitly isgiven by Bayesian Chaining [Arbel 00]. Given frames Mt = (m1; ::;mt) andobject hypotheses O1; ::; On, the posterior is estimated by
P (Ojmt) / P (O)P (mtjO)While the likelihood P (mtjO) is modeled in a standard way as a Gaussian infeature space, the information from the previous frame is integrated by replacing
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the prior P (O) with the posterior from the previous frame:
P (O) � P (OjMt�1)

Video Google A completely di�erent approach to object recognition in videohas been followed by Sivic and Zissserman [Sivic 03], who focused on rapidindexing and retrieval in video databases. Therefore, parallels to the worldof text retrieval are drawn (this is why the approach is called VideoGoogle):a text document containing words corresponds to a video frame with visualwords in it. These visual words are just local features: they are obtained bydetecting interest regions and clustering them based on their local descriptors.Furthermore, the frame structure of video is exploited in two ways:1. features are tracked and only stable features are kept2. local descriptors are smoothed by averaging over subsequent framesThis way, a �nite vocabulary of patch classes is obtained, which allows to transfertext retrieval methods in a straightforward way: like a document, a video framecan be represented by a document vector (using boolean entries, the frequency,or the inverse document frequency), and well-known similarity measures like thecosine can be used for frames. This approach has been used to discover certainscenes in video streams.A second scenario is to �nd frames containing a certain object, which is amore di�cult problem due to clutter. Therefore, features between the objectand each frame are matched, and two additional constraints are imposed:1. Spatial Consistency: instead of deriving an a�ne transform mapping fea-tures from the object into the frame, a simple and fast voting scheme isused: the 15 nearest neighbors in the object are determined and give aboosting extra vote if they are neighbors in the frame, too.2. Stop Words: in text documents, very frequent words are not discriminativeand are thus discarded in a preprocessing step. The same phenomenoncan be observed for visual words, which are discarded for object retrieval,too.
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5 A Practical Approach to Object Recognitionin Video
The object recognition survey given in the last two sections made a di�erentia-tion between global and local approaches. It is an interesting question to comparethe performance of these classes in a practical environment. Therefore, we builta system called VideoObjects for the learning and recognition of objects invideo streams. Using this infrastructure, we evaluated the performance of oneglobal and one local approach in quantitative experiments. To our knowledge,the only previous work presenting such a direct comparison is [Schiele 00].Also, our goal was to build some initial infrastructure for following in-depth research on object recognition. In the following, we �rst introduce theVideoObjects prototype in detail in Section 5.1. Afterwards, our experimentsare described and results are discussed (Section 5.2).
5.1 The VideoObjects SystemThe object recognition system built is called VideoObjects. Its purpose is tolearn objects that are moved manually in front of a �xed video camera, and lateron recognize them when presented again. The only user interaction required isto present the object to the camera, and { during learning { entering the nameof the presented object.The system setup is described in this Section, including a detailed outline ofthe single components and the underlying pattern recognition techniques.

The system setup is illustrated in Figure 9. A �rewire webcam7 with a320�240 resolution observes a scene, which is assumed static except for an objectpresented to the camera. The resulting motion is detected, and a video of themoving object is stored. Furthermore, the VideoObjects thread is triggered,which segments the object from the background using motion segmentation andextracts features from the object area in each video frame.To learn the appearance of objects and afterwards use this information torecognize unknown items, we use a semi-supervised approach: if a new object islearned (blue path in Figure 9), the only manual labeling of data required is thatthe user types in the object name. The name and the object features extractedfrom the video are stored in the Object Base, where all system knowledge isrepresented. If an unknown object is recognized (red path in Figure 9), featuresare extracted from the video and classi�cation is done by matching with theobject base. In the following, the single components of the system are depictedin more detail.7UniBrain Fire-I webcam
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Figure 9: the setup of the VideoObjects system: if an object is moved in frontof the camera, it segmented from the background and features are extracted. Whenlearning an object (blue), the features are stored in the object base together withthe object name typed in by the user. If an unknown object is recognized (red), theextracted features are matched with the object base.
5.1.1 Motion DetectionTo detect the presence of an object and trigger object recognition, the Linuxsoftware tool Motion8 is used. The tool is based on a rather simple technique:the di�erence between a new image and the reference frame (a weighted sampleof previous frames) is computed and thresholded to decide whether motion ispresent. This method proved absolutely su�cient for our purposes.
5.1.2 Motion SegmentationIt has been outlined in previous sections that clutter poses a problem for objectrecognition and can have a disturbing in
uence on classi�cation. Especially ifthe object covers a relatively small potion of the image, object recognition canbene�t from discarding background features.Therefore, we extract a binary object mask from each frame where ON pixelsbelong to the object and OFF pixels to the background. An example is given inFigure 10(c). Extracting this mask for an unknown object in front of arbitrarybackground is intractable as long as we view the frames as isolated still images.However, a simple way to achieve segmentation is to make use of the tem-poral structure of video. We just exploit the fact that the object pixels move ina di�erent way than the background pixels (which we assume static). This ap-proach is called motion segmentation. For an illustration of the general concept,see Figure 10.Our motion segmentation procedure consists of three steps: �rst, motionis estimated. Afterwards, the resulting motion �eld is segmented yielding theobject mask, which is �nally re�ned in a post-processing step:1. Motion Estimation: computing motion between adjacent frames usu-8http://www.lavrsen.dk/twiki/bin/view/Motion/WebHome
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(a) (c)

(b)
Figure 10: the concept of motion segmentation: for each pair of consecutive frames(10(a)), blocks of pixels are tracked using block matching. This gives a sparse �eldof motion vectors (10(b)), which is afterwards use to segment the object from thebackground, obtaining an object mask (10(c)).
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ally means to track pixels, which is a time-consuming task including aregion search for each vector in the motion �eld.We follow a sparse motion estimation using \Enhanced Predictive ZonalSearch" [Tourapis 02] (EPZS). The technique is based on block matching,which is a popular method in the video domain: the reference frame isdivided into rectangular blocks, and for each block the best �t in thenew frame is found by minimizing the sum of squared di�erence (SSD)between blocks using a discrete Gradient Descent Technique. This gives a�eld of block motion vectors. In a second sweep, these motion vectors aresmoothed: again, gradient descent is used, but this time the initial shift ischosen depending on the neighbor blocks' motion.The result is a sparse motion �eld as can be observed in Figure 10(b).In the two reference frames, the background remains static (the motionvectors are near 0), while for the blocks belonging to the object non-zeromotion vectors were found.The use of motion segmentation has a practical consequence for the us-ability of the system: only as long as the object moves, it is detectedand reasonable features are extracted. In contrast, frames in which theobject is held still may yield erroneous features due to failures of motionsegmentation.2. Classification: to construct an object mask, each block B is assignedto the object (or background, respectively) depending on its motion vectorv(B). Afterwards, the mask is constructed by setting all pixels of a blockto ON (OFF, respectively). Our approach for this is to threshold with thelength of the motion vector v:B = ON $ jv(B)j2 > TThis can be motivated using statistical motion models for backgroundand object: the background is assumed static except for isotropic noise.Consequently, the distribution of background vectors has a strong peakat 0 and is isotropic. We model this moving a two-dimensional GaussianN0;�2 .Unfortunately, we do not know that much about the object motion. Thus,a uniform distribution over a su�ciently large range R is assumed.Imposing uniform priors, the Bayesian classi�cation decision rewrites as:
B = ON $ N0;�2(v(B)) < 1jRj (8)

$ jv(B)j2 > �2�2 ln p4��2jRj| {z }=:TIn practice, the threshold T is chosen empirically based on the frame-rate, the camera resolution, the expected distance of the object from thecamera, and its expected velocity.
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3. Postprocessing: Our motion estimation procedure is error-prone due toseveral reasons, including e�ects of varying illumination, EPZS gradientdescent being caught in local minima, or inadequate motion models. Inpractice, the object mask usually contains some outlier blocks. This is whywe re�ne it using a morphological dilatation and a connected componentanalysis rejecting all components except for the largest one.

Figure 11: a typical motion segmentation result. The foreground does not onlycontain the object (as would be perfect for recognition) but also the operator's arm {which is correct, because it moves { and parts the background resulting from motionsegmentation errors.
A typical motion segmentation result is visualized in Figure 11. The imageis obtained from matting the input frame with the object mask obtained frommotion segmentation. It can be seen that the foreground also includes theoperator's arm due to its motion, as well as some parts of the background. Thisposes problems for the following object recognition.Also, the procedure gives rather coarse object masks on block basis. Since itmight be interesting to obtain a pixel grain object masks, we also did some testsfor a publicly available implementation of a pixel-based approach [Black 96].However, EPZS was found to perform better and signi�cantly faster due to itscoarseness and fast assembler routine from the video compression codec XviD9used to compute the block SSD. To improve the object mask further, we thinkof another postprocessing step re�ning the block results on pixel level.

5.1.3 Feature ExtractionFeature vectors are extracted from the object regions in the segmented video.Our approach does not take into account temporal relationships so far { featuresare extracted separately for each frame. Furthermore, feature extraction and9www.xvid.org
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classi�cation are kept independent. This makes our approach suitable for anytype of feature described in Section 3.Since one fundamental purpose of the VideoObjects prototype is to com-pare the performance of patch-based object recognition and global methods,two kinds of features were implemented so far. Both are extracted only fromobject region that is determined by the object mask.1. Global Features - Color Histograms: As a representative for globalapproaches and as a baseline method, color histograms were used (seeSection 3.1). For each frame, the color histogram of the object region iscomputed after motion segmentation. The RGB model is used with 5 binsper axis, yielding a 125-dimensional feature vector for each video frame.2. Local Features - Patches: For the patch-based approach, interestpoints in the object region are extracted using the salient points detec-tor [Loupias 99] (see 3.2.1). For each keypoint, a local patch of 16 � 16pixels is extracted and transferred to the YUV color space. The DiscreteCosine Transform (DCT) (see Section 3.2.2) is applied, and the resultinglow-frequency coe�cients are used as a local descriptor (35 ones for theintensity Y , and 20 for both chroma components U and V ). The lowestcomponent { the average value { is left out for illumination invariancepurposes. A set of up to 500 feature vectors is obtained per frame.Tests on the recognition performance and robustness of both approaches willbe described described in Section 5.2.
5.1.4 Classi�cationFeature extraction yields a set of d-dimensional features fx1; ::; xng for eachvideo with n and d depending on the speci�c feature extraction method. Torecognize an unknown object, these features have to be matched with the objectbase fY1; ::; YNg with entries Yj = (Xj ; L(Xj)) consisting of features Xj andobject labels L(Xj).For the classi�cation of a new video, direct voting is followed as described inSection 3.2.4. For each feature xi, the nearest neighbor Xj in the object baseis picked and gives a vote for the object L(Xj). The object with the majorityof votes is chosen.

Implementation Details: direct voting is a time-consuming task for largeobject bases (e.g., in some of the experiments conducted, up to 10; 000 patchfeatures are extracted from each video). The heart of the method is a NearestNeighbor query in feature space, which can be done e�ciently using space-partitioning data structures. For the VideoObjects system, a free kd-treeimplementation10 for fast NN queries has been chosen [Paredes 01].As a distance measure, the Euclidean distance in feature space was used forboth histograms and local descriptors.10available from Javier Cano, ITI, University of Valencia
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(a) (b)

(c) (d)
Figure 12: sample images for the galaxy (12(a), 12(c)) and the flips object (12(b),12(d)). 12(a) and 12(b) were taken in the OFFICE, 12(c) and 12(d) in the LAB.
5.2 ExperimentsWe conducted some quantitative experiments with the VideoObjects proto-type as outlined in the last section. This was done following two goals: �rst, tovalidate the general performance of the VideoObject setup in practice. Sec-ond, to compare the feature types color histograms and patches: the �rst oneserves as a baseline method making use of global appearance. On the otherhand, patch-based object recognition is currently an active area of research andhas proven a high robustness against noise and clutter. We want to study theperformance and robustness of the two approaches in video object recognition.Our results show that both methods perform well for constant capturingconditions, while the local patch features show a higher robustness when itcomes to generalization to new scenes. The following sections describe thesystem setup, the data used, and experimental results.
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5.2.1 SetupThe system setup is the same as presented in Section 5.1 and illustrated inFigure 9. In front of a static background, objects are presented manually to a�rewire webcam, which takes videos of 320� 240 pixels at a frame-rate of 25=s.Each video contains about 50 frames.The objects are presented to the camera by hand. Though this leads toslight variations in object pose, a \front side" is chosen for each object.
5.2.2 DatasetsIn the following experiments, the performance of the VideoObjects systemis evaluated in a natural, unconstrained environment. Especially, we want tostudy the e�ects of scene changes including illumination and clutter. This iswhy we avoid standard databases like COIL11, where object images are usuallygiven in high quality and with hardly any background in
uence (for an example,see Figure 1). To the authors knowledge, no standard video dataset for ourspeci�c setup exists { this is why a self-made dataset was preferred over arti�cialstandard databases.We took videos of 16 everyday objects. The resulting frames show typicalproblems when working in an unconstrained environment like motion blur, illu-mination variations, and clutter. The set of objects includes very simple oneslike a chessboard posing very discriminative features, as well as a water bottleshowing specular highlights and transparency, and also quite similar objects liketwo red shirts.Videos were taken at two di�erent locations on di�erent days:1. OFFICE: in this scene, videos were taken with light from the right. Thebackground is a weakly textured white wall showing only few strong edges.2. LAB: this scene is characterized by strong daylight. The objects in theresulting videos are generally brighter, with some of them showing specularhighlights. The background is strongly textured.Examples for both cases are illustrated in Figure 12. The most obviousdi�erence is the background change, but some more e�ects can be observed:objects in the office images 12(a) and 12(b) are a bit darker, while specularhighlights can be observed in the LAB (see Figures 12(c) and 12(d)). Further-more, motion blur (12(c)) can be observed as well as rotation and scale changebetween 12(b) and 12(d).For each object, 6 videos were taken at each location and divided into 3training videos for direct voting and 3 for testing. Each video shows only oneobject. This gave sets OFFICE TRAIN, OFFICE TEST, LAB TRAIN, LAB TEST of 48videos each. From these videos, we extracted both types of features (obtainingone feature vector per frame for color histograms and up to 500 per frame forpatches) and tested them using direct voting.11http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php
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location color histograms patches
OFFICE 0 0
LAB 2 0

Table 1: numbers of errors for Experiment 1 (testing at the same location as training).Each test set consisted of 48 videos.
5.2.3 Experiment 1: Same SceneIn a �rst experiment the general performance of the approach is validated forthe simpler case of recognizing an object in the same scene in which it waslearned. For example, OFFICE TRAIN is used for training and OFFICE TEST forrecognition. The error rates are presented in Table 5.2.3. They represent globalperformance, namely the percentage of test videos that have been classi�edincorrectly.The low error rates validate the general performance of both methods for thisproblem. Though the histogram method confused two objects of similar colordistribution in the LAB scene, it o�ers a fast and simple alternative: when usingmotion segmentation with EPZS, only 1:7 frames per second could be processedfor patches (where interest points have to be extracted and DCT descriptorscomputed), while color histograms allowed for a frame-rate of 7:6.
5.2.4 Experiment 2: Di�erent Scene

traininglocation test location color histograms patches
LAB OFFICE 39 12
OFFICE LAB 29 14

Table 2: numbers of errors for Experiment 2 (scene changes between training andtesting). Each test set consisted of 48 videos.
In a second experiment, we want to study the in
uence of scene changes onrecognition performance. Especially, we want to evaluate the robustness of bothmethods against the in
uence of clutter. Therefore, we train the VideoOb-jects system in one location and test the recognition result in the other one.Table 5.2.4 illustrates the numbers of errors for this setup.
The results show strongly increased error rates of at least 25 %. Also, a cleardi�erence between both methods can be observed, since histograms seem to bemuch more sensitive to the scene change.
To explain these results, we take a closer look at motion segmentation. Ashas been illustrated in Figure 11, motion segmentation does usually not yield a
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perfect object mask, but the matted frames often contain spurious backgroundparts. Especially for frames with the object held still, it is obvious that motionis not a su�cient criterion to discriminate between object and background.Figure 13 illustrates the e�ects of an error-prone motion segmentation onrecognition. An example for a frame in the LAB is given in Figure 13(a), withspurious parts of the background assigned to the object region. Figure 13(b)shows keypoints extracted from this matted frame (red). It can be seen thatsome keypoints have been extracted from the arm of the operator, as well asfrom the textured background.Obviously, object recognition su�ers from these suboptimal segmentationresults: histograms show erroneous peaks at background colors, and backgroundpatches give noisy votes due to background texture.Obviously, this becomes a serious problem when the scene changes and adi�erent background texture in
uences the recognition process. Furthermore,there are other di�culties that may cause problems:
� illumination changes, as is illustrated in Figure 12
� di�erences in presentation: e.g., in the LAB objects are presented from theleft while from the right in the OFFICE. Furthermore, the distance of theobject from the camera may vary.As the results presented in Table 5.2.4 indicate, histograms seem to be muchmore sensitive to these in
uences. One possible explanation is that for globalmethods such as histograms, the whole feature changes in a way that is hard topredict. On the other hand, the patch-based approach still reliably produces afraction of true object votes besides noisy votes for background patches.

(a) (b)
Figure 13: a typical result of motion segmentation and its e�ects: some spuriousparts of the background are classi�ed as object parts. It can be seen from Figure13(b) that some patches (red) are extracted from these background areas.

A closer look at the classi�cation results for the single objects shows someobvious error reasons like the transparency of the bottle object, which was mis-classi�ed in the new environment just because its appearance changes strongly.
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Another interesting fact is that the correctness of classi�cation is correlatedwith the number of patches: for each object, we count the patches that have beenderived in training. Obviously, this number is strongly related to the numberof patches on the object: for large objects with many patches, this number ishigh (e.g., the chessboard gives the most features with 40:791). On the otherhand, we measure the correctness of classi�cation by the percentage of patchesthat vote for the correct object in the test videos, ranging from 6% to more than40%. It could be observed that slightly more than 10% of correct votes weresu�cient for a correct classi�cation.Between these two features, a low but present correlation of 0:572 is found.Thus, the correctness of classi�cation increases with the number of object fea-tures. An explanation for this is that more object features overlay the \noisy"votes from background patches.
5.2.5 Further ImprovementsThe experimental results show the general applicability of the currentVideoOb-jects prototype, particularly when remaining in the same scene for recognition.Starting from this infrastructure, we plan to participate the TRECVID videoretrieval evaluation in 200612.However, a variety of improvements for the current setup can be thoughtof. A long-term goal is the enhancement for object category detection. In thevideo domain, this problem has only been addressed by very few approachesso far [Schneiderman 00b]. Other 3D object recognition methods like [Lowe 01]cannot generalize to new class instances, while most object category recognizerslike [Fergus 03] are not suitable for multiple perspectives or rotations.Another problem is that the object is assumed to be in a constant distancefrom the camera so far. To allow for more 
exibility, the sensitivity to depthchanges should be studied, and scale invariant feature points (see Section 3.2.1)should be used. Though salient points generally come with a scale, this infor-mation has not been used yet.Another topic related to the 
exibility of the system is 3D object recognition.In the experiments presented in Section 5.2, a front side has been chosen foreach object and only slight pose changes take place. Speci�c aspects of 3D objectrecognition like view clustering have not been addressed explicitly in these ex-periments. Though we expect the direct voting strategy of the VideoObjectssetup to cope with multiple perspectives well, it might be interesting to studythe problem in future work.Generally, other feature extraction methods like corners could be tested, be-cause they allow for a more stable tracking of features. Other topics are thevisualization of patch votes, and some work on enhancing background segmen-tation and examining its in
uence.

12http://www-nlpir.nist.gov/projects/trecvid/
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6 Challenges
The vast amount of work on object recognition indicates its potential as wellas its di�culty. The main reasons for the latter are appearance variations.These may concern the object itself, like deformations of non-rigid objects ordi�erences between instances of an object category. Changes of the surround-ing scene including background clutter, illumination, pose, and occlusion posefundamental problems as well.Nevertheless, object recognition has made fundamental progress during thelast years concerning its robustness and 
exibility. For still images, specialemphasis has recently been put on local, patch-based methods, which provedsuccessful for object category recognition as well as 3D object recognition. How-ever, there is no approach to the knowledge of the author that poses a genericsolution for both problems at the same time.For video, the problem of object recognition is viewed in the context of se-mantic modeling of content [Bashir 03], which includes the recognition of objectsas well as other concepts like events and sites. While lots of publications can befound on rather technical low-level tasks like shot boundaries, keyframe extrac-tion, and similarity matching of frames, only little work has been done on usingactual object queries (e.g., [Chang 98]). However, the potential has been recog-nized and respected { e.g., video compression standards as MPEG-413 envisionto compress a video in layers of objects.Work on semantic modeling of video content that allows query-by-keyword israre. One framework has been presented by Naphade and Huang [Naphade 00],where so-called multijects representing objects, sites, and events in video arelearned in a semi-automatic manner. On a higher level, a factor-graph frame-work is used to represent interdependencies between multijects, such as thepresence of \beach" boosting the presence of \water".

One major challenge of the �eld has not been addressed yet in this sur-vey, namely the problem of training data acquisition. Obviously, the amount ofhuman interaction must be kept reasonably low if semantic indexing of multi-media documents shall be applied widely in practice. On the other hand, allapproaches introduced in this survey use machine learning techniques and thusextract the representation of an object from a training set usually consisting ofhundreds or thousands of images (or video shots, respectively).The acquisition of such training sets should be done with the least amountof user interaction possible, but should also provide the necessary informationto build discriminative object models. Three levels of user interaction can beidenti�ed:1. Supervised: Some approaches in 3D object recognition like [Javed 04,Nayar 96] learn the appearance of an object in a completely controlledsetup, where images are taken in a scene free of occlusions and some-times from prede�ned perspectives. Also, the background is monotonous.13http://www.chiariglione.org/mpeg/standards/mpeg-4/mpeg-4.htm
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This corresponds to a segmentation of the image and makes it possible tocompletely ignore the background. In this case, we speak of a supervisedsetup.2. Semi-Supervised: Here, a training set of unsegmented images is pro-vided. Such data is called weakly labeled.Some state-of-the-art approaches modeling objects and object categoriesin such a weakly supervised manner have been introduced in this survey[Fergus 03, Deselaers 05, Weber 00, Keysers 06], and standard databasesfor object category detection exist14,15.However, even the amount of user interaction to build such datasets canbe unacceptable for large-scale generic object recognition. For the videodomain, the required annotations can be provided to some extent by closedcaptions and speech extraction. Still images, however, do usually notcome with such information. In these cases, other ideas inspired by semi-supervised learning [Zhu 06] have been presented to reduce the amount oflabeled data needed.Rosenberg et al.[Rosenberg 05] trained the appearance of human eyes fromfew (in the order of 40) labeled training samples L with eyes landmarkedand a large set of unlabeled images S. A bootstrapping approach wasfollowed by alternately training a classi�er from L and using the classi�-cation output to label the most con�dent samples and shift them from Sto L.In the video domain, Yan and Naphade [Yan 05] presented another ap-proach called semi-supervised cross-feature learning. The method is re-lated to co-training [Zhu 06], where the features of each sample are di-vided into two di�erent sets called views, and classi�ers are trained oneach set separately. Iteratively, the most con�dent samples of one clas-si�er are added to the training set of the other classi�er. This requiresview su�ciency: the features in each view must be su�cient to train a\good" classi�er. Yan and Naphade improve conventional co-training bylinearly combining the classi�ers they obtain from the iterations of theiralgorithm.Another approach has been presented by Fei-Fei et al.[Fei-Fei 03], whotried to learn object models from very few sample images only. Themethod generally adapts the constellation-based Model (see Section 3.2).However, the parameters � describing the location and appearance of theobject class features are handled in a di�erent way. While previous ap-proaches [Fergus 03] learn a �xed instance of model parameters � in amaximum likelihood manner, Fei-Fei et al.estimate a distribution for � fol-lowing Bayesian parameter estimation [Duda 00]. Object categories are14http://www.pascal-network.org/challenges/VOC/databases.html15http://www.vision.caltech.edu/Image Datasets/Caltech101/Caltech101.html
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learned incrementally: if a new object O is to be trained, priors are im-posed on the expected distribution of �O that represent where and whichimportant features have been found for previous objects and should thusbe used for O. According to the authors, this makes it possible to learnobject categories from very few samples.3. Unsupervised: Unsupervised learning methods use unlabeled trainingsets such that no user information is required at all. Experiments in thisarea have been inspired by probabilistic Latent Semantic Analysis (pLSA),a method from the text processing domain [Hofmann 99, Hofmann 01].In conventional pLSA, the input consists of a set of documents D eachcontaining words of a vocabulary W with a certain frequency. The cor-relations between word occurrences is used to detect latent topics T indocuments.Given a word w 2 W , a document d 2 D, and topics t 2 T the follow-ing model is used to determine the probability of a topic occurring in adocument P (tjd).
P (wjd) =Xt2T P (w; tjd) (9)

�Xt2T P (wjt) � P (tjd)Sivic et al.[Sivic 05] transfered this model to object recognition such thatdocuments turn into images, words into \visual words" (discretized localfeatures), and topics into the objects to be recognized. In experiments,they used training set of up to 9 object categories.Fergus et al.[Fergus 05a] extended pLSA to take the spatial constellationof features into account. They also pictured a new training scenario inwhich the training set is obtained from a conventional large-scale imagesearch engine (in their case, Google Image Search). For example, if amodel for \airplane" shall be learned, the training set is obtained fromtyping \airplane" in Google Image Search.An impression of the result is given in Figure 14. Of course, trainingwith such an image set poses additional problems due to erroneous imagesreturned by the search engine. To identify a subset of images actuallyshowing airplanes, the pLSA model (9) is used �tting \background" topicsand an \airplane" topic.This leads to a new, completely unsupervised learning of object models,with large-scale search engines delivering a candidate set that is afterwardsre�ned using content-based methods.
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Figure 14: some \airplane" images returned by Google Image Search (image takenfrom [Fergus 05a]).
A Expectation Maximization
Expectation Maximization estimates a set of distribution parameters � thatmaximize the likelihood for a set of observed data vectors X = fX1; ::; XNg(e.g., for �tting a Gaussian mixture model (GMM)). This is often aggravatedby the fact that a certain fraction of the data is missing: each Xi consists ofknown { or observed { coordinates Xoi and missing ones Xmi .The optimal way of determining � would be to maximize the log-likelihoodwhile marginalizing over the missing data:

L(Xj�) =Xi log ZXm
i

p(Xij�) dXmi
Unfortunately, there is usually no closed-form solution for argmax� L(Xj�).This motivates the use of iterative Expectation Maximization schemes. Start-ing with an initial �0, the parameters are iteratively re�ned by maximizing

Q(~�j�) =Xi E[log p(Xj~�)]
=Xi

Z
Xm
i

p(Xmi j�) � log p(Xj~�) dXmi :
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While � = �k is �xed, Q is maximized with respect to ~� obtaining a solution
�k+1 := argmax~� Q(~�j�);

An iteration is made up of two steps:1. Estimation: to later on estimate Q, the posterior probabilities p(Xmi j�)are determined2. Maximization: Q is maximized with respect to ~�The convergence in a local maximum is guaranteed [Dempster 77].
B Salient Points Feature Detection - Details
While the features given by many other feature detectors tend to focus in re-gions of strong contrast, Loupias and Sebe [Loupias 99] present a wavelet-basedmethod that delivers features that are more regularly distributed.The basic idea is to search the coe�cients in the wavelet transform Wf ofthe input image f for peaks called \salient points". These coe�cientsW2�kf(x)are extracted at di�erent scales by convolving the signal (or image, respectively)with a wavelet functions of a certain frequency 2�k. A strong coe�cient thusindicates the presence of an edge or corner at a given scale.For each W2�kf(x), a support region S(W2�kf(x)) in the original imageis de�ned as the pixels that contribute to the coe�cient. In contrast to theFourier Transform, this support is �nite for the Wavelet transform. The higherthe frequency, the smaller this region. For example, for k = 0 it consists ofonly one pixel, while low-frequency coe�cients are computed over large imageregions. Furthermore, support regions for coe�cients at di�erent scales overlapdue to the recursive nature of the wavelet transform.This leads to the de�nition of children for each wavelet coe�cient as coe�-cients at the next scale step with the same support:

C(W2�kf(x)) = f W2�k+1f(x0) j S(W2�k+1f(x0)) � S(W2�kf(x)) g
The extraction of salient points uses this de�nition: it scans through allcoe�cients inWf and chooses the child with the highest coe�cient value. Fromits support region, the image pixel with the strongest gradient is picked as asalient point. Afterwards, the resulting points are �ltered by thresholding witha saliency measure.For a further discussion of the method, see 3.2.1.

C Direct Voting { Statistical Motivation
Direct Voting as a decision strategy based on local patches has been introducedin Section 3.2.4. An image is viewed as a set of local features x1; ::; xn. From
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a set of training images, patches X1; ::; XN associated with object labels L(Xj)are extracted. The decision strategy is to collect votes by Nearest Neighbor onpatch level and classify based on the majority of votes. The spatial constellationof patches is neglected.
A statistical motivation for direct voting consists of two steps. First, it isshown that voteL(x) is an approximation of the posterior P (Ljx). This is truefor equal class priors and if p(xjL) is modeled by a kernel density estimate witha Gaussian kernel N . Let

p�(xjL) = 1jCLj X
Xj2CLNXj ;�2(x);

where CL is the set of samples Xj with label L. Then for the correspondingposterior p�(Ljx) = p�(xjL)Pl p�(xjl)the following convergence can be shown for �! 0 [K�olsch 03]:
lim�!0 p�(Ljx) = 1

jCLj�(L(N(x)); L)1
jCL(N(x))j

(10)
= �(L(N(x)); L)= voteL(x)The intuitive interpretation is that the more local the in
uence of samples is{ the smaller � { the less in
uence examples distant from x have on p�(Ljx).For the border case �! 0, this reduces to zero in
uence for all but the nearestneighbor N(x). A detailed proof has been presented in [K�olsch 03].

The second question is why the sum of votes is a good choice for the com-bination of features (or how it is related to the Bayesian decision maximizingP (Ljx1; ::; xn)).One motivation can be obtained by marginalizing over the patches. Let Xbe the input image with patches fxig extracted:
P (LjX ) =Xxi P (L; xijX )=Xxi P (Ljxi;X ) � P (xijX )� 1nXxi P (Ljxi)
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