Technical Report

RECOGNIZING OBJECTS
IN STILL IMAGES
AND VIDEO STREAMS

ADRIAN ULGES

a_ulges@informatik.uni-kl.de

IUPR Research Group
Faculty of Computer Science
Technical University Kaiserslautern

March 2006



Contents
1 Introduction

2 Problem Definitions
2.1 2D Object Recognition . . . . . . ... ... ...
2.2 3D Object Recognition . . . . . . ... ... ... ...
2.3 Object Recognition in Video. . . . ... ... ... . ... ....
2.4 Object Category Recognition . . . ... ... ... ... .....

3 Recognizing Objects in Still Images
3.1 Global Approaches . . . . .. . ... oo
3.2 Local Approaches . . . . . . . . . .. ...
3.2.1 Interest Region Detectors . . . . .. ... .. ... ....

3.2.2 Local Descriptors . . . . . . . . .. ... L.
3.2.3 Using the Spatial Constellation of Patches . . . . . . .
3.2.4 Classification . . .. ... ... ... ...,
3.3 Discussion of Global and Local Approaches . . . ... .. ..

From Still Images to Video

A Practical Approach to Object Recognition in Video

5.1 The VideoObjects System . . . . ... .. .. ... ......
5.1.1 Motion Detection . . . . . .. .. ... ... ......
5.1.2 Motion Segmentation . .. ... ... .........
5.1.3 Feature Extraction . . . . .. .. .. ... ... ...
5.1.4 Classification . . . . ... ... .. ... ........

5.2 Experiments. . . .. ... ... ... .
521 Setup . . . ...
5.2.2 Datasets . . . . . .. e e
5.2.3 Experiment 1: Same Scene . .. ... .. ... ....
5.2.4 Experiment 2: Different Scene . .. ... .. ... ..
5.2.5 Further Improvements . . . . . . ... ... ... ...

6 Challenges

A Expectation Maximization

B Salient Points Feature Detection - Details
C Direct Voting — Statistical Motivation

15
17
23
24

26

30
30
31
31
34
35
36
37
37
38
38
40

41

44

45

45



Recognizing Objects in Still Images and Video
Streams

Adrian Ulges
a_ulges@informatik.uni-kl.de
IUPR Research Group
Technical University Kaiserslautern

March 2006

Abstract

This paper addresses the problem of recognizing objects in visual me-
dia. Though the field has come a long way, this task is far from being
solved for generic objects in arbitrary scenes. Nevertheless, recent devel-
opments have made object recognition more successful and flexible, with
its most promising applications in multimedia indexing and retrieval.

The main purpose of this paper is to give a survey of object recognition
in both still images and video. Also, a self-built prototype is described
for the recognition of items presented to a camera. In experiments, a
global, histogram-based method and a local, patch-based approach were
compared, with the latter showing a higher robustness to scene changes.

1 Introduction

Upcoming multimedia applications allow users to deal with documents contain-
ing text, sound, images, and video at the same time and have a fundamental
impact on the way we handle information. This “multimedia revolution” has
been made possible by new developments in information technology, above all
broad-band networks, mass storage, fast signal processors, software making the
production and consumption of multimedia content foolproof, and efficient cod-
ing algorithms.

These advances pose both chances and challenges: chances because multime-
dia has the potential to fundamentally change how we gather information, how
we are entertained, and how we organize the everyday information we get into
contact with. For example, a stronger focus on visual representations makes it
possible to perceive plenty of information at a glance (in contrast to text, which
must be read in a sequential, ineffective manner). Also, video has found its way
to the internet due to advanced streaming techniques.

Using this technology, we are also able to gather vast amounts of multimedia
data ranging from private photo collections to distributed large-scale databases



(e.g., Google Image Search offers access to about 880 mio. images according to
a press-release from 2004). The capacity of accessible information has grown
to a sheer ocean — the user himself becomes the bottleneck, since we are not
able to consume this complete ocean. We have to thoroughly pick the sips
we take — which means that information must be selected and tailored to the
user’s needs and wishes. This leads to a more “personalized” way of structuring
information, with concepts like video-on-demand becoming more popular (e.g.,
Apple PodCasts') and allowing users to pick what they want to see in contrast
to TV broadcasts.

However, the strong growth of multimedia data also poses difficulties and
challenges. Multimedia databases usually hold vast amounts of information that
cannot, be captured at one glance. Elaborate visualization and browsing tech-
niques can overcome this information overload to a certain level, but are often
overstrained by the sheer capacity of visual information. This is particularly
true for video content where the time dimension poses additional problems: the
amount of information is usually much higher than for still images, and it is not
straightforward to visualize a video at one glance. A survey of research in this
area is given by Bashir and Khokhar [Bashir 03].

Data overload makes the access of information difficult. This is why efficient,
user-friendly indexing and querying of multimedia databases must be realized.
This paper focuses on the domain of visual information, for which three basic
querying techniques have been explored: query-by-ezample (QBE) — the sys-
tem delivers images similar to a sample —, query-by-sketch (QBS) — the system
returns images showing features of a sketch drawn by the user —, and query-by-
keyword (QBK) — the system returns images fitting a keyword typed in by the
user —, with the latter currently being offered by commercial large-scale search
engines as Yahoo and Google.

Oune important question in how to realize such queries is if (and how) to
integrate the visual content of an image or video. While this is essential for
QBE and QBS, state-of-the-art QBK systems sneak around it by exploiting
meta-information like the document title.

One more step would be to determine the semantic of image and video
content, which means to identify certain entities like objects, sites, and events.
This is not essential for any of the three approaches: While QBK can even
neglect content, QBE and QBS evade semantics by focusing on low-level generic
features like color (e.g., see the IBM QBIC system [Faloutsos 94, Niblack 93]).

However, it is obvious that multimedia retrieval can benefit from exploiting
the content of visual documents. Recognizing the entities present in images and
video streams is the ultimate way to bridge the “Semantic Gap” [Bashir 03]
between the raw bitstream of a video (or generic low-level features derived from
it based on color, texture, or shape) on the one hand, and meaningful, compact
description of objects, scenes, and events on the other.

Thttp:/ /www.apple.com/itunes/podcasts,/



Since the human visual system performs very well at recognizing entities
from visual information, a simple way would be to manually label multimedia
documents. Unfortunately, this is intractable due to the sheer amount of infor-
mation. Instead, an automatic labeling of multimedia documents is required.
Such an automatic semantic indexing is a multidisciplinary task: signal process-
ing is used to obtain low-level features and clues, and methods from information
retrieval provide similarity measures for indexing and querying. Computer vi-
sion is the core concept of extracting semantics, trying to infer the presence of
objects from low-level clues.

This computer vision problem — recognizing the presence of entities in images
and video — is the focus of this paper. Though the field has come a long way and
a lot of work has been done in this area, the problem is far from being considered
solved. This is due to a bunch of difficulties some of which are inherent when
capturing natural scenes, while others are due to appearance variation of objects
themselves.

Due to these problems, state-of-the-art visual search engines offer only weak
extraction of semantics from visual content (e.g., the PhotoBook system? pro-
vides a face recognition module). However, object recognition is extremely in-
teresting for practical applications due to its enormous potential for multimedia
indexing and retrieval.

The purpose of this paper is to describe the state of the art in object recog-
nition from visual information in form of still images and video. A survey of
research work is given, challenges of the field are pointed out, and some ex-
perimental results are presented. The remainder of this paper is organized as
follows: there is a bunch of problems related to objects in visual content, rang-
ing from the detection of simple objects to object categories. To clarify these
terms, definitions of these problems are given in Section 2. Afterwards, a sur-
vey of research work is given in two Sections (3 and 4). We start with methods
for still images, which can be divided into the two general approaches of local
and global methods (Section 3). Afterwards, extensions to multiple views of
the same object, and particularly object recognition in video are addressed in
Section 4. Some of the ideas presented in the survey part have been imple-
mented in a system called VIDEOOBJECTS, which learns and recognizes objects
that are presented to a webcam. The prototype is described in Section 5.1. In
quantitative experiments, the performance of a global and a local approach were
compared. The results are outlined in Section 5.2.

Finally, a conclusion is given and challenges of the field are pointed out in
Section 6.

2http://vismod.media.mit.edu/vismod/demos/photobook/



2 Problem Definitions

The problem of recognizing objects in images and video can be subdivided into
several subproblems that are strongly related but differ in particular details,
difficulty level, and input medium. While these specific terms are often mistaken
or subsumed as “object recognition”, a detailed definition of problems (and their
specific difficulties) is presented here.

The listing of problems goes from “easy” to “difficult” corresponding to the
way that object recognition has come throughout the last years.

2.1 2D Object Recognition

The first problem of object recognition in visual media focuses on the recognition
of particular objects. Thereby, the pose of the object is strongly constrained:

2D OBJECT RECOGNITION is the decision whether an object is
present in an image. The object is specified by either a set of sample
images showing the object, or by a symbolic description. The object
may be shifted, scaled, or rotated in the image plane.

This definition does not include the exact localization of the object in the
image. Also, it strongly constraints the pose of the object, since no in-depth
rotation is allowed. Two cases in which this assumption is well-founded are
a constant viewing angle (e.g., in OCR of scanned documents, where letters
are parallel-projected, or for fixed cameras in industrial vision applications), or
objects for which the change of appearance can be neglected and certain features
remain present over the whole range of viewing angles expected (e.g., for flat
objects like text). Another popular application in this area is face recognition.

Nevertheless, the problem is far from being trivial, since the appearance of
the same object may differ strongly between images. This variation occurs due
to several reasons:

1. features from the background — so-called “clutter”
2. partial occlusions of the object

3. while in-depth rotation is neglected so far, the object may undergo a sim-
ilarity transformation — scale, rotation in the image plane, and translation
— between several snapshots.

4. changing lighting conditions
5. changing imaging conditions like noise and blur

Variations of all these factors can influence recognition and can lead it wrong,
especially if the scene changes between learning and recognition.



(a) (b)

Figure 1: sample images from a 3D object recognition database [Nene 96]. Some
features vanish, while others appear between the two views.

2.2 3D Object Recognition

The assumptions on the object pose made in the last section are only true for
special cases of viewing angle or object shape. To apply object recognition in a
more general framework, we define 3D object recognition:

Like in the 2D case, the problem of 3D Object Recognition is the
decision whether an object is present in an image or not. Unlike in
the 2D case, the image may show the object in any arbitrary pose.

This defines object recognition for arbitrary scenes, where it must be taken
into account that for many objects the appearance strongly depends on the pose.
Besides the difficulties presented in the last section, this is due to the following
reasons:

6. self-occlusion: object features are rarely stable but can in general only be
observed from a certain viewing angle. Especially when coming with a
strong depth structure, objects tend to occlude their own features making
recognition difficult. This can be observed in Figure 1, where some features
vanish between the two views on an object, while others appear when
switching between views

7. in-depth rotation causing changes in the spatial constellation of features

One way of overcoming these difficulties is to extract 3D object models. Un-
fortunately, such approaches usually require a controlled imaging environment
or a painful calibration such that they will be neglected here. Instead, many
researchers stick with appearance-based approaches that do recognition by image
features only.

2.3 Object Recognition in Video

Another object recognition problem results from using videos instead of still
images as input:



OBJECT RECOGNITION IN VIDEO is the decision whether an object is
present in a video stream. The pose of the object may vary between
frames and is not constrained.

Object recognition in videos is strongly related to 3D object recognition,
since a video usually provides a set of views of the object in several poses.
However, there are also differences: on the one hand, video is less constrained
in a way that the pose of the object is usually not known. On the other hand,
additional information comes with the temporal order of frames. Usually, this
induces a strong similarity between adjacent frames as well as motion that can
be used to segment a foreground object from the background — a concept that
can be helpful to reduce the influence of clutter.

2.4 Object Category Recognition

Another important problem addressed in more recent research is the recognition
of object categories instead of individual objects.

OBJECT CATEGORY RECOGNITION is the decision whether an in-
stance of a certain object category is present in an image. The
object category is specified by either a set of sample images showing
some instances, or by a symbolic description.

Object Category Recognition leads to a wider range of applications than the
detection of specific objects — for example, it allows for a more natural indexing
and querying of visual content. A user will usually not ask for a specific instance
of an object, but rather for general concepts, e.g.“Give me all images showing
the frontal view of a car”.

On the other hand, object category detection is a more difficult task, since
appearance variations do not only stem from changes of the capturing condi-
tions listed in Section 2.1, but also from distances between the instances of an
object class. In fact, objects within the same semantic category may look rather
different, as can be observed for faces in Figure 2. However, for most object
categories there are fundamental characteristics shared by nearly all instances
(e.g., the “eye” feature in a face). An object category recognition system has to
model these shared properties, while spurious object-dependent features (e.g.,
glasses or a hat) have to be filtered out as well as scene-dependent ones (e.g.,
background clutter).

Many approaches in this area have concentrated on specific object categories,
like faces [Viola 04] or text [Chen 04]. However, we will also address more recent
work providing generic ways to build models for arbitrary object categories,
e.g.[Fergus 03].



Figure 2: samples of an object category (image taken from [Jesorsky 01]).

3 Recognizing Objects in Still Images

This section gives an overview of state-of-the-art methods for the problems
introduced in the last section where still images are assumed as input. The
methods presented are divided into global and local approaches, although this
subdivision is somewhat fuzzy and some hybrid methods can be found. While
global methods base recognition on one global feature vector per image and make
decisions on image level, local approaches view an image as a set of local samples
(from now on referred to as patches) such that recognition makes decisions on
patch-level.

Similar terms have also been used by Schiele and Crowley before [Schiele 00],
who compared a global and a local version of a histogram-based approach. A
similar study for object recognition in video will be presented in this work after
the survey (see Section 5.2).

Global methods will be introduced first (Section 3.1), followed by local ones
and a discussion of both (Sections 3.2 and 3.3).

3.1 Global Approaches

The underlying concept of global object recognition methods is that the ap-
pearance of an object is described by a global feature vector, and classification
is carried out on a global level. Nevertheless, the specific features and decision
rules used may be manifold.

A listing of some global object detection approaches is given in the following.

Histograms Histograms can be seen as discrete, empirical approximations of
probability density functions. They provide compact, global measures of image
features, and have been used for object recognition in various ways.

A simple way to use them is to associate a histogram with each image and
recognize object via the similarity of these histograms.

Horecki et. al. [Horecki 99] use an extended approach to localize objects
in a cluttered scene. Color histograms are learned from object images with
minor background influence and afterwards used to track the object in a sliding
window. This gives so-called interest maps, peaks of which are potential object
positions. The performance of several similarity measures for histograms are
compared as well as color spaces used.

Schiele and Crowley [Schiele 00] use histograms of gray value image proper-
ties, more precisely Gaussian derivatives indicating the local gradient strength.



The fundamental benefit of histograms is that if the features are chosen
properly, histograms are invariant to rotation and scale changes. Their applica-
bility for object recognition under these transformations has been validated in
experiments [Schiele 00].

PCA Nayar et. al. [Nayar 96] view images as vectors with pixel intensities
as components. Unfortunately, classification using this representation suffers
from the high dimensionality of these vectors. Principal Component Analysis
(PCA) is used to overcome this problem: a basis of eigenvectors is chosen based
on the distribution of data. Given this eigenbasis, samples can be projected to
a low-dimensional subspace spanned by the first & eigenvectors such that the
variance of the data is preserved as far as possible [Duda 00].

PCA yields a low-dimensional, compact representation for each object image
in this so-called eigenspace, making rapid indexing and retrieval of visual infor-
mation possible. The method is also well-known in face recognition as eigenfaces
[Sirovich 87].

Nayar et. al. [Nayar 96] also present an extension of the approach to 3D
object recognition — while in face recognition frontal views are assumed, Na-
yvar et. al. work with images taken from multiple perspectives of an object.
Since these images are assumed to be taken from regular, known view angles, a
neighborhood relationship is established over shots of similar illumination and
perspective. Consequently, the representation of an object is a set of points
in eigenspace linked according to this neighborhood relationship — a so-called
eigenspace manifold. Images of unknown objects can be classified by projecting
their PCA representation to the object manifolds and measuring the distance.

Splines on Gradient Fields Javed et. al. [Javed 04] developed a global
method for object recognition in video. They extract the field of gradient ori-
entations from each frame and fit a spline to it. The coefficients of this spline
interpolation serve as feature vectors for classification.

Recognizing Objects by their Motion Arbel et. al. [Arbel 00] examine
if objects can be characterized by their motion structure in video, neglecting
texture and color information. When moving an object parallel to the focal
plane of the camera and assuming constant velocity, the motion of a pixel is
related to its distance from the camera via the laws of perspective projection.
This gives a characteristic “depth map” for objects, which is used as a feature
vector for classification after applying PCA.

Wavelet Coefficients A highly elaborate approach has been developed by
Schneiderman [Schneiderman 00b, Schneiderman 00a]. According to the au-
thors, the method is the first one that can handle object categories and changes
of object pose at once.

This is achieved by training separate detectors for separate poses (e.g., one
classifier for each of 8 possible frontal views of cars as illustrated in Figure 3).



The design of the single classifiers is then based on local patterns p;, which are
empirically chosen groups of wavelet coefficients from a wavelet transform of the
image. This yields features at different scales, positions, and orientations.

Figure 3: sample images taken from a 3D object category recognition problem. Eight
views of cars taken from [Schneiderman 00b], where a separate classifier is trained for
each view.

The core of the probabilistic model is the class-conditional density

P(image |object) = H P(p;| object ), (1)

where independence is assumed between different patterns. This does not hold
for the wavelet coefficients within the same pattern such that the probabili-
ties P(p;|lobject) are derived from a joint histogram for each pattern learned
in training. Consequently, intra-group dependencies are respected to achieve a
balance between model compactness and model accuracy. To recognize objects
in cluttered scenes, object recognition is applied to a sliding window over the
image.

According to the authors, the method handles intra-category appearance
variation well. It gives impressive recognition rates for images of cars and faces.
However, two major issues remain unsolved: first, the training images used
seemed high-quality, which means that the object takes most of the image and
the clutter has a minor influence (see Figure 3). Second, the choice of wavelet
coefficients is highly ad-hoc. It is unclear whether the coefficients used are a
good choice for other object categories.

The approach is strongly related to local, patch-based methods, since the
“pattern” features used represent local properties, in contrast to, color his-
tograms for example, where each bin represents pixels spread over the image.
However, in contrast to manually chosen features coming with an implicit se-
mantic, patch-based approaches view an image or video frame as a set of local
generic samples derived without knowledge of the image.

3.2 Local Approaches

Global methods as introduced in the last section model the appearance of an
object in terms of global features like color histograms or gradient fields. They



Figure 4: patch-based object recognition: an image is modeled by a set of local
features derived from it (in this case, circular regions of different scales). Object
recognition is based on these patches (image derived from [Fergus 03]).

often have problems if an object is not dominant in an image but the appear-
ance is influenced by features from the background called “clutter”. Another
problem related to this is partial occlusion of the object. The influence of these
phenomena on global methods is often unpredictable.

This is why recent research efforts have concentrated on local methods, which
describe an image by a set of local features (or patches) as illustrated in Figure
4. In this visualization, patches at certain points of interest are highlighted.
Typically, local methods extract such patches and associate each of them with
a so-called local descriptor representing the appearance of the local surrounding.
The presence of the object is equivalent to the presence of a certain configuration
of local features, which refers both to the appearance and the spatial constellation
of patches (e.g., the most discriminative features for the motorbike in Figure 4
might be two dark circles — one on the left, one on the right — corresponding to
the tires.

This local approach — often referred to as patch-based or part-based object
recognition — is usually applied without segmentation. To a certain amount —
e.g., according to Fergus et. al. [Fergus 05a] the object has to “occupy a reason-
able proportion of the image” —, it has the potential to overcome background
influence and partial occlusion using methods of Robust Statistics [Huber 82].

Many methods have been published in this area, which have successfully
been applied to object detection [Schmid 97], 3D object detection [Lowe 01]
and object category detection [Csurka 04, Fergus 03].

Instead of listing the approaches one by one, we present a categorization that
focuses on four key aspects of local object recognition. Though all methods have
the patch-based view of an object in common, they differ significantly in their
way of handling the following four key questions:

1. Which interest regions are used for the positions of patches?

10



2. What local descriptors are used to model the appearance of patches?
3. How is the spatial constellation of patches modeled?
4. What Pattern Recognition methods are used for classification?

In the following, we present answers to these key questions from the literature.

3.2.1 Interest Region Detectors

A wide variety of local feature detectors has been proposed — for example, see
[Mikolajczyk 05] for another overview. One criterion for a good feature is its
repeatability: since the fundamental purpose of local features is to represent a
property of the object and abstract from the specific capture conditions, features
should be detected reliably even in case of scene changes. Also, features should
be discriminative in a way that they are unique and can easily be matched
between images showing the same object. Note that repeatability and distinc-
tiveness can be contrary goals — discriminative features are probably associated
with large image regions, which are prone to occlusion and warping and thus
less reliable.

Due to the vast amount of work on this topic, the following listing is in-
complete. Its purpose is to describe some of the most popular ideas to achieve
distinctiveness and repeatability including point, contour, and region features.
Furthermore, the last passage discusses a quantitative evaluation of several in-
terest region detectors.

Corners Conceptually, a corner is a point where the gray value changes in
multiple directions at once. In contrast to edge points, its location can be
uniquely determined by its local surrounding, so that corners make good features
to track and have extensively been used in stereo vision and motion estimation.
Two classical corner detectors are the Harris detector [Harris 88] and SUSAN
[Smith 97].

Unfortunately, these feature detectors neglect effects of pose changes. Like
all image features, corners are subject to an appearance change if the distance of
the camera varies (this causes a scale change in the image) or due to a change of
viewing angle (locally, this effect is approximated by an affine transformation).

This is not taken into account by basic corner detectors — they are neither
scale nor affine invariant.

Scale and Affine Invariance To some extent, a lack of feature invariance can
be overcome by processing the input image at different scales. An alternative
way [Mikolajczyk 04] is to extend the conventional Harris detector and deter-
mine a characteristic scale for each keypoint (see also [Lindeberg 98]). There-
fore, a range of scales is searched to maximize an information measure called the
“Harris cornerness”. In a second step, the local surrounding is transformed to
an isotropic state based on its second moment matriz [Mikolajczyk 04]. Thus,
the resulting interest regions are not only assigned a characteristic scale, but

11



also an elliptical shape that follows affine transforms of the local surrounding.
This is why the resulting feature detector is called affine invariant.

The effect is illustrated in Figure 5: for each keypoint, a characteristic local
surrounding is determined (Figure 5(a)). If this local surrounding is warped
due to a pose change of the object, the feature is tracked reliably and the local
surrounding is adapted (Figure 5(c)).

The resulting region detector has the capability not only to track a feature
in a distorted image, but also to compensate for the distortion of the local
surrounding — this boosts matching between images the better the more precisely
the projected elliptical neighborhoods overlap.

(a) (b) (c)

Figure 5: due to a pose change, the local surrounding of 5(a) is distorted in 5(b). A
circular neighborhood as in 5(b) is not suitable to describe the patch, since it covers a
different potion of image content. However, an affine region detector compensates for
this fact by warping the local surrounding 5(c) such that the neighborhoods in 5(a)
and 5(c) cover the same image region (image taken from [Mikolajczyk 05]).

Salient Points Another problem with corner detectors is that the resulting
features are usually not distributed regularly over the image but often focused in
regions of strong contrast. A way to overcome this is the wavelet-based salient
points method by Loupias and Sebe [Loupias 99]. The basic idea is to search the
coefficients in the wavelet transform W f of the input image f for peaks called
“salient points”. For more details, see Appendix B.

Salient points have fundamentally different properties compared to corner
detectors. Since strong wavelet coefficients do not demand strong derivatives
in multiple directions, salient points can as well be edge points. On the one
hand, these may be valuable features for object detection — e.g., Berg [Berg 04]
argues that some objects may show only few corners. On the other hand, edge
points make rather bad features for matching in motion tracking or stereo vision,
because their position is not uniquely determined.

Salient points are inherently extracted at multiple scale levels, since they are
searched for in the whole wavelet transform Wf. And there is another property
that distinguishes salient points from corners: due to the hybrid nature of each

12



coefficient (it corresponds to both a scale and a location), salient points are more
spread over all image regions and not restricted to areas with strong contrast, as
for other interest point detectors. This is illustrated by examples in [Loupias 99].

Difference Of Gaussians

Cne Dimensional

Twro Dimensional

Figure 6: one- and two-dimensional examples for a difference of Gaussian functions
(image taken from®* ). If convolved with a signal at the right scale, regions with strong
contrast to their surrounding give extrema. Note the strong similarity to the Laplace
(or “Mexican Hat”) operator.

Difference-of-Gaussians (DOG) Another method is to convolve the image
with a difference of Gaussians function and detect maxima obtaining so-called
blob features. This approach is followed by the popular SIFT operator [Lowe 04].
It operates in the discrete scale space of the input image, which is obtained from
convolving the image with Gaussians at several scale steps [Lindeberg 99]. At
each level, the image is convolved with a difference of Gaussians (DOG), which
is illustrated in Figure 6. The resulting signal in scale space is searched for
maxima yielding features with an inherent scale.

The features detected are blobs, regions of strong contrast to their surround-
ing. A perfect example for this is a white circle on black background. If con-
volved with a DOG at the right scale, it gives a strong peak.

Rotation invariance can be achieved by further enhancements. For example,
a characteristic rotation angle can be assigned to each feature by computing a
dominant gradient direction in the local surrounding [Lowe 04]. Furthermore,
a gradient-based local descriptor is used (see Section 3.2.2).

Sample Points A simple alternative to interest region detectors is to obtain
patches simply from sampling the image regularly or randomly. In [Deselaers 05],
such patches were used for object recognition and found helpful, especially for
prominent large monotonous areas: in these, only few interest points will be
detected, but nevertheless they provide a strong property to discriminate be-
tween objects. This can be exploited by sample points (a similar idea has been
followed in [Schiele 00]).

Maximally-stable Extremal Regions Matas et. al. [Matas 02] developed
another interest region detector and applied it for stereo matching. While other

4http://www.liden.cc/Visionary/Visionary_d.html
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operators so far extracted point features, their approach operates on image re-
gions. The method is based on the Watershed transform®: starting from a
maximal threshold, the image is iteratively binarized while lowering the thresh-
old step-wise down to the minimum. During this process, the topology of image
regions changes, and bright regions are fused more and more — however, some of
them may evade these fusions over a wide range of threshold values, especially
if they have a strong contrast to their surrounding. These regions are picked as
interest features.

Local Entropy Gilles [Gilles 98] characterizes the saliency of features by the
randomness of a local surrounding. Using a sliding-window approach, maxima in
the entropy of the local histogram are used as feature points. This approach does
not take scale into account. Furthermore, the method gives many local maxima
in case of complicated, strongly textured areas. Kadir and Brady [Kadir 01]
argue that such areas are not salient, since the saliency of an observed feature —
the fact that a feature is noticed “at one glance” — demands (besides geometric
aspects and complexity) rareness. Similarly, Schiele[Schiele 00] characterizes
salient points as “unique points that are helpful to distinguish objects”.

Both problems with Gilles’ approach — lack of scale and lack of true saliency
— can be faced by entropy maximization over scale space. It is argued that
features are more salient if they are stable only over a small range of scales
instead of a wide one [Kadir 01]: e.g., consider an edge point and a typical blob
feature, a white circle on black background. While the edge point will have
the same entropy no matter how the surrounding is scaled, the more distinctive
blob gives a strong maximum of entropy at a particular scale only. From these
thoughts, a saliency measure is derived that is supposed to suppress strongly
textured, but self-similar areas.

Curve Features A last feature class beneath points and regions are curves
in an image, which are of special interest if the outline of an object is more
discriminative than its texture. One example based on Canny [Canny 87] edges
is described in [Fergus 05b].

Performance Evaluation A quantitative comparison of some popular affine
feature detectors can be found in [Mikolajczyk 05], where interest features from
reference images were tracked in distorted image versions (blur, illumination
change, 3D viewpoint change, rotation, scale). Each local feature is associ-
ated with an elliptic neighborhood which makes the feature affine invariant (as
illustrated in Figure 5).

The quality of an affine keypoint detector is now measured using two criteria:
the repeatability with which a keypoint is tracked in the distorted image and
its accuracy, the percentage of overlap between matched neighborhoods. In

Shttp://cmm.ensmp.fr/ beucher/wtshed.html
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[Mikolajczyk 05], these criteria were evaluated quantitatively over a set of test
images®. The ground truth for tracking interest features between images is
determined by estimating a homography between the reference image and its
warped version.

Results indicate that Maximally-stable Extremal Regions [Matas 02] and the
enhanced scale and affine invariant version of Harris [Mikolajczyk 04] performed

well [Mikolajczyk 04].

3.2.2 Local Descriptors

Following the patch-based approach, local features are not only characterized by
their position in the image but also by the local appearance of the surrounding
patch. Like for feature detection methods, there is a wide variety of meth-
ods to extract feature vectors that describe patch appearance, so-called local
descriptors.

The fundamental purpose is to describe object properties independently from
the specific capture. Thus, invariance is a basic goal for local descriptors as well
as for feature detectors. Ideally, the local descriptor should remain the same
under varying illumination, scale, or rotation. Often, invariance is difficult to
achieve and subsumed by the weaker property of robustness, which allows minor
changes.

Another goal is a high distinctiveness of the descriptor. It can be difficult to
satisfy both criteria at the same time: for example, the local gray value mean
in a local surrounding is ¢nwvariant to rotation, but on the other hand it has a
rather weak distinctiveness.

To overcome a lack of invariance, several workarounds have been suggested:
for scale invariance, local patches can be processed at multiple scale levels. For
illumination, the gradient strength is used instead of the absolute gray value,
or an adaptive gray value normalization is done. Rotation invariance can be
achieved by using histograms or by determining a characteristic orientation for
each patch based on local features like the dominant gradient direction in a local
surrounding [Lowe 04].

An evaluation of local descriptors has been presented by Mikolajczyk and
Schmid [Mikolajczyk 03], who tested the performance of local descriptors in
the context of matching between two slightly modified image versions (rotation,
scale, 3D viewpoint change as for stereo tasks, blur, and illumination). The local
descriptors were tested for several interest region detectors. It was found that
the SIFT descriptor performed best. However, these results do not necessarily
hold for object category detection. First, the requirements for a local descriptor
may be different since matching shall occur under a higher appearance variation.
Second, setting up a ground truth for quantitative testing is painful.

In this section, we list some popular local descriptors.

Shttp://www.robots.ox.ac.uk/ vgg/research/affine/
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Pixel Values A straightforward way to describe a patch feature it to use
pixel values in a local surrounding. This is simple but usually yields very high-
dimensional feature vectors making a later processing painful. Furthermore,
image patches contain noise and high frequencies, which might have a negative
influence on similarity measures for matching. For example, Lowe [Lowe 04]
states that raw image content is sensitive to changes of 3D viewpoint or slight
rotations. This is also found in the context of stereo matching [Ulges 04].

PCA A standard technique to reduce the dimensionality of sample vectors is
Principal Component Analysis (PCA) [Duda 00]. Using a linear eigenanalysis,
high-dimensional samples (e.g., vectors of local pixel values) can be projected
to a lower-dimensional subspace, whose basis of eigenvectors is chosen such that
the variance of samples is optimally preserved.

DCT One problem with PCA is that it demands learning the basis of eigen-
vectors from a training set. Experimental results in [K6lsch 03] show that like
the PCA favors low-frequency components over details, and that comparable
local descriptors can be obtained by applying the Discrete Cosine Transform
(DCT) to the image and selecting a subset of low-frequency components from
the DCT-transformed patch. This offers a data-independent way of dimension-
ality reduction.

SIFT The SIFT feature extraction method by Lowe [Lowe 04] does not only
provide a keypoint detector, but also a local descriptor. Its general idea is illus-
trated in Figure 7: the local surrounding of a feature vector is partitioned into
bins, and for each bin a histogram of gradient orientations is computed. Taking
the bins of all histograms together yields a descriptor of gradient orientations in
the patch. Due to a clever weighting and interpolation, the descriptor changes
smoothly with variations of the local surrounding.

The model is biologically inspired — the human visual system perceives gra-
dients in a similar manner showing robustness to small shifts on the signal.

The resulting descriptors are claimed to be scale invariant due to feature
detection in scale space, rotation invariant due to estimating a characteristic
orientation, and robust against illumination changes (the gradient is used in-
stead of image intensities). They have proven a very good performance in a
quantitative evaluation [Mikolajczyk 04].

Differential Invariants Other researchers have used certain local invariants
as descriptors. These can be based on gray values, e.g.using moments, or on
Gaussian derivatives that are obtained by differentiating the input image I
convolved with a Gaussian kernel N:

0

Li(w) = (5,

The definition of higher-order derivatives is straightforward.
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Figure 7: an example for the SIFT descriptor: a local neighborhood is divided into
spatial bins, for each of which a histogram holds the local gradient distribution. Com-
bining these histograms give the feature vector (image taken from [Lowe 04]) — in this
example, there are 4 bins, each with 8 arrows corresponding to 4 gradient orientations.
This yields a 4 x 4-dimensional feature vector.

If Gaussian derivatives are combined properly, descriptors can be obtained
that are rotation invariant. Examples are the Laplacian ), L;;(x) or the squared
gradient magnitude >, L;(x)L;(x). The resulting features are called differential
invariants.

A sequence of third-order differential invariants has been used as a local de-
scriptor in [Schmid 97]. The choice of features in this case is rather limited, since
only certain combinations of Gaussian derivatives lead to rotation invariance.
Furthermore, results in [Mikolajczyk 03] indicate a rather weak distinctiveness.

Feature Discretization A common way to speedup feature matching is to
apply an additional discretization (also referred to as feature clustering) as a
post-processing [Keysers 06, Fergus 05a]. Typically, the feature vectors are re-
placed by the outcome of a clustering on training data (e.g., using k-means). In
recognition, a patch p is not presented by its feature vector, but by the cluster
C(p) it is assigned to.

First, this reduces the amount of data to 1 dimension per patch. Second,
it reduces the number of potential correspondences when it comes to matching
patches from two sets (e.g., an image and an object model) by demanding that
matches belong to the same cluster.

Feature discretization is also used by another group of object recognition
approaches inspired by methods from the text processing domain (e.g., see
[Sivic 03, Fergus 05a]). In this context, the clusters resulting from discretiza-
tion are often referred to as a vocabulary of visual words, which are clusters of
similar patches.

3.2.3 Using the Spatial Constellation of Patches

The local features of many real-world objects tend to appear in repetitive spatial
constellations — one example is the motorbike illustrated in Figure 4, another
one is a human face with eyes, nose, and mouth at fixed positions relatively to
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each other.

In the last Section, it was described how to extract those local features
and how to describe their appearance. Now, the next question is how to ex-
ploit spatial relationships between those features. This leads to the so-called
correspondence problem of finding matches between an object model and an im-
age to be recognized. Solving this problem is one of the bottlenecks in object
recognition, since the space of potential correspondences is usually vast. Many
strategies to face this problem and exploit spatial constellation are introduced
in the following, ranging from simple heuristics to approximation techniques to
statistically optimal search strategies.

No Spatial Relationships Like for local descriptors, we start with the most
simple way, namely to neglect spatial relationship between patches completely.
According to this approach, an object (or object category) is usually character-
ized only by the local descriptors of its patches. This leads to various decision
strategies that will be discussed in Section 3.2.4. An alternative is to work with
discretized descriptors and use their distribution over the clusters of the “visual
vocabulary” described earlier in this section: given clusters C,..,Cn and an
image with patches pq, .., p,, this distribution is defined by

(#pi : Cpi) =Cj)jmy & (2)

Note that this sequence is a patch histogram holding information similar to
a word vector in text processing. While the latter holds information on the
frequency of words in a text document, (#p;) provides the same information for
“visual words” in an image.

Approaches neglecting spatial relationships are popular due to their sim-
plicity [Deselaers 05, Fergus 05a, Kolsch 03] and have also shown a surprisingly
good performance in practice. It seems that these approaches work well for
object recognition but run into problems when it comes to object category recog-
nition, especially for object classes where color and texture vary but shape is
very discriminative (e.g., “coffee cups”).

Histograms of Relative Positions Another approach using feature dis-
cretization has been proposed by Agarwal et. al. [Agarwal 04], who build
a vocabulary of visual words by clustering. For recognition, a binary vector
V = (v1,..,v5) is extracted for each image where the coordinates v; indicate the
presence of a patch belonging to cluster C; — just like in text processing, where
documents can be represented as boolean vectors of word occurrences.

Furthermore, the approach is extended to take spatial relationships into
accounts using bins of relative positions between patches. Given a reference
patch, the image space is partitioned into 20 bins using 5 distance levels and
4 direction levels, and V' is extended with additional coordinates vl’-“j indicating
the presence of visual word w; in bin k£ (k = 1,..,20) relative to an occurrence
of w;.
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Obvious problems with this approach are its very high-dimensional feature
vectors in the order of several mio. dimensions (which is tried to be overcome
using a winnows classifier suitable for sparse samples) and a lack of robustness
against slight position changes.

Heuristics for Joint Optimization The object recognition approach of Burl
et. al. [Burl 98] views the spatial relationships and appearance in one proba-
bilistic framework. Given an image I represented by its patches X = x1, .., x,,
the likelihood ratio is used for classification:

_ p(I|object)
~ p(I|background)

A is rewritten using a latent vector random variable X, which represents hy-
potheses for positions of object patches in the image:

Ao > x p(I|X, object) - p(X |object)

p(I|background)

This converts to the following log-likelihood ratio, if independence of patch
appearances is assumed. Furthermore, a single optimal constellation hypothesis
X is assumed since summing over all positions is infeasible:

p(z;| X, object)
logA=>» 1
°8 ; ng(xi|back‘gr0und)

+ K -log Xg

Optimizing log A means to jointly optimize local appearance (the first term)
and spatial constellation (the second one). The factor K can be used to balance
both influences.

For recognition, a part detector is run to extract the patches p;. Then, the
constellation hypothesis X is chosen and the likelihood ratio can be computed.
The key step is the choice of X from the patches. Therefore, three heuristics
are discussed:

1. for each match in the object model, find a “most similar” match in the

scene based on appearance only. This automatically leads to a spatial
configuration (“appearance implies shape”)

2. find an optimal shape match neglecting appearance. This yields appear-
ance correspondences. (“shape implies appearance”)

3. find a set of reliable initial matches. If assuming a transformation of at
most four parameters between the images (e.g., a similarity transform
consisting of isotropic scale, rotation, and translation), each pair of such
matches implies a global constellation for all other parts. Optimize log A’
repeatedly varying the pairs of initial matches (“joint optimization”)

Optimality cannot be guaranteed for any of the methods. Approaches (1) and
(2) are greedy techniques. The last method uses a local optimization, which
faces the problem of bad starting values.
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Least Squares Lowe [Lowe 01] follows a voting approach. Between patches in
input image I and in the model M, correspondences {(zf, X}!)} are established.
In an additional postprocessing, spatial constellation is exploited by demanding
these matches to give a consistent global similarity transformation Ty. Ty maps
feature locations from I to M. The transformation parameters 6 are obtained
using least-squares, thus minimizing the localization error:

E@®) =) (XM —Ty(z)))®

i

The decision whether I matches M is made by thresholding with the least
squares error.

The approach has two inherent problems: First, matching and transforma-
tion estimation are separated such that errors in matching cannot be undone in
parameter estimation. Second, least squares optimization is strongly influenced
by such outliers.

RAST A method that overcomes both weaknesses of Lowe’s approach is the
RAST algorithm [Breuel 92], which solves correspondence and parameter es-
timation in a joint framework. Keysers [Keysers 06] follows this approach to
solve the correspondence problem in object recognition. RAST does not model
matches explicitly, but finds a global mapping Ty between a model and an im-
age (e.g., a 4-parameter similarity transform). The input consists of an object
model O consisting of patches oy, ..,0,, and an image X with patches z1, .., z,.
Each patch consists of image space coordinates and an appearance vector a,
e.g.x; = (i, ;). Given O and X, RAST searches the parameter space {6}
optimizing the [likelihood of the observed image. Independence of patches is
assumed:

6 =argmaxp(X|0,0)
0

arg max ;10,80
g1 1:[p(| )

For the class-conditional density p(x;|O, ), a truncated Gaussian N is chosen:

p($2|070) — { ';\1/'1—'0(05*),0‘2 (372) jlosle* :NTg(Oi*),Jz (mz) >T

This models the presence of background features: if the image patch z; occurs
due to the object, the corresponding model patch o;« will be similar to z; and
mapped near to x; such that Tp(0;<) ~ x;. A diagonal covariance matrix 21 is
assumed, as well as a uniform distribution 7" for background patches. . After
further simplification and taking the logarithm, we obtain

f = arg ;nax Z qo.o(z;)
i
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where go ¢ gives “quality votes” for each image feature:

2 < ¢

2
go.0(xi) = { 1 - lziToell - Jo,. : [|a; — Ty(o;0)
' 0 else
As mentioned above, patch vectors contain both the location and appearance:
x; = (pi, ;). Consequently, ||.|| is the Euclidean distance in the joint domain
of image coordinates and intensities.

In practice, location and appearance are dealt with separately. The appear-
ance can be discretized and matches are accepted only within the same cluster.
The distance measure ||.|| is replaced with the Euclidean distance for image
coordinates only.

Optimizing the likelihood is done by searching the parameter space {6} in
a branch-and-bound manner, guaranteeing a global optimum. Note that while
other methods like in Burl et. al. [Burl 98] try to establish correspondences
between patches explicitly, the RAST algorithm yields matches implicitly once
0 is known. Classification of the image I might be done using the overall quality,
which is an equivalent to the log-likelihood.

The Constellation-Based Model A highly elaborate approach in the area
object recognition is the constellation-based model, which views the appearance
of patches and their spatial constellation (the overall shape of an object) in a
joint probabilistic framework.

The model is inspired by the work of Burl et al.[Burl 96] as it is based on
maximizing appearance and shape terms in a joint likelihood. Several varia-
tions can be found in the literature [Weber 00, Fergus 03, Fergus 05b]. While
earlier work is focused on object recognition and skips automatic learning, later
approaches even include learning object category models in an unsupervised
manner from weakly labeled images [Fergus 03]. Neglecting some variations be-
tween the concrete approaches, this section tries to present the essence of the
model.

THE MoODEL: The central idea is that a set of characteristic patches M
forms the model for the object or object category to be recognized (e.g., the eyes
and the nose are characteristic for human faces). Given a new image, patches
P are extracted that make potential candidates for these object patches. A
so-called hypothesis h : P — M U {background} maps image features to model
patches. The space of possible hypotheses may become vast: |h| € O(|M|IP),
and distinguishing “good” hypotheses from “bad” ones is a key problem.

For each hypothesis, a class-conditional density p(P,h|6) is derived using
a complex model including distributions for the appearance, scale, and spatial
constellation of patches. The concrete realization of these distributions can
depend on the approach — Fergus et al.[Fergus 03] choose Gaussian distributions,
while Weber et al.[Weber 00] discretize the appearance of patches by a preceding
feature clustering.
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The parameters 6 of these distributions describe the appearance of an ob-
ject, including distributions for the appearance of characteristic patches as well
as for their spatial constellations. 6 is derived from a set of training images.

RECOGNITION: In recognition, we theoretically have to marginalize over all
hypotheses to obtain the likelihood p(P|f) = >, p(P, h|f). The basic question
is how to handle the amount of hypotheses. If summing over all hypotheses in a
brute force manner, the number of model features must be kept very low (e.g.,
|M| = 5). Another approach is to only sum over a subset of promising hypothe-
ses, or to even search for an optimal hypothesis in a greedy manner [Burl 96]
by picking pairs of features and inferring the remaining patches. Other work by
Fergus et al.[Fergus 05b] replaces the joint density for the spatial constellation
of patches with a star-based model including only pairwise dependencies with
a so-called “landmark” patch. In this case, sums over the hypothesis space can
be evaluated in O(|M|? - |P|) instead of O(|M|'F!). However, the selection of a
stable landmark is an open problem.

LEARNING: An open question left is how to determine the parameters 6 —
to learn object category models — from sets of unsegmented images labeled with
object names. While this has not been addressed by earlier approaches, recent
work like [Fergus 03] faces the problem, especially two key difficulties:

e part selection: Select the most discriminative patches that represent the
“essence” of an object category best. Ignore clutter patches.

e estimate the associated model parameters 6 that determine where model
patches are to be expected in the image and what appearance they have.

Both problems can be addressed at once by data fitting using an Expectation
Maximization (EM) algorithm (for a short introduction, see Appendix A). This
generic scheme is an iterative technique to find a maximum-likelihood solution
for parameters # in the presence of missing data. EM is extremely suitable in
our case, since we have missing data in form of occluded object patches (the
ones for which h(p) = background). EM also has the capability to “select” the
best model parts in a maximum likelihood sense and ignore clutter.

Discussion:  With the complexity of the constellation-based model comes
a high flexibility. Since both appearance and shape are modeled via parameters
in one joint framework, the model is capable of a wide range of object categories,
for some of which the appearance might be more restricted (e.g., for “spotted
cats” the texture is more discriminative while the shape may vary), while others
are characterized more by a restricted shape (e.g.tea cups).

One surprising fact is that only very few (in the order of 5) patches have
been used in the corresponding object models so far. One reason for this is
that learning is very time-consuming. Another one is that more model patches
— thus, more parameters — might lead to overfitting for the small training sets
used.
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Although only very few patches per object category are used so far, error
rates seem competitive.

3.2.4 Classification

The last key question to be answered is how to make a good decision whether
an object is present in the image based on local features.

This topic is also strongly related to the way appearance and shape are mod-
eled. Many approaches that take shape into account — e.g., the constellation-
based model [Fergus 03] — use probabilistic frameworks. In these cases, the
decision rule follows directly from the model using Bayesian methods. Conse-
quently, we will not discuss these approaches further but focus on approaches
that neglect spatial relationships. An overview and comparison of some methods
is given in Deselaers et al.[Deselaers 05].

Patch Histogram Similarity One simple way is to associate an image with
its patch histogram as introduced in equation (2). A new object image can then
be classified using histograms of a set of training images.

Naive Bayes On a local level, the patches X in an input image are viewed
as samples. Usually independence is assumed, which leads to a Naive Bayes
approach:
P(X|0) =[] P(zil0)
i

A feature discretization is used to cluster patches into classes such that the
class-conditional probabilities P(z;]O) can be obtained as relative frequencies
from histograms.

AdaBoost Another possibility [Opelt 04] is to view the presence of a patch
in an image as a binary weak classifier and combine these using AdaBoost
[Freund 96]. Given a set of training images with object labels viewed as sets of
patches X = {X; = {1, .., Zin, } }, the method precomputes a distance between
each feature-image pair:

d(z;j,X) = ;Iél)l(l |zi; — |

Iteratively, the feature ;; is picked that minimizes classification error when
thresholding over all images, and AdaBoost reweights all images such that “dif-
ficult” ones are given more attention. The resulting classifier is a linear combi-
nation of the weak “patch classifiers” obtained in each iteration. The method
has also successfully been applied before to specific object categories like faces
[Viola 04] and text [Chen 04]. Its recognition rates for object detection on stan-
dard databases seem competitive.
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Direct Voting Direct Voting is another appearance-only approach viewing an
image as a set of local features 1, .., z,. From a set of training images, patches
X1, .., Xn associated with object labels L(X;) are extracted. The decision rule
is the following: for each feature z;, the nearest neighbor in the training set
N(z;) := argminy_|X; — z;| gives a vote for its object label L(X):

voter () :{ (1) eLlsj L(N(z;)) (3)

Object classification is then based on the majority of votes:

L := arg max Z voter, (x;) (4)

L -
The method has a statistical foundation as is shown in Appendix C. Fur-
thermore, it has proven to perform well in practice [Kolsch 03, Lowe 01]. This
is why we follow a similar approach for object recognition in video (see Section

5).

3.3 Discussion of Global and Local Approaches

A fundamental criterion to judge object recognition approaches is their robust-
ness with respect to appearance variations. The reasons and characteristics
of such variations may be manifold (e.g., see Sections 2.1 and 2.2), including
lighting changes, geometric transformations, and background influence.

A look at global methods reveals that they may cope well with some of these
changes — e.g., color histograms are invariant to geometric transformations like
scale, rotation, and shift.

On the other hand, the majority of global approaches are strongly affected
by background influence in form of clutter and occluded object features, which
often has an unpredictable influence on global feature vectors and makes such
approaches less flexible — usually, they demand objects images free of occlusion
and with minor background influence [Arbel 00, Nayar 96, Horecki 99].

One way to overcome the problem of background clutter is to segment the
image and extract features only from its object region. For still images, a huge
quantity of segmentation approaches exists ranging from low-level methods like
the watershed transform or region growing to elaborate ones like Markov random
fields [Geman 84] or normalized cuts [Shi 00]. Still, dividing an image into the
right regions is a painful task when it comes to unknown objects like in generic
object recognition. This is aggravated by the fact that segmentation is in general
subjective [Martin 01].

The situation may be somewhat easier when it comes to objects in video con-
tent. If the object moves in a different way than the background, this knowledge
can be exploited using motion segmentation. Black and Anandan [Black 96]
have pointed out the difficulties in this field and presented robust methods. For
an even more comprising overview of the field, see [Smolic 01].
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Nevertheless, most global methods suffer from a lack of robustness. This has
also been observed by Schiele and Crowley [Schiele 00], who studied a global
approach based on so-called receptive field histograms (RFHs). Like color his-
tograms, RFHs measure the distribution of a pixel property over an image,
just that they replace color by Gaussian derivatives. First, a global method is
presented that matches RFHs of images using several similarity measures for
histograms. This approach is then compared to a method that views an image
as a set of local features z1,..,z, (in [Schiele 00], these were Gaussian deriva-
tives at positions obtained from sampling over a regular grid). An object O is
chosen by a Bayesian decision assuming equal priors and feature independence
such that the posterior rewrites as:

__Ieo)
P(O|$1,--,xn) - Zk Hlp(ml|0k)

Such an approach is considered as local, since an image is viewed as a set of local
samples. This differentiation is somewhat artificial as is revealed by taking
a closer look at the posterior. When sampling in steps of 1 (at every pixel
position), we can rewrite the decision O based on Equation (5) as

()

O = argmax P(Og|z1, .., T,)
Oy

= argmax [ p(a:|04)
k i

= argmax | [ Ho, (z)#®)
gn 1;[ ()

= argomax Z H(z)log Hp, () (6)

where z runs over all possible feature values, Hp, is the model RFH correspond-
ing to object Oy, and Hj is the RFH corresponding to the image.

What equation (6) states is that when sampling densely our “local” decision
criterion just rewrites as a new similarity measure for global histograms, ren-
dering the difference between the global and the local approach useless in this
special case.

Nevertheless, we keep the differentiation in general since it is based on the
way of viewing images globally or as sets of local samples. Another reason for
this is that local approaches have — in contrast to global ones — proven the
capability to deal with partial occlusion and clutter in a natural way: only a
small fraction of features gives erroneous, unpredictable “votes”, and the global
decision is robust against a certain fraction of background clutter. This has
been validated in experimental results by [Schiele 00], and similar observations
have been made in experiments described in Section 5.2. Although the global
approach showed robustness to some degree, it was not able to compete with
the local probabilistic method in the presence of occlusion [Schiele 00] and back-
ground changes (Section 5.2).
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4 From Still Images to Video

The object recognition methods introduced in the last two sections all deal
with still images. One straightforward way of transferring the concepts to video
streams is to view video as a set of multiple views showing an object at various
poses. When observing multiple views of the same object in such a manner,
appearance changes are a problem, especially when features disappear due to
self-occlusion. This poses problems e.g.for the constellation-based model: usu-
ally, there is just no single unique constellation of patches that is sufficient to
characterize multiple views of a 3D object. The problem turns into a 3D object
recognition problem as introduced in Section 2.2. Furthermore, there comes ad-
ditional information with video (besides audio tracks or closed captions) in form
of the temporal relation between frames, and in form of the fact that consecutive
frames should be similar assuming smooth pose changes.

Consequently, this section starts with approaches from 3D object recognition
and afterwards introduces some video-specific concepts.

Inherent Treatment of Multiple Views Some classification concepts from
the 2D case can be transfered naturally to multiple views, e.g.direct voting
as introduced in Section 3.2.4: since all features of an image are stored in a
database and recognition is done by Nearest Neighbor classification on patch
basis, a video is simply represented by all patches from all frames.

The same expansion can be made for most global methods, where matching
is done by NN classification on frame basis.

Training View-Specific Classifiers An alternative way is to train a set
of view-specific classifiers for view classes of an object, as has been done in
[Schneiderman 00b]. For example, all frontal views of cars are partitioned into
8 subsets (see Figure 3). Note that this approach as it is introduced is not
generic — whenever a new object category shall be introduced, new view classes
— so-called aspects — must be determined manually.

Aspect Graphs The approach introduced in the last section does not include
an automatic grouping of similar views: the car views illustrated in Figure 3
have been selected manually. Automatic approaches to do this have to respect
the structure of the system of views, which is an individual property of an
object. More formally, the problem is to automatically generate an aspect graph
of the given object as illustrated in Figure 8. Images of an object (in this case
represented by the object silhouettes) correspond to positions on the unit sphere.
Some of these images hold the same features and are very similar — they are
clustered to so-called aspects. Edges between adjacent aspects correspond to so-
called “accidental” views were the appearance of the object changes distinctly.
Cluster representatives for some aspects are displayed in Figure 8 — appearance
changes between the samples can be observed, e.g.the presence or absence of
the kangaroo tail.
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Figure 8: an aspect graph (image taken from [Cyr 04]).

A method to automatically construct an aspect graph has been presented
by Cyr and Kimia [Cyr 04]. The input is a set of views V' = {V;} of the object,
which are assumed to be taken from the same distance and sample the whole
hemisphere in regular steps. Due to this controlled setup, a neighbor relation
over V is given for views taken from an adjacent angle.

The construction of an aspect graph is now viewed as a problem of segment-
ing V into clusters of adjacent and similar views (“aspects”). For each aspect,
a representative is stored and used for NN-based recognition.

One key problem for clustering is to measure the similarity of images, for
which Cyr and Kimia propose two metrics based on the object silhouette. An-
other one is the clustering algorithm itself — therefore, a greedy region growing
scheme is proposed. Starting from singleton clusters of isolated images, similar
clusters are iteratively joined. To avoid undersegmentation with large, heteroge-
nous clusters, two clusters only combined to a new aspect A C V if A satisfies
the following constraint. Assume that r4 is the representative of aspect A:

VWV, € A Vi e (VNA): d(ra,V;) <d(ra, V)

View Clustering Like Cyr’s approach [Cyr 04], Lowe [Lowe 01] clusters sev-
eral views on an object. Nevertheless, the methods differ in some significant
aspects: first, the approach is based on local SIFT features and not on global
similarity measures. Second, images are not assumed to be taken in a con-
strained setup such that no neighborhood relationship between adjacent views
is given. This makes the approach suitable for general, unconstrained video.
Third, the aspect graph does not contain edges on aspect level. Instead, links
on patch-level are introduced between similar patches from different aspects.
Thus, the object model is just a set of aspects, where an aspect is a set of
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similar views of the same object, and a view is just a set of patches. Learning
is equivalent to storing all patches and their links.

Both classification and learning are done using an enhanced direct voting:
for each new image, patches ! are extracted and matched to the database of
model patches mé‘/[ using NN. Each such match votes for one — or via the links
between similar patches for several — aspects. From these votes, a posterior
P(A|z!]) is derived for each aspect A. By thresholding P(a|z!) it is decided
whether an object is present in the image.

Though no quantitative evaluation is presented, the approach looks promis-
ing for a test image, where it was able to detect multiple objects in a cluttered
scene. Another benefit is that no constrained capture environment is needed
(solely, the object is required to take on a sufficient fraction of the image space).
This is why a related approach was followed in the prototype system outlined
in Section 5.1.

Using the Temporal Order of Frames Javed et al.[Javed 04] exploit the
temporal structure of video in a Markov framework. Given video frames M =
(ma,..,mr), each one is assigned to one aspect (determining both object and
pose). This yields hypotheses in form of sequences of aspects A = (aq, .., ar).
Using a Markov property we obtain

T

P(AIM) = <H P(at,at_1|mt)> - P(ay|my)

t=2

T
x (H P(myay, at_l)P(at|at_1)P(at_1)> - P(ay|my)

;2
~ (H P(mt|at)P(at|at_1)P(at_1)> - P(ay|my) (7)

where the likelihood P(m¢|a;) is learned in a feature space of gradient orienta-
tions. The pose transition probability P(a:|a;—1) is modeled as a distribution
over the 3D unit sphere (the angle corresponding to aspects is assumed as known
due to a controlled setup) favoring slow transitions over abrupt ones. Unfortu-
nately, the experimental results presented are not very convincing. Only four
objects are presented without clutter or occlusion.

Note that the Markov approach outlined in equation (7) relies on knowledge
from previous frames by boosting the probability of an aspect respecting the
previous one. An alternative to modeling a transition probability explicitly is
given by Bayesian Chaining [Arbel 00]. Given frames M; = (m4,..,m;) and
object hypotheses Oy, .., O,, the posterior is estimated by

P(O|my)  P(O)P(my|0)

While the likelihood P(m¢|O) is modeled in a standard way as a Gaussian in
feature space, the information from the previous frame is integrated by replacing
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the prior P(O) with the posterior from the previous frame:

P(0) =~ P(O|M¢-1)

Video Google A completely different approach to object recognition in video
has been followed by Sivic and Zissserman [Sivic 03], who focused on rapid
indexing and retrieval in video databases. Therefore, parallels to the world
of text retrieval are drawn (this is why the approach is called VideoGoogle):
a text document containing words corresponds to a video frame with wvisual
words in it. These visual words are just local features: they are obtained by
detecting interest regions and clustering them based on their local descriptors.
Furthermore, the frame structure of video is exploited in two ways:

1. features are tracked and only stable features are kept
2. local descriptors are smoothed by averaging over subsequent frames

This way, a finite vocabulary of patch classes is obtained, which allows to transfer
text retrieval methods in a straightforward way: like a document, a video frame
can be represented by a document vector (using boolean entries, the frequency,
or the inverse document frequency), and well-known similarity measures like the
cosine can be used for frames. This approach has been used to discover certain
scenes in video streams.

A second scenario is to find frames containing a certain object, which is a
more difficult problem due to clutter. Therefore, features between the object
and each frame are matched, and two additional constraints are imposed:

1. Spatial Consistency: instead of deriving an affine transform mapping fea-
tures from the object into the frame, a simple and fast voting scheme is
used: the 15 nearest neighbors in the object are determined and give a
boosting extra vote if they are neighbors in the frame, too.

2. Stop Words: in text documents, very frequent words are not discriminative
and are thus discarded in a preprocessing step. The same phenomenon
can be observed for visual words, which are discarded for object retrieval,
too.

29



5 A Practical Approach to Object Recognition
in Video

The object recognition survey given in the last two sections made a differentia-
tion between global and local approaches. It is an interesting question to compare
the performance of these classes in a practical environment. Therefore, we built
a system called VIDEOOBJECTS for the learning and recognition of objects in
video streams. Using this infrastructure, we evaluated the performance of one
global and one local approach in quantitative experiments. To our knowledge,
the only previous work presenting such a direct comparison is [Schiele 00].

Also, our goal was to build some initial infrastructure for following in-
depth research on object recognition. In the following, we first introduce the
VIDEOOBJECTS prototype in detail in Section 5.1. Afterwards, our experiments
are described and results are discussed (Section 5.2).

5.1 The VideoObjects System

The object recognition system built is called VIDEOOBJECTS. Its purpose is to
learn objects that are moved manually in front of a fixed video camera, and later
on recognize them when presented again. The only user interaction required is
to present the object to the camera, and — during learning — entering the name
of the presented object.

The system setup is described in this Section, including a detailed outline of
the single components and the underlying pattern recognition techniques.

The system setup is illustrated in Figure 9. A firewire webcam’ with a
320240 resolution observes a scene, which is assumed static except for an object
presented to the camera. The resulting motion is detected, and a video of the
moving object is stored. Furthermore, the VIDEOOBJECTS thread is triggered,
which segments the object from the background using motion segmentation and
extracts features from the object area in each video frame.

To learn the appearance of objects and afterwards use this information to
recognize unknown items, we use a semi-supervised approach: if a new object is
learned (blue path in Figure 9), the only manual labeling of data required is that
the user types in the object name. The name and the object features extracted
from the video are stored in the Object Base, where all system knowledge is
represented. If an unknown object is recognized (red path in Figure 9), features
are extracted from the video and classification is done by matching with the
object base. In the following, the single components of the system are depicted
in more detail.

7UniBrain Fire-I webcam
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Figure 9: the setup of the VIDEOOBJECTS system: if an object is moved in front
of the camera, it segmented from the background and features are extracted. When
learning an object (blue), the features are stored in the object base together with
the object name typed in by the user. If an unknown object is recognized (red), the
extracted features are matched with the object base.

5.1.1 Motion Detection

To detect the presence of an object and trigger object recognition, the Linux
software tool MOTION® is used. The tool is based on a rather simple technique:
the difference between a new image and the reference frame (a weighted sample
of previous frames) is computed and thresholded to decide whether motion is
present. This method proved absolutely sufficient for our purposes.

5.1.2 Motion Segmentation

It has been outlined in previous sections that clutter poses a problem for object
recognition and can have a disturbing influence on classification. Especially if
the object covers a relatively small potion of the image, object recognition can
benefit from discarding background features.

Therefore, we extract a binary object mask from each frame where ON pixels
belong to the object and OFF pixels to the background. An example is given in
Figure 10(c). Extracting this mask for an unknown object in front of arbitrary
background is intractable as long as we view the frames as isolated still images.

However, a simple way to achieve segmentation is to make use of the tem-
poral structure of video. We just exploit the fact that the object pixels move in
a different way than the background pixels (which we assume static). This ap-
proach is called motion segmentation. For an illustration of the general concept,
see Figure 10.

Our motion segmentation procedure consists of three steps: first, motion
is estimated. Afterwards, the resulting motion field is segmented yielding the
object mask, which is finally refined in a post-processing step:

1. MoTION ESTIMATION: computing motion between adjacent frames usu-

8http://www.lavrsen.dk/twiki/bin/view/Motion/WebHome
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Figure 10: the concept of motion segmentation: for each pair of consecutive frames
(10(a)), blocks of pixels are tracked using block matching. This gives a sparse field
of motion vectors (10(b)), which is afterwards use to segment the object from the
background, obtaining an object mask (10(c)).
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ally means to track pixels, which is a time-consuming task including a
region search for each vector in the motion field.

We follow a sparse motion estimation using “Enhanced Predictive Zonal
Search” [Tourapis 02] (EPZS). The technique is based on block matching,
which is a popular method in the video domain: the reference frame is
divided into rectangular blocks, and for each block the best fit in the
new frame is found by minimizing the sum of squared difference (SSD)
between blocks using a discrete Gradient Descent Technique. This gives a
field of block motion vectors. In a second sweep, these motion vectors are
smoothed: again, gradient descent is used, but this time the initial shift is
chosen depending on the neighbor blocks’ motion.

The result is a sparse motion field as can be observed in Figure 10(b).
In the two reference frames, the background remains static (the motion
vectors are near 0), while for the blocks belonging to the object non-zero
motion vectors were found.

The use of motion segmentation has a practical consequence for the us-
ability of the system: only as long as the object moves, it is detected
and reasonable features are extracted. In contrast, frames in which the
object is held still may yield erroneous features due to failures of motion
segmentation.

. CLASSIFICATION: to construct an object mask, each block B is assigned
to the object (or background, respectively) depending on its motion vector
v(B). Afterwards, the mask is constructed by setting all pixels of a block
to ON (OFF, respectively). Our approach for this is to threshold with the
length of the motion vector v:

B=0N <« [wB)]P>T

This can be motivated using statistical motion models for background
and object: the background is assumed static except for isotropic noise.
Consequently, the distribution of background vectors has a strong peak
at 0 and is isotropic. We model this moving a two-dimensional Gaussian
NO,O'Z .

Unfortunately, we do not know that much about the object motion. Thus,
a uniform distribution over a sufficiently large range R is assumed.

Imposing uniform priors, the Bayesian classification decision rewrites as:

! (8)

B =0N — No,o-z(’l}(B)) < @

/4 2
& (B)]? > —202 1n|Ti“|"

—_——
=T

In practice, the threshold T is chosen empirically based on the frame-
rate, the camera resolution, the expected distance of the object from the
camera, and its expected velocity.
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3. POSTPROCESSING: Our motion estimation procedure is error-prone due to
several reasons, including effects of varying illumination, EPZS gradient
descent being caught in local minima, or inadequate motion models. In
practice, the object mask usually contains some outlier blocks. This is why
we refine it using a morphological dilatation and a connected component
analysis rejecting all components except for the largest one.

Figure 11: a typical motion segmentation result. The foreground does not only
contain the object (as would be perfect for recognition) but also the operator’s arm —
which is correct, because it moves — and parts the background resulting from motion
segmentation errors.

A typical motion segmentation result is visualized in Figure 11. The image
is obtained from matting the input frame with the object mask obtained from
motion segmentation. It can be seen that the foreground also includes the
operator’s arm due to its motion, as well as some parts of the background. This
poses problems for the following object recognition.

Also, the procedure gives rather coarse object masks on block basis. Since it
might be interesting to obtain a pixel grain object masks, we also did some tests
for a publicly available implementation of a pixel-based approach [Black 96].
However, EPZS was found to perform better and significantly faster due to its
coarseness and fast assembler routine from the video compression codec XviD?
used to compute the block SSD. To improve the object mask further, we think
of another postprocessing step refining the block results on pixel level.

5.1.3 Feature Extraction

Feature vectors are extracted from the object regions in the segmented video.
Our approach does not take into account temporal relationships so far — features
are extracted separately for each frame. Furthermore, feature extraction and

9www.xvid.org
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classification are kept independent. This makes our approach suitable for any
type of feature described in Section 3.

Since one fundamental purpose of the VIDEOOBJECTS prototype is to com-
pare the performance of patch-based object recognition and global methods,
two kinds of features were implemented so far. Both are extracted only from
object region that is determined by the object mask.

1. GLOBAL FEATURES - COLOR HISTOGRAMS: As a representative for global
approaches and as a baseline method, color histograms were used (see
Section 3.1). For each frame, the color histogram of the object region is
computed after motion segmentation. The RGB model is used with 5 bins
per axis, yielding a 125-dimensional feature vector for each video frame.

2. LocAL FEATURES - PATCHES: For the patch-based approach, interest
points in the object region are extracted using the salient points detec-
tor [Loupias 99] (see 3.2.1). For each keypoint, a local patch of 16 x 16
pixels is extracted and transferred to the YUV color space. The Discrete
Cosine Transform (DCT) (see Section 3.2.2) is applied, and the resulting
low-frequency coefficients are used as a local descriptor (35 ones for the
intensity Y, and 20 for both chroma components U and V). The lowest
component — the average value — is left out for illumination invariance
purposes. A set of up to 500 feature vectors is obtained per frame.

Tests on the recognition performance and robustness of both approaches will
be described described in Section 5.2.

5.1.4 Classification

Feature extraction yields a set of d-dimensional features {z,..,z,} for each
video with n and d depending on the specific feature extraction method. To
recognize an unknown object, these features have to be matched with the object
base {Y1,..,Yn} with entries Y; = (X;, L(X;)) consisting of features X, and
object labels L(X;).

For the classification of a new video, direct voting is followed as described in
Section 3.2.4. For each feature z;, the nearest neighbor X; in the object base
is picked and gives a vote for the object L(X;). The object with the majority
of votes is chosen.

IMPLEMENTATION DETAILS: direct voting is a time-consuming task for large
object bases (e.g., in some of the experiments conducted, up to 10,000 patch
features are extracted from each video). The heart of the method is a Nearest
Neighbor query in feature space, which can be done efficiently using space-
partitioning data structures. For the VIDEOOBIJECTS system, a free kd-tree
implementation'? for fast NN queries has been chosen [Paredes 01].

As a distance measure, the Euclidean distance in feature space was used for
both histograms and local descriptors.

10available from Javier Cano, ITI, University of Valencia
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Figure 12: sample images for the galaxy (12(a), 12(c)) and the flips object (12(b),
12(d)). 12(a) and 12(b) were taken in the OFFICE, 12(c) and 12(d) in the LAB.

5.2 Experiments

We conducted some quantitative experiments with the VIDEOOBJECTS proto-
type as outlined in the last section. This was done following two goals: first, to
validate the general performance of the VIDEOOBJECT setup in practice. Sec-
ond, to compare the feature types color histograms and patches: the first one
serves as a baseline method making use of global appearance. On the other
hand, patch-based object recognition is currently an active area of research and
has proven a high robustness against noise and clutter. We want to study the
performance and robustness of the two approaches in video object recognition.

Our results show that both methods perform well for constant capturing
conditions, while the local patch features show a higher robustness when it
comes to generalization to new scenes. The following sections describe the
system setup, the data used, and experimental results.
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5.2.1 Setup

The system setup is the same as presented in Section 5.1 and illustrated in
Figure 9. In front of a static background, objects are presented manually to a
firewire webcam, which takes videos of 320 x 240 pixels at a frame-rate of 25/s.
Each video contains about 50 frames.

The objects are presented to the camera by hand. Though this leads to
slight variations in object pose, a “front side” is chosen for each object.

5.2.2 Datasets

In the following experiments, the performance of the VIDEOOBJECTS system
is evaluated in a natural, unconstrained environment. Especially, we want to
study the effects of scene changes including illumination and clutter. This is
why we avoid standard databases like COIL'!, where object images are usually
given in high quality and with hardly any background influence (for an example,
see Figure 1). To the authors knowledge, no standard video dataset for our
specific setup exists — this is why a self-made dataset was preferred over artificial
standard databases.

We took videos of 16 everyday objects. The resulting frames show typical
problems when working in an unconstrained environment like motion blur, illu-
mination variations, and clutter. The set of objects includes very simple ones
like a chessboard posing very discriminative features, as well as a water bottle
showing specular highlights and transparency, and also quite similar objects like
two red shirts.

Videos were taken at two different locations on different days:

1. OFFICE: in this scene, videos were taken with light from the right. The
background is a weakly textured white wall showing only few strong edges.

2. LAB: this scene is characterized by strong daylight. The objects in the
resulting videos are generally brighter, with some of them showing specular
highlights. The background is strongly textured.

Examples for both cases are illustrated in Figure 12. The most obvious
difference is the background change, but some more effects can be observed:
objects in the office images 12(a) and 12(b) are a bit darker, while specular
highlights can be observed in the LAB (see Figures 12(c) and 12(d)). Further-
more, motion blur (12(c)) can be observed as well as rotation and scale change
between 12(b) and 12(d).

For each object, 6 videos were taken at each location and divided into 3
training videos for direct voting and 3 for testing. Each video shows only one
object. This gave sets OFFICE_TRAIN, OFFICE_TEST, LAB_TRAIN, LAB_TEST of 48
videos each. From these videos, we extracted both types of features (obtaining
one feature vector per frame for color histograms and up to 500 per frame for
patches) and tested them using direct voting.

Uhttp://wwwl.cs.columbia.edu/CAVE /software/softlib/coil-100.php
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location color histograms | patches

OFFICE 0 0
LAB 2 0

Table 1: numbers of errors for Experiment 1 (testing at the same location as training).
Each test set consisted of 48 videos.

5.2.3 Experiment 1: Same Scene

In a first experiment the general performance of the approach is validated for
the simpler case of recognizing an object in the same scene in which it was
learned. For example, OFFICE_TRAIN is used for training and OFFICE_TEST for
recognition. The error rates are presented in Table 5.2.3. They represent global
performance, namely the percentage of test videos that have been classified
incorrectly.

The low error rates validate the general performance of both methods for this
problem. Though the histogram method confused two objects of similar color
distribution in the LAB scene, it offers a fast and simple alternative: when using
motion segmentation with EPZS, only 1.7 frames per second could be processed
for patches (where interest points have to be extracted and DCT descriptors
computed), while color histograms allowed for a frame-rate of 7.6.

5.2.4 Experiment 2: Different Scene

training test location | color histograms | patches
location

LAB OFFICE 39 12
OFFICE LAB 29 14

Table 2: numbers of errors for Experiment 2 (scene changes between training and
testing). Each test set consisted of 48 videos.

In a second experiment, we want to study the influence of scene changes on
recognition performance. Especially, we want to evaluate the robustness of both
methods against the influence of clutter. Therefore, we train the VIDEOOB-
JECTS system in one location and test the recognition result in the other one.
Table 5.2.4 illustrates the numbers of errors for this setup.

The results show strongly increased error rates of at least 25 %. Also, a clear
difference between both methods can be observed, since histograms seem to be

much more sensitive to the scene change.

To explain these results, we take a closer look at motion segmentation. As
has been illustrated in Figure 11, motion segmentation does usually not yield a
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perfect object mask, but the matted frames often contain spurious background
parts. Especially for frames with the object held still, it is obvious that motion
is not a sufficient criterion to discriminate between object and background.

Figure 13 illustrates the effects of an error-prone motion segmentation on
recognition. An example for a frame in the LAB is given in Figure 13(a), with
spurious parts of the background assigned to the object region. Figure 13(b)
shows keypoints extracted from this matted frame (red). It can be seen that
some keypoints have been extracted from the arm of the operator, as well as
from the textured background.

Obviously, object recognition suffers from these suboptimal segmentation
results: histograms show erroneous peaks at background colors, and background
patches give noisy votes due to background texture.

Obviously, this becomes a serious problem when the scene changes and a
different background texture influences the recognition process. Furthermore,
there are other difficulties that may cause problems:

e illumination changes, as is illustrated in Figure 12

e differences in presentation: e.g., in the LAB objects are presented from the
left while from the right in the OFFICE. Furthermore, the distance of the
object from the camera may vary.

As the results presented in Table 5.2.4 indicate, histograms seem to be much
more sensitive to these influences. One possible explanation is that for global
methods such as histograms, the whole feature changes in a way that is hard to
predict. On the other hand, the patch-based approach still reliably produces a
fraction of true object votes besides noisy votes for background patches.

(a) (b)

Figure 13: a typical result of motion segmentation and its effects: some spurious
parts of the background are classified as object parts. It can be seen from Figure
13(b) that some patches (red) are extracted from these background areas.

A closer look at the classification results for the single objects shows some

obvious error reasons like the transparency of the bottle object, which was mis-
classified in the new environment just because its appearance changes strongly.
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Another interesting fact is that the correctness of classification is correlated
with the number of patches: for each object, we count the patches that have been
derived in training. Obviously, this number is strongly related to the number
of patches on the object: for large objects with many patches, this number is
high (e.g., the chessboard gives the most features with 40.791). On the other
hand, we measure the correctness of classification by the percentage of patches
that vote for the correct object in the test videos, ranging from 6% to more than
40%. Tt could be observed that slightly more than 10% of correct votes were
sufficient for a correct classification.

Between these two features, a low but present correlation of 0.572 is found.
Thus, the correctness of classification increases with the number of object fea-
tures. An explanation for this is that more object features overlay the “noisy”
votes from background patches.

5.2.5 Further Improvements

The experimental results show the general applicability of the current VIDEOOB-
JECTS prototype, particularly when remaining in the same scene for recognition.
Starting from this infrastructure, we plan to participate the TRECVID video
retrieval evaluation in 2006'2.

However, a variety of improvements for the current setup can be thought
of. A long-term goal is the enhancement for object category detection. In the
video domain, this problem has only been addressed by very few approaches
so far [Schneiderman 00b]. Other 3D object recognition methods like [Lowe 01]
cannot generalize to new class instances, while most object category recognizers
like [Fergus 03] are not suitable for multiple perspectives or rotations.

Another problem is that the object is assumed to be in a constant distance
from the camera so far. To allow for more flexibility, the sensitivity to depth
changes should be studied, and scale invariant feature points (see Section 3.2.1)
should be used. Though salient points generally come with a scale, this infor-
mation has not been used yet.

Another topic related to the flexibility of the system is 3D object recognition.
In the experiments presented in Section 5.2, a front side has been chosen for
each object and only slight pose changes take place. Specific aspects of 3D object
recognition like view clustering have not been addressed explicitly in these ex-
periments. Though we expect the direct voting strategy of the VIDEOOBJECTS
setup to cope with multiple perspectives well, it might be interesting to study
the problem in future work.

Generally, other feature extraction methods like corners could be tested, be-
cause they allow for a more stable tracking of features. Other topics are the
visualization of patch votes, and some work on enhancing background segmen-
tation and examining its influence.

2http:/ /www-nlpir.nist.gov/projects/trecvid/
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6 Challenges

The vast amount of work on object recognition indicates its potential as well
as its difficulty. The main reasons for the latter are appearance variations.
These may concern the object itself, like deformations of non-rigid objects or
differences between instances of an object category. Changes of the surround-
ing scene including background clutter, illumination, pose, and occlusion pose
fundamental problems as well.

Nevertheless, object recognition has made fundamental progress during the
last years concerning its robustness and flexibility. For still images, special
emphasis has recently been put on local, patch-based methods, which proved
successful for object category recognition as well as 3D object recognition. How-
ever, there is no approach to the knowledge of the author that poses a generic
solution for both problems at the same time.

For video, the problem of object recognition is viewed in the context of se-
mantic modeling of content [Bashir 03], which includes the recognition of objects
as well as other concepts like events and sites. While lots of publications can be
found on rather technical low-level tasks like shot boundaries, keyframe extrac-
tion, and similarity matching of frames, only little work has been done on using
actual object queries (e.g., [Chang 98]). However, the potential has been recog-
nized and respected — e.g., video compression standards as MPEG-4'2 envision
to compress a video in layers of objects.

Work on semantic modeling of video content that allows query-by-keyword is
rare. One framework has been presented by Naphade and Huang [Naphade 00],
where so-called multijects representing objects, sites, and events in video are
learned in a semi-automatic manner. On a higher level, a factor-graph frame-
work is used to represent interdependencies between multijects, such as the
presence of “beach” boosting the presence of “water”.

One major challenge of the field has not been addressed yet in this sur-
vey, namely the problem of training data acquisition. Obviously, the amount of
human interaction must be kept reasonably low if semantic indexing of multi-
media documents shall be applied widely in practice. On the other hand, all
approaches introduced in this survey use machine learning techniques and thus
extract the representation of an object from a training set usually consisting of
hundreds or thousands of images (or video shots, respectively).

The acquisition of such training sets should be done with the least amount
of user interaction possible, but should also provide the necessary information
to build discriminative object models. Three levels of user interaction can be
identified:

1. SUPERVISED: Some approaches in 3D object recognition like [Javed 04,
Nayar 96] learn the appearance of an object in a completely controlled
setup, where images are taken in a scene free of occlusions and some-
times from predefined perspectives. Also, the background is monotonous.

Bhttp://www.chiariglione.org/mpeg/standards/mpeg-4/mpeg-4.htm

41



This corresponds to a segmentation of the image and makes it possible to
completely ignore the background. In this case, we speak of a supervised
setup.

2. SEMI-SUPERVISED: Here, a training set of unsegmented images is pro-
vided. Such data is called weakly labeled.

Some state-of-the-art approaches modeling objects and object categories
in such a weakly supervised manner have been introduced in this survey
[Fergus 03, Deselaers 05, Weber 00, Keysers 06], and standard databases
for object category detection exist!4:1?.

However, even the amount of user interaction to build such datasets can
be unacceptable for large-scale generic object recognition. For the video
domain, the required annotations can be provided to some extent by closed
captions and speech extraction. Still images, however, do usually not
come with such information. In these cases, other ideas inspired by semi-
supervised learning [Zhu 06] have been presented to reduce the amount of
labeled data needed.

Rosenberg et al.[Rosenberg 05] trained the appearance of human eyes from
few (in the order of 40) labeled training samples L with eyes landmarked
and a large set of unlabeled images S. A bootstrapping approach was
followed by alternately training a classifier from L and using the classifi-
cation output to label the most confident samples and shift them from S
to L.

In the video domain, Yan and Naphade [Yan 05] presented another ap-
proach called semi-supervised cross-feature learning. The method is re-
lated to co-training [Zhu 06], where the features of each sample are di-
vided into two different sets called views, and classifiers are trained on
each set separately. Iteratively, the most confident samples of one clas-
sifier are added to the training set of the other classifier. This requires
view sufficiency: the features in each view must be sufficient to train a
“good” classifier. Yan and Naphade improve conventional co-training by
linearly combining the classifiers they obtain from the iterations of their
algorithm.

Another approach has been presented by Fei-Fei et al.[Fei-Fei 03], who
tried to learn object models from very few sample images only. The
method generally adapts the constellation-based Model (see Section 3.2).
However, the parameters 6 describing the location and appearance of the
object class features are handled in a different way. While previous ap-
proaches [Fergus 03] learn a fixed instance of model parameters 6 in a
maximum likelihood manner, Fei-Fei et al.estimate a distribution for 8 fol-
lowing Bayesian parameter estimation [Duda 00]. Object categories are

Mhttp:/ /www.pascal-network.org/challenges/VOC/databases.html
http:/ /www.vision.caltech.edu/Image_Datasets/Caltech101/Caltech101.html

42



learned incrementally: if a new object O is to be trained, priors are im-
posed on the expected distribution of 8 that represent where and which
important features have been found for previous objects and should thus
be used for O. According to the authors, this makes it possible to learn
object categories from very few samples.

. UNSUPERVISED: Unsupervised learning methods use unlabeled training
sets such that no user information is required at all. Experiments in this
area have been inspired by probabilistic Latent Semantic Analysis (pLSA),
a method from the text processing domain [Hofmann 99, Hofmann 01].
In conventional pLSA, the input consists of a set of documents D each
containing words of a vocabulary W with a certain frequency. The cor-
relations between word occurrences is used to detect latent topics T in
documents.

Given a word w € W, a document d € D, and topics t € T the follow-
ing model is used to determine the probability of a topic occurring in a
document P(t|d).

P(wld) =" P(w,|d) (9)
teT

~ Y P(wlt) - P(t|d)

teT

Sivic et al.[Sivic 05] transfered this model to object recognition such that
documents turn into images, words into “visual words” (discretized local
features), and topics into the objects to be recognized. In experiments,
they used training set of up to 9 object categories.

Fergus et al.[Fergus 05a] extended pLSA to take the spatial constellation
of features into account. They also pictured a new training scenario in
which the training set is obtained from a conventional large-scale image
search engine (in their case, Google Image Search). For example, if a
model for “airplane” shall be learned, the training set is obtained from
typing “airplane” in Google Image Search.

An impression of the result is given in Figure 14. Of course, training
with such an image set poses additional problems due to erroneous images
returned by the search engine. To identify a subset of images actually
showing airplanes, the pLSA model (9) is used fitting “background” topics
and an “airplane” topic.

This leads to a new, completely unsupervised learning of object models,
with large-scale search engines delivering a candidate set that is afterwards
refined using content-based methods.
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Figure 14: some “airplane” images returned by Google Image Search (image taken
from [Fergus 05al).

A Expectation Maximization

Expectation Maximization estimates a set of distribution parameters 6 that
maximize the likelihood for a set of observed data vectors X = {Xi,..,Xn}
(e.g., for fitting a Gaussian mixture model (GMM)). This is often aggravated
by the fact that a certain fraction of the data is missing: each X; consists of
known — or observed — coordinates X; and missing ones X;".

The optimal way of determining # would be to maximize the log-likelihood
while marginalizing over the missing data:

L(XJ6) = 3 log /X p(Xile) X

i

Unfortunately, there is usually no closed-form solution for argmax, L(X|6).
This motivates the use of iterative Expectation Maximization schemes. Start-
ing with an initial 6y, the parameters are iteratively refined by maximizing

o(0le) = Z Ellog p(X|6)]

-y / p(XP|6) -log p(X|B) dXT".
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While 6 = 6}, is fixed, Q is maximized with respect to 8 obtaining a solution

Or+1 := argmax Q(6]6),
é

An iteration is made up of two steps:

1. Estimation: to later on estimate Q, the posterior probabilities p(X"|6)
are determined

2. Mazimization: Q is maximized with respect to 6

The convergence in a local maximum is guaranteed [Dempster 77].

B Salient Points Feature Detection - Details

While the features given by many other feature detectors tend to focus in re-
gions of strong contrast, Loupias and Sebe [Loupias 99] present a wavelet-based
method that delivers features that are more regularly distributed.

The basic idea is to search the coefficients in the wavelet transform W of
the input image f for peaks called “salient points”. These coefficients Wy« f(x)
are extracted at different scales by convolving the signal (or image, respectively)
with a wavelet functions of a certain frequency 27%. A strong coefficient thus
indicates the presence of an edge or corner at a given scale.

For each Wy« f(x), a support region S(W,—«f(x)) in the original image
is defined as the pixels that contribute to the coefficient. In contrast to the
Fourier Transform, this support is finite for the Wavelet transform. The higher
the frequency, the smaller this region. For example, for & = 0 it consists of
only one pixel, while low-frequency coefficients are computed over large image
regions. Furthermore, support regions for coefficients at different scales overlap
due to the recursive nature of the wavelet transform.

This leads to the definition of children for each wavelet coefficient as coeffi-
cients at the next scale step with the same support:

COWynf(@) ={ Wonif(@) | SOVywnf() CSWyef(z)) }

The extraction of salient points uses this definition: it scans through all
coefficients in W and chooses the child with the highest coefficient value. From
its support region, the image pixel with the strongest gradient is picked as a
salient point. Afterwards, the resulting points are filtered by thresholding with
a saliency measure.

For a further discussion of the method, see 3.2.1.

C Direct Voting — Statistical Motivation

Direct Voting as a decision strategy based on local patches has been introduced
in Section 3.2.4. An image is viewed as a set of local features 1, .., z,. From
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a set of training images, patches X1, .., Xy associated with object labels L(X})
are extracted. The decision strategy is to collect votes by Nearest Neighbor on
patch level and classify based on the majority of votes. The spatial constellation
of patches is neglected.

A statistical motivation for direct voting consists of two steps. First, it is
shown that voter, (x) is an approximation of the posterior P(L|z). This is true
for equal class priors and if p(z|L) is modeled by a kernel density estimate with
a Gaussian kernel . Let

pa(z|L) = Z Nx; a2 (2)

XECL

where C, is the set of samples X; with label L. Then for the corresponding

posterior
Pa(z|L)
221 Pal(z|l)
the following convergence can be shown for a — 0 [K&lsch 03]:
(LN (@), L)

limy—opo(Llz) = T (10)
ICL(N ()]

= 6(L(N(z)), L)

= voter,(x)

Pa(Llz) =

The intuitive interpretation is that the more local the influence of samples is
— the smaller a — the less influence examples distant from z have on p, (L|z).
For the border case a — 0, this reduces to zero influence for all but the nearest
neighbor N(x). A detailed proof has been presented in [Ko6lsch 03].

The second question is why the sum of votes is a good choice for the com-
bination of features (or how it is related to the Bayesian decision maximizing

P(L|zy,..,zy)).
One motivation can be obtained by marginalizing over the patches. Let X
be the input image with patches {z;} extracted:

P(L|X) ZP (L, x4 X)
= ZP Llz;, X) - P(z;|X)
ZP (L|z;)
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