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Recommender Systems

Similarity-Based Recommendation ReCO m m e n d e r SySte m S

Case-Based Recommendation

Evaluation EX|St|ng ApproaCheS

Conclusions

= Collaborative Filtering (CF)
« recommendation is based on correlations between product ratings
« does not rely on explicit modeling of product features

= Content-based Recommendation

 Filter-based Recommendation (FBR)
= recommendation is based on an exact-match query (e.g. SQL)

« Similarity-based Recommendation (SBR)
= recommendation is based on a similarity-based retrieval
= can be combined easily with FBR
= Hybrid Approaches
* try to combine the advantages of CF and FBR/SBR
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Recommender Systems

Similarity-Based Recommendation ReCO m m e n d e r SySte m S

Case-Based Recommendation

Evaluation Customer Preferences

Conclusions

= Quality of Recommendation depends on

« knowledge about the offered products
» knowledge about the requirements and preferences of the customers
« ability to find the best match between these aspects

= Kinds of Customer Needs

* |Importance:
= hard requirements vs. preferences
* Formulation:
= explicit vs. implicit preferences
» Scope of Implicit Preferences:
= general / average vs. individual preferences
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Recommender Systems

Simiarity-Based Recommendation Similarity-Based Recommendation

Case-Based Recommendation

Evaluation AnaIyS|S

Conclusions

= Different Types of Similarity Measures

« knowledge-poor
= compute simple distance between query and product description
= measure only how far the explicit preferences (query) are matched

« knowledge-intensive

= allow to model implicit preferences

= No CBR: Match between Problems and Solutions

. Utlllty'Orlented I\/Iatching [Bergmann et al., 2001]

 estimation of the products’ utility w.r.t. a given query q

- utility can be defined as the probability that a product will be accepted
by the customer, i.e. u(q, p;) = P(p, accepted | q)

 similarity measure as approximation of unknown utility function u
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Recommender Systems

Similarity-Based Recommendation S | m | Ianty— Based ReCO mmen datl on

Case-Based Recommendation

sl Modeling of Implicit Preferences

Conclusions

= Utility u is influenced by different Kinds of Preferences

. not all can be modeled easily with common similarity measures

— 
Sim(q, p) = Zw -sim, (g;, Py )[

Example Model
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Similarity-Based Recommendation S | m | I anty- Based ReCO mmen datl on

Case-Based Recommendation

Evaluation PI’O b I em S

Conclusions

= Knowledge Acquisition Problem
 implicit customer preferences are usually a-priori unknown
» possible solution: learning approaches [stahl & Gabel, 2003; Stahl, 2004]
= Common Similarity Measures have restricted Expressivness

e e.g. assume attribute independence

= Similarity-based Recommendation is not really case-based

 similarity measure alone is responsible for the complex mapping
between customer needs and product properties

Why not reusing Experience Knowledge about
Customer Buying Behavior??
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Recommender Systems

Similarity-Based Recommendation Case- Based ReCO m m e n datl O n

Case-Based Recommendation

Evaluation PI‘OpertI eS

Conclusions

= Advantages

« more simple similarity measures are sufficient
= complex mapping between preferences/products is encoded in cases

 alternative to learning similarity measures

 allows learning of more complex customer preferences
= e.g. dependencies between different features

= Problems
* requires many cases (depends on size of product database)
 acquisition of high quality cases
* relative slow learning rates due to
= missing generalization
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Recommender Systems

Similarity-Based Recommendation Case- Based ReCO m m e n datl O n

Case-Based Recommendation

Evaluation Improving Case Acquisition

Conclusions

= Quality of the Cases is important

= Product Selection by Customer triggers Case Generation

 but the retrieval set does often not include the most preferred product
(mpp) available in the product base

* |.e., the customer selects a suboptimal product
* this leads to cases with reduced quality

= [nitial Quality of Result Set influences Case Quality
= |dea: Combination with Similarity Learning

* oObservation:
= |earning feature weights requires only few training examples [Stahl, 2001]

« optimize feature weights first until learning converges
 start case learning afterwards

. > Armin Stahl . . .
) = IIE German Research Center for Artificial Intelligence (DFKI) © 2006 ECCBR 2006, Oludeniz/Fethiye, Turkey
IUPR Image Understanding and Pattern Recognition Group
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Similarity-Based Recommendation Expe rl m e ntal Eval u atl O n

Case-Based Recommendation

Evaluation Test Domain

Conclusions

= Used Cars
« 8 features (4 numeric, 4 symbolic)
« 100 cars (extracted from real web data)

= [nitial Similarity Measure
- knowledge-poor, i.e. simple distance (numeric) and exact match

= Result Set
 fixed size (10 products)

= Simulation of (General) Customer Preferences
 selection of the preferred product from the result set
 additional knowledge-intensive similarity measure

= feature weights
= specific local similarity measures for each attribute
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Similarity-Based Recommendation Expe rl m e ntal Eval u atl O n

Case-Based Recommendation

Evaluation EX p er | m e ﬂ tS

Conclusions

= CBL1/2: Case-Based Recommendation integrated with SBR

« apply two different case learning policies cf. [Aha, 1991]
= CBL1: each query of the training set is used to generate a new case
= CBL2: a case is only generated if the preferred product is not the first
= SIM-CBL1/2: Combination with Similarity Learning
 |earning of feature weights until learning converges
 then start of CBL1/2

= Evaluation:
* use increasing number of training queries

* measure retrieval quality on 250 independent test queries
= 9% of retrievals where mpp is the first recommended product

= 9% of retrievals where mpp is contained in the result set

= average rank of mpp
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Recommender Systems
Similarity-Based Recommendation

Case-Based Recommendation CO”CIUS'O”

Evaluation
Conclusions

= Considering Customer Preferences in PRS is important
= State-of-the-Art: Similarity-Based Recommendation

 requires well-defined and complex similarity measure

= New Approach: Case-Based Recommendation
« apply "real" CBR to product recommendation (quite unusual today!)
* enables a PRS to learn customer preferences automatically
 avoids the necessity of a very complex similarity measure
« can be integrated easily in existing SBR systems

= Results of First Evaluation
 outperforms similarity learning if enough training data is available
« combination with similarity learning leads to best results
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Recommender Systems
Similarity-Based Recommendation

Case-Based Recommendation Futu re WO rk

Evaluation
Conclusions

= More Realistic Evaluation
« customers do not act consistently and deterministically
* simulation of some undeterministic behavior

" Improvements
* Improved case learning strategies

= remove obsolete or noisy cases (e.g. CBL3 [Aha, 1991] )
« combination with advanced similarity learning techniques
= e.g. learning of local similarity measures [Stahl & Gabel, 2003; Stahl, 2004]

* Integrating learning of additional product features

= uery features may extend the product features contained in the product
database

= customers may ask for more subtle product properties (e.g. "l want a
very sporty car")
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Questions?

Thank You!
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