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Abstract
The definition of accurate similarity measures is a key issue of
every Case-Based Reasoning application. Although some ap-
proaches to optimize similarity measures automatically have
already been applied, these approaches are not suited for all
CBR application domains. On the one hand, they are re-
stricted to classification tasks. On the other hand, they only
allow optimization of feature weights. We propose a novel
learning approach which addresses both problems, i.e. it is
suited for most CBR application domains beyond simple clas-
sification and it enables learning of more sophisticated simi-
larity measures.

Introduction
Case-Based Reasoning (CBR) has become a very popular
and also commercially successful AI technique. It is based
on the assumption that problems can be solved efficiently
by reusing knowledge about similar, already solved prob-
lems documented in cases. In order to solve a new problem,
in a first step one has to identify cases which contain the
most useful knowledge (Aamodt & Plaza 1994). Since the
utility of a case cannot be evaluated directly a-priori, sim-
ilarity between problem descriptions is used as a heuristic
to estimate the cases’ expected utility. In general, the qual-
ity of this estimation is crucial for the success of any CBR
application. Although a lot of CBR applications are based
on simple, general applicable distance metrics, many appli-
cation domains require knowledge-intensive similarity mea-
sures (KISM) where domain-specific knowledge is used to
approximate the cases’ utility more accurately (Stahl 2004).

However, since acquiring and encoding this knowledge is
a very complex and time consuming task this increases the
development costs of a CBR application significantly. More-
over, in many application scenarios the required knowledge
is even not available at all during the development phase.

Some early work in the area of instance-based learning
(Aha 1991), k-NN classification (Hastie & Tibshirani 1996)
and also CBR (Bonzano, Cunningham, & Smyth 1997) has
already addressed this problem by applying learning algo-
rithms. However, these approaches are all restricted to sim-
ple classification tasks and usually focus on optimizing fea-
ture weights (Wettschereck & Aha 1995). On the one hand,
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CBR is commonly applied for a wide range of application
tasks beyond classification, e.g. for building recommender
systems in e-commerce or knowledge management scenar-
ios. On the other hand, KISM require more sophisticated
representations where feature weights encode only a small
part of the domain-specific knowledge. Hence, the existing
techniques for learning similarity measures are often not ap-
plicable or sufficient in CBR applications.

In order to optimize the similarity assessment in CBR we
have proposed a novel learning approach which is based on
special feedback about the cases’ actual utility (Stahl 2001;
Stahl & Gabel 2003; Stahl 2004). By applying accurate
learning algorithms, this approach allows optimization of
KISM and the incorporation of available background knowl-
edge into the learning process (Gabel & Stahl 2004).

First, the basic idea of our novel learning approach is pre-
sented followed by a description of two different learning al-
gorithms that are suited for optimizing feature weights and
another important part of KISM, so-called local similarity
measures. After presenting some evaluation results we con-
clude with a summary and outlook on future work.

Learning from Relative Utility Feedback
Existing approaches towards learning similarity measures
either are based on a statistical analysis of the case base or
apply a leave-one-out test to evaluate the accuracy of the
retrieval (Wettschereck & Aha 1995). Both approaches are
only applicable in classification tasks, since they rely on ab-
solute information about the cases’ utility, i.e. a case is either
useful because it corresponds to the correct class or not.

However, CBR is applied successfully in many applica-
tion domains beyond simple classification, e.g. in recom-
mender systems. Here it is mostly difficult to express the
actual utility of a case for a given problem in an absolute
manner. For example, a customer will have problems ex-
pressing the utility of a presented product by using an ab-
solute number such as “0.7”. However, in such scenarios the
cases’ utility can often easily be estimated relatively to other
cases. For example, a customer will have no problems to
decide that product x is more useful for him than product y.

We have proposed a novel learning approach which al-
lows to exploit such relative case utility feedback (RCUF)
(Stahl 2005) for optimizing similarity measures (Stahl 2001;
2002; 2004). This approach is based on the existence of



some similarity teacher who is able to evaluate retrieval re-
sults according to the relative utility of the included cases
w.r.t. the given query. As result he will provide a (par-
tially) corrected retrieval result represented by a partial or-
der on (some of) the cases. By defining an error function
which compares this feedback with the original retrieval re-
sult, one obtains a measure for the retrieval quality. This
means, the larger the difference between the two partial or-
ders, the higher is the retrieval error. By calculating the aver-
age retrieval error for a set of different training queries, one
obtains a quality measure for the underlying similarity mea-
sure which can be used to start an optimization process. This
means, the actual learning task is the search for an optimal
similarity measure (corresponding to the minimal retrieval
error) in the used representation space.

The advantage of this novel approach is its flexibility. On
the one hand, it does not rely on absolute information of the
cases’ utility which is not available in many application sce-
narios in contrast to RCUF. On the other hand, it is not re-
stricted to learning feature weights but allows the optimiza-
tion of arbitrary similarity functions. In the following we as-
sume a typical KISM for computing the similarity between
a query Q and a case C1, consisting of feature weights wi

and feature-specific local similarity measures simi:

Sim(Q,C) :=
∑

wi · simi(qi, ci)

Local similarity measures are commonly represented as sim-
ilarity tables which simply evaluate all pairwise similarity
values for symbolic features or difference-based similarity
functions which map feature differences to similarity values
for numeric features (for details see (Stahl 2004)).

In the following we present two different algorithms that
are suited for dealing with the described learning task,
i.e. the minimization of an accurate retrieval error function
given RCUF. While the first algorithm is restricted to learn-
ing feature weights, the second algorithm also enables the
optimization of local similarity measures.

Optimizing Feature Weights

Like in more traditional similarity measures, feature weights
are also a very important part of KISM. So, the definition
of accurate weights is a crucial but also very difficult task
assuming deep knowledge about the application domain.

We have proposed a gradient descent algorithm for opti-
mizing feature weights on basis of RCUF (Stahl 2001). The
algorithm is based on a special error function—called simi-
larity error—which is partially differentiable w.r.t. the wi in
order to be able to guide the gradient descent algorithm.

Experimental results have shown that this algorithm is
very efficient but also very robust against overfitting (Stahl
2004). Hence a small amount of training data is sufficient
for improving the retrieval accuracy of some initial weights
(e.g. uniform) significantly.

1We assume a simple feature-value based case representation,
i.e. C := (c1, . . . , cn)

Optimizing Local Similarity Measures
In contrast to optimizing feature weights, there had been no
existing approaches for learning knowledge-intensive local
similarity measures. For that task, we developed an algo-
rithm that utilizes RCUF and performs search in the space
of representable similarity measures using evolutionary al-
gorithms (EA). An EA maintains a population of individ-
uals and evolves it using specialized stochastic operators
(crossover and mutation) by which new individuals (off-
spring) are created. Each individual is associated with a
fitness value and the least fit individuals are periodically ex-
cluded from the evolution process (selection).

Concerning the learning task faced here, individuals are
local similarity measures and the learning algorithm main-
tains a population for each local similarity measure to be
learned. The representation as individuals for similarity ta-
bles is done in the straightforward manner by using square
matrices. If a difference-based similarity function simi is
considered, the corresponding individual is represented as
a vector of samples of simi whose entries are distributed
equidistantly over the domain of simi as shown in Figure 1.
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Figure 1: Representation of difference-based similarity
functions as individuals to be used within an EA

Given that representation of local similarity measures as
individuals within an EA we have designed a number of spe-
cialized genetic mutation and crossover operators by means
of which—in the course of simulated evolution—new off-
spring individuals are generated. More details are given by
Stahl & Gabel (2003).

Given a specific case attribute and the mandatory training
data, our algorithm first settles how to represent the corre-
sponding local similarity measures as individuals. It then
proceeds through evolutionary techniques (each genetic op-
erator mentioned is invoked with a certain probability), cre-
ates new similarity measures while abolishing old ones, in
order to search for the fittest individual, whose correspond-
ing similarity measure yields the minimal value of the error
function on the training data.

Background Knowledge to Combat Overfitting
In empirical evaluations we have shown that the combina-
tion of RCUF and EAs represents a powerful approach to
support the modelling of KISM in different application sce-
narios. The step ahead to also learning local similarity mea-
sures, however, leads to a serious problem as well: The



search space to be handled by the learning algorithm is ex-
tremely large: In particular, our way of representing local
similarity measures by square matrices and vectors of sam-
pled similarity values, allows the EA learner to generate very
specific measures. Accordingly, especially when using lit-
tle training data only, the risk arises that the learner creates
models (here, similarity measures) that are overfitted with
respect to the training data, while showing poor performance
on some independent test data set. Furthermore, the search
space is populated with plenty of (local) similarity measures
whose usage in practice is extremely implausible. Thus, the
EA may waste time searching regions of the search space
that do not correspond to meaningful, realistic measures. To
tackle these pitfalls we suggested a method to incorporate
easily available domain or background knowledge into the
learning process, thus guiding and stabilizing it and reduc-
ing the danger of overfitting (Gabel & Stahl 2004).

Sources of Knowledge We have identified a number
of knowledge sources that may aid the learning process.
Roughly, these forms of knowledge can be divided into two
groups. On the one hand, similarity meta knowledge com-
prises general demands on the appearance of learned mea-
sures. As an example, we defined several basic constraints
on the syntactical shape of local similarity measures. One
of those concerns the reflexivity of similarity measures: In
most application domains a non-reflexive similarity mea-
sure would be unpropitious. Another example form of meta
knowledge may be derived from the CBR system’s case base
CB: The case distribution over CB can help to find out
which regions of the space of representable similarity mea-
sures are worth to be searched thoroughly. It is important
to note, that the knowledge acquisition effort for obtaining
similarity meta knowledge is comparatively low.

On the other hand, the aid of a knowledge engineer and
the incorporation of his expert knowledge into the learning
process can be highly valuable (in spite of higher knowl-
edge acquisition effort): The human expert may provide a
partial KISM definition and may instruct the learner to use
this during learning to confine the search space. Then, the
remaining, unknown or partially specified parts of the KISM
can be learned and fine-tuned using our learning framework.

As a highly desirable secondary effect, this way we have
paved the way to enable a hybrid approach to defining
KISM. Completely manual definition and fully automated
learning of KISM are two extremes of modelling tech-
niques, both featuring certain advantages and drawbacks
(Stahl 2002). So, the basic purpose of biasing learning by
expert knowledge is to meet in the middle—to use the ex-
pert’s knowledge on the shape of the similarity measures to
be modelled as far as possible and to let the evolutionary
learning algorithm determine the remaining parts.

Moreover, we have also proposed a way to utilize the
vocabulary knowledge—implicitly contained in the domain
model of the respective application domain of the CBR
system—as a source to enhance the learning of similarity
measures (Gabel, T. 2005).

Interfering the Learning Process To realize the actual re-
striction of the search space we have introduced the concept
of knowledge-based optimization filters (KBOF, Gabel &
Stahl (2004)). These are objects that, on the one hand, store
the gathered knowledge regarding the learning of similar-
ity measures. On the other hand, they actively interfere the
learning process, biasing/directing the search for optimal si-
milarity measures. For the implementation of the evolution-
ary learning algorithm this implies that a KBOF exerts its
influence during offspring creation: Newly generated indi-
viduals contradicting too much to the filter’s knowledge are
discarded. Further, we explicitly allow a KBOF to give ad-
vice to the genetic operators adapting their behavior in such
a way that more realistic similarity measures are created.

Evaluation Results
A significant advantage of the learning framework we have
presented is its applicability to a wide range of application
scenarios. Accordingly, we have evaluated the effectiveness
of our approach in differing application domains. For ex-
ample, we focused on a product recommendation scenario
and found that learning KISM, that consider the possibili-
ties to customize products (here PCs) in order to ensure the
retrieval of adaptable cases, yields substantial improvements
in the retrieval of useful cases (Stahl & Gabel 2003). In an-
other product recommendation scenario (used cars) it was
our aim to learn similarity measures which reflect customer
preferences as accurately as possible. Figure 2 shows the
improvement of the recommendation accuracy depending on
the result set size when optimizing feature weights by using
an increasing amount of RCUF. Detailed results on these ex-
periments are provided by Stahl (2004).
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Figure 2: Improvement of recommendation accuracy (mea-
sured in percentage of retrieval results that contained the op-
timal product) in dependency of available amount of RCUF.

To thoroughly examine the effects of incorporating back-
ground knowledge into the learning process we have turned
to a variety of classification and regression domains avail-
able from the UCI Machine Learning Repository2 and used
our framework to learn similarity measures in such a way
that the CBR system’s prediction accuracy using k-nearest
neighbor classification/regression is maximized. Details of
the corresponding experiments are given by Gabel & Stahl
(2004), some core results are summarized in Figure 3: We
consider the classification/regression error a default similar-
ity measure yields (e.g. Euclidean distance) as our baseline

2
http://www.ics.uci.edu/∼mlearn/MLRepository.html



(white bars). Compared to that baseline a KISM learned
using our framework produces clearly reduced error rates
(dark-gray bars). Here, the results in the top chart are av-
eraged over all application domains we considered, so, er-
ror rates relative to the baseline are sketched. Obviously,
when learning the similarity measures on the basis of lit-
tle training data overfitting occurs and only little improve-
ments in prediction accuracy can be achieved. Employing
larger training data sets (up to 200), the average classifica-
tion/regression error can be brought down to about 58% of
the error induced by the default measures. In contrast, the
lower chart presents the results for one specific classifica-
tion domain (HayesRoth, 3 classes).
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Figure 3: Averaged over six application domains, the learnt
similarity measures clearly outperform the default similar-
ity measures that assess similarity based on a syntactic
match (top). Exact classification error rates are exemplarily
given for the HayesRoth domain (bottom). By incorporating
background knowledge into to learning process via KBOFs
(m/e/me-Filter) further improvements are possible.

For evaluating the influence of background knowledge on
the learning process, we also defined three types of KBOFs
for each considered domain: m-Filters contain easily ac-
quirable similarity meta knowledge, e-Filter are enhanced
via specific expert knowledge, and me-Filter represent a
combination of the former ones, thus constraining the learn-
ing process most. The three corresponding data rows in Fig-
ure 3 show the improvements in the learning results when
optimizing the similarity assessment using our framework
and guiding the optimization with additional background
knowledge. For example, the relative average classifica-
tion/regression error achieved using 25 training examples in
combination with a me-Filter could be decreased to 70.80%,
as opposed to the 96.25% error rate achieved without incor-
porating background knowledge.

Conclusions
In this paper we have presented a novel approach for op-
timizing the similarity assessment in CBR. The approach
avoids the disadvantages of existing learning techniques. On
the one hand, it can deal with relative feedback about the
cases’ utility and hence, it is not restricted to classifica-
tion tasks. On the other hand, it is the first approach to-
wards learning of knowledge-intensive similarity measures

consisting of feature weights and feature-specific local simi-
larity measures. In order to reduce the risk of overfitting, we
have proposed additional techniques for incorporating easily
to acquire background knowledge into the learning process.
Since the presented learning algorithm generates easy un-
derstandable representations, the approach may also facili-
tate the incorporation of explanation approaches. This is an
interesting topic for future research.

The results of several experimental evaluations using arti-
ficial test domains or UCI data have demonstrated the effec-
tiveness of our approach in different applications scenarios.
In a next step we plan to apply our approach also in real
world applications. Other interesting issues for future work
are the application of alternative learning algorithms or the
combination with pure case-based learning techniques.
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