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Similarity Measures in CBR

 Semantics: Heuristic for selecting useful Cases

 Traditional Approaches

• similarity is based on geometric distance

• mainly estimate syntactical differences only

• e.g. Hamming Distance, Euclidean Distance, ...

 Utility is influenced by

• characteristics of the domain, preferences of users, functionality 

of the CBR system, ...
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Knowledge-Intensive Similarity Measures

• kiSM encode specific knowledge about the application domain

• kiSM allow a much more accurate estimation of the cases' utility

• typical structure:
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• examples (product recommendation system):
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Knowledge Acquisition

 Problems of kiSM

• modelling kiSM manually is costly

• required domain knowledge is often only partially available

• contradicts with the original idea of CBR

 Alternative: Applying Machine Learning Approaches

• statistical analysis of case base

• optimization by performing Leave-One-Out test

 Existing Approaches e.g. [Hastie & Tibshirani, 1996; Wettschereck & Aha, 1995]

• rely on labeled data which provides absolute utility information

• only applicable for classification tasks

• allow optimization of attribute weights only

not suited for many CBR applications (e.g. recommender systems)
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Learning from Relative Case Utility Feedback 
[Stahl,  ICCBR 2001]
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Applying Evolutionary Algorithms 
[Stahl & Gabel, ICCBR 2003]

 Idea:

Representation
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as vector of
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Crossover and Mutation-Operators

• encode attribute weights and local similarity measures as 

individuals to be optimised be a GA

• define corresponding mutation/crossover operators

Example: Similarity Functions



Armin Stahl
Image Understanding and Pattern Recognition Group
German Research Center for Artificial IntelligenceIUPR

Thomas Gabel
Neuroinformatics Group
University of Osnabrück

Experimental Evaluation
[Stahl, Ph.D. Thesis 2004]

 Product Recommendation Scenario

• generation of RCUF by simulating user preferences (with noise)

• quality measures on test set: percentage of retrievals where

• 1-in-1: the optimal product is the most similar product

• 1-in-10: the optimal product is in the retrieval set (10 most similar)

Learning of Weights only 
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Learning of Weights and Local Measures 
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Drawbacks of Brute-Force Learning
[Stahl, ECCBR 2002]

 Learning kiSM from Utility Feedback only may be critical:

• underlying hypothesis space is huge

• given only few training data, learning tends to overfitting

• some certain low-level knowledge is often easily available

• trying to learn this knowledge is needless and counterproductive

• similarity measures have typical properties, e.g. monotony

• learning algorithms should ensure compliance with these properties

 Idea:

• model partially known knowledge manually

• learn remaining knowledge from relative case utility feedback

Goal: Restricting the Search Space and biasing the 

Learner by exploiting available Background Knowledge
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Incorporating Background Knowledge 
[Gabel & Stahl, ECCBR 2004; Gabel, GWCBR 2005 ]

 Definition of Knowledge-Based Optimization Filters
• m-Filters: Similarity-Meta Knowledge 

• e.g. monotony property

• e-Filters: Expert Knowledge

• e.g. predefined similarity values, constraints
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Experimental Evaluation

 6 Domains of the UCI Repository

 Comparison: Average Accuracies achieved with

• default similarity measures (knowledge-poor, Euclidean Distance)

• learnt similarity measures (without using background knowledge)

• similarity measures learnt with help of knowledge filters 
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Conclusions

 Knowledge-Intensive Similarity Measures in CBR

• manual definition is difficult and costly

• existing learning approaches are not suited for many CBR 

applications

 Novel Approach: 

• acquisition of relative case utility feedback [Stahl, ICCBR 2001]

• allows learning in non-classification domains

• optimization with Genetic Algorithms [Stahl & Gabel, ICCBR 2003]

• allows optimization of weights and local similarity measures

• incorporation of background knowledge 
[Stahl, ECCBR 2002; Gabel & Stahl, ECCBR 2004; Gabel, GWCBR 2005]

• avoids overfitting for small training data sets

 Current Work

• combination with case-based learning [Stahl, ECCBR 2006]
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Questions?

Thank You!


