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Similarity Measures in CBR

= Semantics: Heuristic for selecting useful Cases
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= Traditional Approaches
* similarity is based on geometric distance

° mainly estimate syntactical differences only
- e.g. Hamming Distance, Euclidean Distance, ...

= Utility Is influenced by

* characteristics of the domain, preferences of users, functionality
of the CBR system, ...
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Knowledge Acquisition

" Problems of kKISM
* modelling kiSM manually is costly
° required domain knowledge is often only partially available
* contradicts with the original idea of CBR

= Alternative: Applying Machine Learning Approaches
* statistical analysis of case base
° optimization by performing Leave-One-Out test

- EXiSting Approaches e.g. [Hastie & Tibshirani, 1996; Wettschereck & Aha, 1995]
* rely on labeled data which provides absolute utility information

* only applicable for classification tasks
* allow optimization of attribute weights only

not suited for many CBR applications (e.g. recommender systems)
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Learning from Relative Case Utility Feedhack
[Stahl, ICCBR 2001]
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Goal: Finding a similarity measure that minimises E
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Applying Evolutionary  Algenthms

[Stahl & Gabel, IC
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Crossover and Mutation-Operators
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Example: Similarity Functions
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%  Learning of Weights and Local Measures
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Drawbacks of Brute-Foerce LLearning
[Stahl, ECCBR 2002]

IUPR

= Learning kiSM from Utility Feedback only may be critical:
* underlying hypothesis space is huge
- given only few training data, learning tends to overfitting

* some certain low-level knowledge is often easily available
- trying to learn this knowledge is needless and counterproductive

° similarity measures have typical properties, e.g. monotony
- learning algorithms should ensure compliance with these properties
" |dea:
* model partially known knowledge manually
* |earn remaining knowledge from relative case utility feedback

Goal: Restricting the Search Space and biasing the
Learner by exploiting available Background Knowledge
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Incorporating Background Knewledge
[Gabel & Stahl, ECCBR 2004; Gabel, GWCBR 2005']

= Definition of Knowledge-Based Optimization Filters

* m-Filters: Similarity-Meta Knowledge
« €.¢g. monotony property

* e-Filters: Expert Knowledge
- e.g. predefined similarity values, constraints

= Modification of Offspring Generation during GA
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Cconclusions

= Knowledge-Intensive Similarity Measures in CBR
* manual definition is difficult and costly
* existing learning approaches are not suited for many CBR
applications
= Novel Approach:
* acquisition of relative case utility feedback [stani, iccer 2001]
- allows learning in non-classification domains

* optimization with Genetic Algorithms [stani & Gabel, ICCBR 2003]
- allows optimization of weights and local similarity measures

° Incorporation of background knowledge
[Stahl, ECCBR 2002; Gabel & Stahl, ECCBR 2004; Gabel, GWCBR 2005]

- avoids overfitting for small training data sets

= Current Work
* combination with case-based learning (stani, Eccar 2006]
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