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Abstract— We present two case studies in embodied
cognition which use kinematically complex robots for
spatial cognition and concept forming. The first case
study involves substrate classification on the basis of pri-
marily proprioceptive data. During walking over vari-
ous substrates a legged robot generates certain substrate
specific sensory motor patterns. The acquired data is
used for training a growing self-organizing neural net-
work, which is connected with a standard output layer
representing different substrates. The second case study
is concerned with a recognition system which learns to
recognize objects based on multimodal sensorimotor co-
ordination. The sensorimotor coordination is generated
through interaction with the environment. The system
uses a learning architecture which is composed of reac-
tive and deliberative layers. The reactive layer consists
of a database of behaviors that are modulated to produce
a desired behavior. We have implemented in the learning
architecture an object manipulation behavior inspired by
the concept that infants learn about their environment
through manipulation [1]. While manipulating objects,
the agent records both proprioceptive data and extero-
ceptive data. Both of these types of data are combined
and statistically analyzed in order to extract important
parameters that distinctively describe the object being
manipulated. This data is then clustered using the stan-
dard k-means algorithm and the resulting clusters are
labeled. The labeling is used to train a radial basis func-
tion network for classifying the clusters. It has been
found that the trained neural network is able to clas-
sify objects even when only partial sensory data is avail-
able to the system. Our preliminary results in both case
studies demonstrate that kinematically complex robots
are suitable for learning about their environment from
experience and provide a new useful class of propriocep-
tive information in contrast to wheeled systems.

Keywords— Substrate classification, Learning through
interaction, Sensorimotor coordination, Object recogni-
tion

I. Introduction

This article describes work in the field of ”Embodied
AI”[2]. In Embodied AI the features of the body of an
agent are granted a major role in the process of form-
ing concepts of the experienced world. Only through
the abilities of its body can an agent be ’situated’ and
’embodied’ in the world. The representations it uses to
represent the world must be based on its own abilities
and experiences instead on models given by a human
developer. In recent years, the concept of sensorimotor
coordination has gained increasing attention in the psy-
chological and artificial intelligence communities, and it
is considered by many to be a prerequisite for develop-
ing higher levels of cognition in intelligent beings [3], [4].
For example, classifying an object often requires that
one manipulates objects within one’s environment. In
this work, motor skills are coordinated with sensory in-
formation (tactile, visual, etc.) in order to better iden-

tify an object or the environment. It has been shown
that sensorimotor coordination can be exploited in solv-
ing classification problems [5], [6], [7], [8]. One should
note, however, that this process exploits not only the
motor actions of a body, but also the intrinsic structure
of the body itself. The body structure of a being or
a machine enforces certain constraints on the allowable
range of motions by providing natural configurations,
in which energy consumption and stress are minimized.
Therefore, the body plays an important role in struc-
turing the sensorimotor coordination. One shortcoming
of most existing methods that use sensorimotor coordi-
nation is that they are able to recognize only a limited
number of objects. Additionally, most existing meth-
ods are difficult to extend. The typical application of
such methods is to recognize idealized objects, and the
testing of the methods is usually done only in simula-
tion or on simple robotic platforms. Furthermore, their
ability to scale when used on complex robots has not
been experimentally verified. From our viewpoint, the
reasons for the shortcomings of the existing methods
are twofold:

1. At present, there is no firm theoretical framework
for studying correlations within and between sensori-
motor modalities for object recognition tasks. Very few
approaches apply statistical and information theoretic
analyses to study the sensorimotor coordination of data
taken from real robots [9].

2. Kinematically complex robots capable of increasing
the role of the body in the process of learning and recog-
nition are not commonly used. Most of the time wheeled
robots with few degrees of freedom or simulated robotic
arms are used as test beds.

To pursue the ”Embodied AI” approach in the field
of robotics, many researchers suggest the development
of systems with richer system-environment interaction.
Therefore, in the last years we focused our research on
complex legged robots which possess a rich repertoire
of sensor and motor abilities, especially proprioceptive
sensing. In this article we present two case studies,
which investigate the usefulness of kinematically com-
plex robots in studying spatial recognition and in con-
cept forming.

II. Case Study I: Using proprioceptive data

for classification of terrain structures

Initial experiments to use proprioceptive data for spa-
tial categorization have been carried out using the 8-



legged robot SCORPION [10] (see Fig. 1), which pro-
vides a multitude of proprioceptive sensor signals (mo-
tor current, joint position, pressure applied to the feet,
pitch and roll). With this robot we conducted ex-

Fig. 1. The SCORPION Robot in the Experimental
Test Bed

Fig. 2. Classification Results in the Test Bed

periments to investigate the possibility of using only
proprioceptive data to generate information about the
environment. By interacting with the environment, e.g.,
walking over it, the SCORPION produces a multitude
of proprioceptive data. In this case study, we have in-
vestigated the feasibility of using this data to detect on
which substrate the robot is walking. This ability can
be especially useful for self-localization and mapping.
The experimental platform is an indoor test bed, which
contains different substrates: sand, a small stone wall,
a rockfield and a gravel field. During several 2-minute-
runs through the whole test bed (starting in the sand
and ending in the gravel) all proprioceptive data was
collected. In addition markers are manulally placed in
the logged data every time the robot crosses into the
next substrate, e.g., when the robot is at the border be-

tween the sand area and the stone wall. These resulting
sets of data pairs are then used as base material for a
training set for a GCS classifier [11]. Growing cell struc-
tures are a vector based self organizing neural network
approach. We were able to achieve promising results
(see Fig. 2), which prove that proprioceptive data pro-
duced through interaction with the environment can be
used for identifying substrates. The system was able
to distinguish beteen three classes of subtrates. The
rock field and the stone wall were easily distinguished
from the other subtrates, however, sand and gravel were
grouped into a single class due to the fact that for the
SCORPION robot sand and gravel have quite the same
properties. Thus from the perspective of the SCOR-
PION robot these two different categories do not exist;
in its world they would be treated as the same. To inves-
tigate this further we plan to develop an unsupervised
learning method, which would allow the generation of
categories that represent the robots view on the world.
More details on these experiments can be found in [12].

III. Case Study II: Multimodal Object

recognition based on proprioceptive and

exteroceptive data

In the second case study 1, we present an extensible
embodied object recognition system that can be used
in complex real robots that learn through interaction
with the environment. The system can be easily ex-
tended to use new object-features which distinctively
describe the relevant characteristics of an object to be
recognized. In this case study, we first give a short
overview of the learning architecture we have used in
order to implement object recognition through manipu-
lation. We then explain the manipulation behavior and
the recognition method used. Finally, we describe our
experimental scenario and the results obtained.

A. Learning Architecture

The architecture we have adopted, shown in Figure
3, is a hybrid architecture which integrates a reactive
system with a higher-level deliberative system. It is a
biologically inspired learning system that is suitable for
controlling and integrating spatial learning and repre-
sentation techniques in mobile robots, allowing them to
explore and navigate in unknown environments.

The sensory inputs first enter the sensory percep-

tion processor and textbfsituation analysis modules.
The output of the sensory perception processor

goes to the reflex transfer, attentional transfer,
habit transfer and goal directed transfer modules.
The attentional transfer module receives additional
inputs from the situation analysis module. The out-
put of the reflex transfer module goes to the reflex

motor program library module. After being modu-
lated by the goal directed transfer module, the out-
puts of attentional transfer and habit transfer go
to the motor program library. Finally the signal
from the motor program library or reflex motor
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program library goes to the low level motor con-

trol unit.

A.1 Reactive System

The reactive system includes the sensory percep-

tion processor, situation analysis, reflex transfer,
attentional transfer, habit transfer, reflex motor

program library and motor program library mod-
ules of Figure 3.

Sensory Perception Processor

Proprioceptive and exteroceptive data produced
through interaction with the environment are processed
in the sensory perception processor module. This
module consists of four subsystems (see Figure 4), which
work together in order to learn, distinguish and iden-
tify different hypotheses that are relevant to the system.
The figure shows an implementation of this module that
is used in the experiment presented in this case study.

For the experiment, an unsupervised classifier sys-
tem is implemented that considers both propriocep-
tive and exteroceptive data, represented by the vec-
tors ~SP and ~SE , respectively. This classifier identifies
and labels clusters of similar sensorimotor stimuli to-
gether. Additionally, it generates a cluster probability
~PC,sm(~SP , ~SE). Each element of this vector represents
a probability estimate of the likelihood that a set of
sensorimotor inputs belongs to a labeled cluster. The
cluster probability ~PC,sm is then used to train the two
remaining classifiers which classify based only on the
exteroceptive sensory data vector ~SE or on the propri-
oceptive data vector ~SP . These classifiers also generate
~PC estimates, ~PC,ext and ~PC,prop, which are combined

with ~PC,sm to generate an overall cluster probability
~PC,input.

Situation Analysis

This module is responsible for analyzing the proprio-
ceptive and exteroceptive data in order to determine if
some particular event has happened. This information
is used by the attentional transfer module. Exam-
ples of events detected by this module are movements,
changes in the sensory data and so on.

Reflex Transfer Module

This system tries to prevent the robot from being
damaged. Depending on the output of the sensory

perception processor, or on the raw sensory data, it
activates certain reflex motor programs to protect the
robot from danger. The module inhibits all the activi-
ties of the habit transfer and attentional transfer

modules whenever it is active.

Attentional Transfer Module

This module orients the system to a given location
based on the output of the situation analysis and
sensory perception processor modules. An exam-
ple could be to orient the system to a location where

something moves, or where something interesting for
the system is recognized.

Habit Transfer Module

This module is a collection of learned behaviors which
have proven to be important to the system. The learned
behaviors are generated in the goal directed transfer

module and installed in the habit transfer module. If
a behavior in the habit transfer module is not used for
a long time, it will be deactivated and its importance
will decrease over time.

B. The Goal Directed System

This system is responsible for high-level processing
of hypotheses probabilities, and it is in this system that
the world model and body model are generated through
learning. Positive and negative rewards combined with
the output of the sensory perception processor

module are used to learn the world model and body
model of the robot itself. The goal directed transfer

module is also responsible for optimizing existing habits
or adding a new habit. In addition to this, this module
pre-modulates the output of the habit transfer and
attentional transfer modules to affect which motor-
programs will be active, and post-modulates the output
of the motor program library, modifying the proper-
ties of the motor-programs that are currently active.

Biological Support

There is no doubt that a reward system is needed
to be able to learn or reinforce behavior. Reinforce-
ment can be described as a process where certain events
(i.e., reinforcing stimuli) increase the probability of the
behaviors they are associated with (e.g. [13]) while
reward refers to the tendency of certain events to di-
rect behavior, specifically, to elicit and reinforce ap-
proach behavior. In biological systems rewarding stim-
ulation directly activates dopamine neurons (see [14]).
Two major dopamine systems have been implicated in
a wide variety of behavioral actions including locomo-
tor activity. Those systems are the nigrostriatal and
the mesolimbic/mesocortical dopamine systems. Nu-
merous attempts have been made to develop an integra-
tive theoretical model (e.g. [15], [16], [17], [18]). Studies
which show the importance of a reward system revealed
that electrical brain stimulation can control behavior
in much the same fashion as conventional rewards (see
[19]). They have also shown that electrical stimulation
can activate reward systems involved in the control of
natural behavior. Details can be found in [20].

In the architecture we have adopted, reward is the
essential part of of the goal directed behavior. When
the goal directed system gets certain sensory input
from the sensory perception processor, it will pro-
duce certain behavior depending on the expected re-
ward it receives. The reward and especially the lack of
reward gives feedback to the system at to whether the
behavior was or was not appropriate given the situa-
tion ’described’ by the sensory perception proces-



Fig. 3. System architecture. The shaded triangles in the figure show switches, which are controlled by the
reflex transfer module. Whenever the reflex transfer module is active, the outputs of habit transfer

and attentional transfer modules are inhibited.

Fig. 4. The sensory perception processor module.

sor. Therefore, by learning about the environment, the
system builds a model about the world. This model
in turn can be used to simulate the likelihood of a re-
ward following a certain behavior, given input from the
sensory perception processor. A reward will con-
solidate the part of the model used and due to that
reinforce the dominant behavior under repeated or very
similar input. In case of lack of reward after the domi-

nant behavior, the model that was used to predict the
”best” behavior will be changed according to the out-
come. In goal directed behavior, reward and lack of
reward lead to the creation of a world model that con-
nects certain input to the sensory perception pro-

cessor with likely rewarded behavior. The manifesta-
tion of such a behavior is made possible by the activa-
tion and recombination of certain motor programs in the



motor program library and by creating new motor
programs. Thus, certain motor programs are activated
depending on the presence of specific inputs from the
sensory perception processor.

Before a habit is added to the habit transfer mod-
ule, it is learned in the goal directed system based
on the reward received by the system. The goal di-

rected transfer module uses a model based reinforce-
ment learning similar to the Dyna system [21], where
the model of the world is learned along with a habit.
The model of the world predicts the next state and re-
ward based on the current state and believed action. If
the expected reward is missing under a given condition,
the system will be ”surprised” and will deactivate the
current habit and shift to a goal directed learning pro-
cedure. During this time, a new habit may emerge and
be installed in the habit transfer module.

C. The Recognition System

For the recognition system, we have not fully ex-
ploited the proposed learning architecture. The sys-
tem described in this section mainly uses the sen-

sory perception processor and motor program

library modules. The embodied recognition system
functions by manipulating objects in order to determine
their specific characteristics. A manipulation motor-
program has been implemented, added to the motor

program librarymodule, and made active for the ex-
periment. This motor-program uses a potential field
method [22] to generate a trajectory for an end-effector
to reach an object. The basic idea is to create a math-
ematical description of a virtual potential field acting
within the workspace of the manipulator. Regions in
the workspace that are to be avoided are modelled by
repulsive potentials (energy peaks) and the target re-
gion/point is modelled by an attractive potential (en-
ergy valley). The sum of repulsive and attractive poten-
tials provides a representation of the workspace topol-
ogy. By following the gradient (i.e. the minimum poten-
tial field at each step), a path towards the goal is gener-
ated. One fundamental difference between this method
and classical path planning is that here ”planning” is
not done in the usual sense. Rather, a path is incre-
mentally computed that will end at the target position.
This approach can be viewed as a reactive approach
since there is no deliberation involved and it can be im-
plemented on lower layers of control. Furthermore, this
reactiveness allows us to deal with obstacles on a real-
time basis, the only limitation being the time needed to
detect and identify objects as obstacles or goals.

While manipulating objects, both proprioceptive
data (motor current consumption, motor angular posi-
tion) and exteroceptive data (color of the object, num-
ber of corners detected on the object) are recorded.
Both of these types of data are combined to form a vec-
tor ~X = [~SP , ~SE]. The resulting vector is statistically
analyzed in order to extract important parameters that
distinctively describe the object being manipulated. For
example, the average power consumption of the motors

during the manipulation phase will differ depending on
an object’s weight. This data is then clustered using
the standard k-means algorithm [23] and the resulting
clusters are labeled.

Prior to clustering, each element of a data vector is
normalized using

x′
i =

xi − xi

σi

(1)

where i = 1, · · · , L and L is the length of a data vector
~X. The mean xi and variance σ2

i are calculated with
respect to the training data using

xi = 1

N

∑N

n=1
xn

i

σ2

i = 1

N−1

∑N

n=1
(xn

i − xi)
2

. (2)

where N is the number of data vectors in the training
set. This normalization process is necessary since the
elements of a data vector typically have magnitudes that
differ significantly.

The labeled clusters are then used to train a radial
basis function network [24] (a subsystem of the sen-

sory perception processor module) for classifying
the clusters based on proprioceptive and exteroceptive
data. Rather than choosing a subset of data points of
the clusters as the centers of basis functions, we use the
k-means clustering algorithm (in which the number of
centers must be decided in advance) to determine for
each cluster a set of centers which more accurately re-
flects the distribution of the cluster’s data points. The
appropriate number of center points is determined by
the performance of the resulting network on a valida-
tion set. In the implemented neural network, we used a
Gaussian function as a basis function. Figure 5 shows
the topology of the radial basis function network used
for data classification.

Fig. 5. Radial basis function network

D. Experimental Setup

The robot used for testing our system is one which
has been developed in our group, and it is based on



the design of the ARAMIES robot [25]. Our robot is
a fully functional ambulating robot that is robust and
kinematically flexible. It is equipped with various sen-
sors that enable it to perceive both proprioceptive and
exteroceptive signals. On each of the robot’s legs, there
are 6 D.C. motors, 6 pressure sensors, and an infrared
sensor. For our experiment, the camera of the robot was
used as a source of exteroceptive data, and the average
motor current consumption of each motor was used as
a source of proprioceptive data.

Fig. 6. The robot manipulating an object

In the experiment we performed, the robot’s body is
fixed and it uses its forelegs to manipulate the different
objects shown in Figure 7. The objects have differing
weights and visual features. Two of the objects have the
same visual features, and cannot be distinguished from
each other using only visual information; these objects
are marked as ”A” and ”B” in Figure 7. The faces
on which the letters are written are placed away from
the camera of the robot so that the two objects appear
indistinguishable to the robot.

In the training session, five manipulation acts were
performed on each of the objects. For a single manipu-
lation act, we took a series of images from which we
calculated the average number of contours extracted
and the average area of the extracted contours. Fur-
thermore, we calculated the total current consumption
average for the motors on both of the robot’s forelegs.

E. Results

E.1 Repeatability of Features

Table I shows, for each of the objects in Figure 7,
the average and standard deviation of the number of
detected contours Nc, the area (number of pixels) of
the detected contours Ac, and the total current con-
sumption I (in mA) of both of the robot’s forelegs over
all training sessions. This data is an indirect measure

1 2

3 4

Fig. 7. Objects used in the sensorimotor-coordination
experiment

Obj. Nc Ac

∑
I σNc σAc σ(

∑
I)

1 1 4812.2 4688.68 0 48.22 217.93

2 1 4925.77 5242.52 0 61.53 159.14

3 2 3134.15 4670.66 0 39.5 181.27

4 6.96 953.1 4916.75 0.21 10.4 319.41

TABLE I
The average and standard deviation of

features over the whole training set

of the repeatability of a particular feature’s measure-
ments. A measurement for a feature is repeatable if
the variance of the measurement over a given sample
of measurements is small enough that the overlap of
measurements resulting from different objects is mini-
mal. One can easily see that the number of contours
detected is the most stable feature in this experiment.
For getting the number of contours, we used a detector
which is robust against noise and changes in lighting
conditions. The average current consumption of both
legs shows the highest variance in relation to the other
features since the end effectors of the forelegs do not
grab the object at the same point for each training ses-
sion. This causes the object’s center of gravity to shift
with respect to the end effector, and thus a variation in
the average current consumption is observed.

E.2 Recognition Rates

We tested the system’s ability to recognize the ob-
jects it was trained for. The system was tested in three
different scenarios. In the first scenario, the system was
permitted to use both exteroceptive and proprioceptive
data to recognize objects. In this case, the recognition
rate was the highest, yielding only one misclassification
in 20 trials. In the case where the system was allowed to
use only exteroceptive data, there were 7 misclassifica-
tions in 20 trials. This poorer performance is explained



by the fact that two of the objects have the same vi-
sual features. In contrast to these results, when only
proprioceptive data was used, there were only 3 mis-
classifications in 20 trials because the weights of each
object were unique. An interesting point is that the
system was able to correctly classify objects ”A” and
”B” in this case, which would have caused problems
when using only exteroceptive data.

IV. Conclusions and Outlook

The ”Embodied AI” approach assumes that embod-
ied representations play important roles for higher level
spatial cognition. The conducted experiments give us
first hints on how to test this hypotheses. In the first
case study we have implemented and evaluated an ap-
proach to automatically classify a spatial environment
based solely on the proprioceptive data of an 8 legged,
24 DOF walking robot. The system was able to distin-
guish beteen three classes of subtrates. Sand and gravel
were grouped into a single class due to the fact that for
the SCORPION robot sand and gravel have quite the
same properties.

In the second case study, an embodied recognition
system has been presented which learns to recognize ob-
jects by interacting with them and using proprioceptive
and exteroceptive data. We have shown that a learn-
ing system trained with multimodal sensory information
can recognize objects by using only partially available
(i.e. only exteroceptive, or only proprioceptive) sensory
data. The direct byproduct of such systems is a ro-
bust system which continues to operate in the absence
of either the proprioceptive or the exteroceptive data.
Our preliminary results demonstrate that this method
can be effectively used in a robotic system which learns
from experience about its environment.

We plan to extend the system by increasing the num-
ber of proprioceptive and exteroceptive object-features
extracted from the environment, and improving their
stability. For example, we may use local features such as
Scale Invariant Feature Transform (SIFT) features [26]
that describe objects distinctively and which are stable
against translation, rotation, scaling and different light-
ing conditions. Additionally, we will develop a variety
of new manipulation acts and work on methods of re-
moving visual ambiguities through manipulation acts.
We will apply information reduction techniques such as
Principal Component Analysis (PCA) to determine the
significance of each individual exteroceptive or propri-
oceptive sensory input, identifying those which play an
important role in recognition for a given manipulation
act.
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