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Abstract

We present the application of probabilistic finite state
transducers to the task of bibliographic meta-data extrac-
tion from scientific references. By using the transducer
approach, which is often applied successfully in computa-
tional linguistics, we obtain a trainable and modular frame-
work. This results in simplicity, flexibility, and easy adapt-
ability to changing requirements. An evaluation on the Cora
dataset that serves as a common benchmark for accuracy
measurements yields a word accuracy of 88.5%, a field ac-
curacy of 82.6%, and an instance accuracy of 42.7%. Based
on a comparison to other published results, we conclude
that our system performs second best on the given data set
using a conceptually simple approach and implementation.

1 Motivation

Research paper search engines like CiteSeer [4, 5, 9]
have become important because they enhance researchers’
efficiency due to a faster access to current resources and the
possibility for quicker distribution of new results. Further-
more such systems depend on the ability to assign the highly
differing syntactical descriptions of the same paper to one
semantical entity to provide a sound database. As search
results directly depend on the quality of the information ex-
traction component it is a part of the system with a high
degree of significance. The task of bibliographic reference
recognition describes the process of labeling the different
parts of a given string according to their semantic meaning.
In our case it handles the extraction of bibliographic meta-
data as BIBTEX subfields from given plain-text research pa-
per references as illustrated in Figure 1. Although the prob-
lem seems to be not that intricate at the first glance, a closer
examination discloses a multitude of complications. Ba-
sically a bibliographic reference can be defined as an ar-

Input: (plain text)
Davenport, T., D. DeLong and M. Beers, “Successful
knowledge management projects,” Sloan management
review, 39, 2, (1998), 43–57.

Output: (BIBTEX)
author = “Davenport, T. and DeLong, D. and Beers, M.”
title = “Successful knowledge management projects”
journal = “Sloan management review”
volume = “39”
number = “2”
year = “1998”
pages = “43–57”

Figure 1. BIBTEX output of the system for a
given plain-text reference.

bitrary series of subfields wherein each transition between
subfields occurs upon parsing a specific separator. Across
different reference styles we can observe dramatic varia-
tions amongst spacing, subfield order, partitioning symbols
and content representation.

By designing a system that is based on training data we
remove the need for a domain expert who manually ana-
lyzes the different BIBTEX styles and derives adequate rules
from them. This reduces the effort needed for defining the
rules and prevents errors during the process – thus resulting
in a highly efficient system. Furthermore we may adjust
the language model to new reference styles by repeating
the training procedure on a new dataset fitting those styles.
Therefore only minimal manual intervention is needed as
the whole process is highly automated. This is not possible
in rule-based systems as another analysis of the new styles
has to be performed and appropriate rules have to be de-
rived. Hence our system works with a high degree of flex-
ibility and adaptability in regard to changing bibliographic
reference styles.



2 Related Work

Previous work on the topic of bibliographic meta-data
extraction from research paper references can be subdivided
into machine learning (ML) or rule-based [1, 2, 3, 13] ap-
proaches. Approaches based on ML try to derive the re-
lationship between input and output strings according to
a given set of samples and label future inputs using that
knowledge. For the latter case a set of adequate rules has
to be derived manually by a domain expert via analyzing
appropriate samples. Major benefits of systems based on
ML are their high degree of adaptability and robustness with
the drawback of required training whereas rule-based sys-
tems usually behave more rigidly and do not adapt very
well. The wide assortment of applied machine learning
techniques spans conditional random fields [8, 14], hidden
Markov models [10, 16], support vector machines [6] and
statistical models [17].

3 System Design – Language Model

As the model of choice we selected probabilistic finite
state transducers (PFSTs) which are basically trainable fi-
nite state machines with transition outputs, weights and
scoring mechanisms according to the laws of probability.
They seem a natural choice since finite state transducer
(FST) techniques have been successfully applied to various
tasks of natural language processing such as dictionary en-
coding, text processing and speech processing due to their
ease of use and close relationship to regular languages. The
prevalent benefits accompanying the usage of PFSTs are
their high efficiency, leading to very fast systems, which in-
creases their practical usability as well as the possibility for
fast composition of complex models via abstract operations.
Furthermore the visualization of transducers is comprehen-
sible without difficulty due to the possibility of illustrating
them as a directed graph. A thorough theoretical introduc-
tion of the model itself is given in [11, 15, 18].

The various subfields of a bibliographic reference are in-
dependent in the sense that their content stands in no rela-
tion to the content of other subfields. This allows to manu-
ally model each subfield on its own and link them together
adequately using the knowledge of the occurring separator
symbols and the class of the previous subfield. By using
FST operations we can build the final language model in
a modularized way. For our implementation we used the
FST toolkit available from the Massachusetts Institute of
Technology (MIT-FST1). A brief treatment of its design and
implementation is given in [7] whereas in [12] the related
FST library developed by AT&T is treated in detail. The

1http://people.csail.mit.edu/ilh/fst
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Figure 2. The proposed subfield model out-
puts a field tag, parses an arbitrary number
of characters and stops parsing upon read-
ing an interfield separator.

toolkit is composed out of a large number of command-line
tools where each one encapsulates a single functionality and
works using the UNIX pipe. This allows for rapid develop-
ment of models via command chains or shell scripts.

Particularly the ability to derive a probabilistically
weighted transducer model via expectation maximization
training from an unweighted transducer based on a set
of pairs of input and output strings allows for efficient
development of language models. The model’s weights are
iteratively adjusted in the process such that the likelihood
of the training set’s labeling are maximized. We have
specified an FST for each possibly occurring subfield –
namely author, booktitle, date, editor, institution, journal,
location, note, pages, publisher, tech, title and volume.
Inclusions of new subfields or exclusion of existing ones
are achievable due to the modularized structure, i.e. they
get included or excluded in the union operation over
subfields. Each subfield model is solely represented by the
intrafield unigram and separator symbol weights as they
are structurally identical. These transducers are structured
straightforward as they only output the corresponding
subfield tag, then allow the parse of an arbitrary number
of unspecified symbols via an intrafield unigram and
terminates upon reading a separator symbol as shown
in Figure 2. TAG represents the type of subfield (e.g.
author), CHAR consists of the whole alphabet and SEP
is a subset of CHAR specifying all possible interfield
separator symbols like a colon or a dot. This allows parsing
of intrafield separator symbols as we cannot exclude the
possibility of them occurring there – e.g. a dot that indicates
an abbreviation.

Now the overall language model is built as the union
of the different subfields where we add epsilon transitions
leading from each final state to the starting states of the sub-
field transducers. Thus we basically model a bigram of the
subfields as it is shown in a simplified (restricted to only
three subfields instead of the original 13 for enhanced read-
ability) form in Figure 3. Consequently the parse of a sub-
field transducer depends on the type of the last subfield and
the interfield separator symbol. The application of expecta-
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Figure 3. The final language model is generated from a union of subfield transducers with added
epsilon transitions. A bigram of subfields is the result.

tion maximization training to the language model described
above using the training data yields our final probabilisti-
cally weighted language model.

4 System Design – Overall Architecture

First our system receives a bibliographic reference given
as plain text for input and passes it to the normalization
component. Unknown symbols are removed as they would
interfere with the parsing process and reserved symbols
(e.g. ’ε’ is denoted as ’,’ in MIT-FST) are mapped to an-
other representation. By composing the resulting transducer
with our language model we receive a tagging of subfields
according to the highest probability by outputting the best
parse. As the labeled reference is still in normalized format
we need to revert the steps described above, i.e. restore the
original meaning of symbols and rejoin them. This allows
us to interpret each tagged sequence of the whole reference
as a single BIBTEX subfield and their combination yields
the desired BIBTEX reference as a result. BIBTEX is used
commonly in the scientific community as it is highly con-
figurable and able to handle huge bibliographies and doc-
uments without problems. Due to its widespread applica-
tion to document management systems like digital libraries
(CiteSeer, DBLP, CiteULike, etc.) we chose it as the out-
put format to allow for an easy interoperability. The basic
system work-flow is illustrated in Figure 4.

Our system is available online2 via a web-based PHP
front-end for demonstration purposes. A bibliographic ref-
erence can be entered into a multi-line HTML text area to
pass it to the underlying system for classification and the
result is displayed as a BIBTEX entry on a web-page. In

2http://demo.iupr.org/refrec
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Figure 4. Visualization of basic system work-
flow: first the plain-text reference is stripped
from all unknown symbols in the normaliza-
tion component. The transducer represent-
ing the resulting string is composed with our
language model which yields a labeled ref-
erence according to the best parse. Finally
the denormalization component outputs the
result in plain-text again.

the current state all entries are classified as ‘@misc’ as no
mechanisms for distinguishing between the reference types
have been incorporated into the system yet.

5 Performance Evaluation

We use the Cora3 dataset for training and evaluation pur-
poses due to its public availability and relatively widespread

3http://www.cs.umass.edu/∼mccallum/data/cora-ie.tar.gz



<author>Kambhampati, S., Knoblock, C., & Yang Q.
</author> <date>(1995).</date> <title>
Planning as refinement search: a unified frame-
work for evaluating design tradeoffs in partial-order
planning.</title> <journal>Artificial Intel-
ligence,</journal> <volume>76,</volume>
<pages>167-238.</pages>

<author>J. M. Ponte and W. B. Croft,</author>
<title>Text Segmentation by Topic,</title>
<booktitle>in Proceedings of the First European
Conference on Research and Advanced Technology for
Digitial Libraries, </booktitle> <pages>pp. 120-
129,</pages> <date>1997.</date>

<author>J. C. Butcher.</author> <title>General
linear method: A survey.</title> <journal>Appl.
Numer. Math.,</journal> <volume>1 273,
</volume> <pages>1985.</pages>

<author>J. C. Butcher.</author> <title>General
linear method: A survey.</title> <journal>Appl.
Numer. Math.,</journal> <volume>1</volume>
<pages>273,</pages> <date>1985.</date>
(corresponding correct parse at position N=3)

Figure 5. The first two references illustrate
cases in which our system generates the
correct output. In the third case an exam-
ple of an incorrect parse is shown with the
corresponding correct parse and its position
within the best parses.

usage. It consists of 500 research paper citations that we
partitioned into a training set composed of the firsts 350 en-
tries and a test set including the remaining ones. Unfortu-
nately no explicit partitioning scheme has been published
for comparison issues by other researchers [3, 10, 14]. This
prevents an exact performance comparison as changes to
the training/testing set partitioning may lead to deviations
of system accuracy.

For quantifying the performance of the system we use
the common measures of word, field and instance accuracy
– as introduced in [3, 14] – which are defined as follows:

word accuracy = |correctly recognized words|
|words|

field accuracy = |correctly recognized subfields|
|subfields|

instance accuracy = |correctly recognized references|
|references|

Table 1. Accuracy comparison on the Cora
data set [%].

word field instance
CRF [8, 14] 95.4 77.3
PFST [this work] 88.5 82.6 42.7
HMM [10, 16] 85.1 10.0
INFOMAP [3] 73.3

The different measures are structured in a hierarchical sense
to give a better impression of the system’s performance.
Word accuracy favors fields with many words, field accu-
racy favors fields with few words and instance accuracy
gives a picture of how well the system performs in an over-
all view as only completely correct references are counted.
An overview of systems that have been evaluated on the
Cora reference dataset is given in Table 1. The CRF-based
system by [8, 14] performs best on the Cora dataset. It is
worthwhile noting that they are not operating on the plain
text but extract a set of various features from the reference,
e.g. layout properties or dictionary matching. Our approach
performs slightly worse on the word accuracy and signifi-
cantly worse on the instance accuracy in comparison. The
HMM-based system by [10, 16] performs slightly worse on
the word accuracy and remarkably worse on the instance
accuracy than our system. As the rule-based approach by
[3] only measured the field specific performance no over-
all comparison is possible. Nevertheless it can be claimed
that our approach performs better due to the significant ac-
curacy difference. Thus our system seems to be the second
best in regard to the Cora dataset. Since other relevant bibli-
ographic reference recognition systems [1, 2, 6, 13, 17] have
not been evaluated on Cora we can not make statements re-
garding performance comparisons.

The instance accuracies differ more between the systems
than the word accuracies as a slightly worse classification
of single words leads to a higher rate of incorrectly labeled
references. If we make a few simplifying assumptions, we
have a word accuracy p and the number of words in a given
reference l. A reference is then classified correctly only
if all words are labeled correctly and the probability of that
happening is pl. For two given systems the one with the bet-
ter word accuracy has a significantly (in relation to the dif-
ference of the word accuracies) higher probability to clas-
sify a complete instance correctly.

The relatively straightforward structure of the current
language model indicates that our system’s performance
can be increased significantly by replacing the intrafield un-
igram with a bi- or trigram and eventually the interfield bi-
gram with a trigram. Also some models for common repre-
sentations (i.e. authors’ names or dates) could be addition-



ally incorporated for specializing the system further accord-
ing to a set of reference styles. We would have to find an
acceptable tradeoff between the system’s runtime and accu-
racy. Additionally we want to avoid any overfitting of the
system to a specific type of reference style to maintain its
robustness.

Example outputs of the system are shown in Figure 5.

6 Conclusion

As finite state transducers have proven their applicabil-
ity to many tasks of computational linguistics they seem a
natural choice for deriving a language model adjusted to the
recognition of bibliographic references. Especially in com-
parison to rule-based approaches our system yields a higher
degree of robustness and adaptability as no strict rulings are
enforced and local classification errors should not propa-
gate through the entire reference. Furthermore we eliminate
the need for a domain expert and thus decrease the time re-
quirements for adapting the system to changing demands.
While normally rules would have to be manually derived
after analysis of the various reference styles we just have to
rerun the training procedure on an adequate dataset repre-
senting the syntactical differences of the styles. As our re-
search group is currently developing a PFST-based optical
character recognition system called OCRopus4 an integra-
tion with the presented system is planned to allow operation
on imaged input.
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