
Retrieving Relevant Experiences

Armin Stahl

In order to enable the efficient reuse of collected experience knowledge, the identification of the most relevant ex-
periences with respect to the current reuse need is one of the most crucial issues. One approach for supporting this
process with AI methods is the application of similarity-based retrieval techniques developed in the area of Case-Based
Reasoning. We describe the basic idea of this approach and present a novel open source tool which simplifies the
development of knowledge-based retrieval functionality in experience management applications.

1 Introduction

Experience management requires the implementation of se-
veral processes in order to be applied successfully in practice.
According to [2] the following six specific activities must be
considered to enable efficient reuse of experience knowled-
ge: Collecting, Modeling, Storing, Reusing, Evaluating, and
Maintaining Experience.

On the one hand, some of these activities typically have
to deal with certain social aspects. For example, the suc-
cessful collection of experiences often depends on approaches
to motivate people to provide their own experience knowled-
ge. On the other hand, several activities like the storage and
efficient reuse of collected experience knowledge require a
lot of technical support using computer science methods.

In this article we focus on the latter aspect, i.e. on the
more technical issues related to experience management. In
particular, we discuss an approach for implementing one cen-
tral task of the reuse process, namely retrieving relevant ex-
periences from a given experience base with respect to a cur-
rent problem situation or information need. This approach is
based on similarity-based retrieval techniques developed in
the area of Case-Based Reasoning (CBR).

One basic precondition for identifying relevant experi-
ences is an accurate representation of the experience know-
ledge collected. This requires a model about the domain of
the specific kind of experiences that have to be managed in
a given application scenario. In Section 2 we briefly discuss
how to represent experience knowledge. In Section 3 we then
describe the idea of using similarity-based techniques for re-
trieving experience knowledge and in Section 4 we present a
novel software tool which facilitates the implementation of
these techniques. Finally, we conclude with a summary and
an outlook on future improvements of the presented tool.

2 Representing Experiences

Depending on the underlying application scenario, in gene-
ral, experience knowledge may be represented by using quite
different representation formalisms, e.g. free text, attribu-
te value pairs, object-oriented, graph-based, or image-based

representations, etc.

The advantage of the free text approach is certainly its
flexibility and independence from a fixed domain model. Mo-
reover, today many companies have already stored huge col-
lections of text-based documents which describe a lot of ex-
perience knowledge. However, this flexibility is also the major
drawback of the pure text-based approach because natural
language processing methods are still a long way from being
able to process arbitrary text in a reliable way.

Hence, many knowledge management and expert sy-
stems still rely—at least partially—on more well-defined do-
main models, for example, based on attribute value pairs.
In order to represent knowledge in a more structured way,
attribute value pair representations can easily be extended
to object-oriented models which are commonly also used
for representing ontologies. Due to the increasing interest
in ontologies over the last few years, today a lot of tools for
modeling ontologies are available. One of the most popular
tools is certainly the open source platform Protégé [5] which
provides powerful graphical user interfaces and algorithms
not only for modeling and visualizing ontologies, but also for
reasoning from them.

Other approaches to describe experience knowledge like
image-based representations (e.g. medical images) are ty-
pically special purpose approaches which also require very
specific algorithms to process the knowledge.

Hence, in the following we restrict ourselves to attribu-
te value based and non-cyclic object-oriented representations
which allow aggregation and specialization relations between
defined classes. The classes themselves are described by a set
of attributes with simple data types, e.g. strings, numbers,
symbols, etc. For the reasoning approach described in Secti-
on 3 a clear definition of the attributes’ specific data types
including allowed value ranges (e.g. for numeric attributes) or
enumerations of allowed values (e.g. for symbolic attributes)
is also a central part of the domain model. For representing
aggregation relations between classes, we assume the exi-
stence of specific relational attributes with class instances
as values. Moreover, classes can be arranged in a speciali-
zation hierarchy where sub-classes inherit the attributes of
their super-classes.

The main purpose of such a description is the charac-

Seite 1

terization of the most important aspects of an experience
in a well-defined way in order to enable the automation of
reasoning procedures. This does not necessarily mean that
all available knowledge about an experience has to be repre-
sented by attribute value pairs. Some attributes may contain
large portions of free text or may link to any other available
external information (e.g. by specifying URLs of text docu-
ments or images) which is also relevant in the scope of the
experience. Such information may not be processable by the
reasoning algorithms, however, it may provide the user addi-
tionally useful knowledge for the reuse of the experience.

From the CBR point of view, an experience (in CBR cal-
led case) is typically described by two central parts. The first
part contains a description of a past problem situation and
the corresponding context in which the experience was made.
Because this part of the description is used to estimate the
relevance of an experience for a current problem situation
automatically, it has to be described as formal as possible.
In the following we denote this part as the experience cha-
racterization. The second part is the description of a suitable
solution for the described problem including any information
that may help to solve a similar problem (e.g. information
about the quality of the solution, lessons learned when app-
lying the solution, etc.). Depending on the desirable degree
of automation of the applied reuse processes, this part of the
experience description may be represented more informally,
e.g. if it is sufficient that a human user can reproduce the
proposed solution.

3 Utility Approximation

After having collected, characterized and stored a certain
amount of experience knowledge, the foundation for reusing
this knowledge is the capability to identify the most relevant
experiences with respect to a given information need. We
assume that this information need is described by using the
same model as specified for the experience characterization
and we denote it in the following as the query.

One possibility to estimate the relevance of an particular
experience is to measure the similarity between its charac-
terization and the current query. This is the basic approach
of CBR, where it is assumed, that similar problems usually
also have similar solutions, i.e. if the problem descriptions
are sufficiently similar, the corresponding case including its
solution description is supposed to be relevant for the query.

Depending on the experience characterization various
kinds of similarity measures can be applied. In general, the
basic task of a similarity measure is to compute a score for
each stored experience. These scores, which are typically nor-
malized to the interval [0, 1], then can be used by the retrieval
algorithm to select and rank the experiences with respect to
their relevance before presenting them to the user or subse-
quent reasoning steps.

3.1 Knowledge-Poor Similarity Measures

Many CBR applications apply quite traditional similarity or
distance metrics. Typical examples are the Hamming Distan-

ce for pure binary or symbolic attributes, the Euclidean Di-
stance for pure nummeric attributes, or the Heterogeneous
Euclidean Overlap Metric [7] for mixed representations.

All these traditional metrics have in common, that
they only measure syntactical differences without conside-
ring much specific knowledge about the application domain.
When using these measures the only possibility to encode
certain domain knowledge is the definition of specific fea-
ture weights in order to express the individual relevance of
different attributes. However, in particular when dealing with
symbolic attributes this is often not sufficient since the rela-
tionship between different symbols cannot be modeled with
these kinds of metrics. For example, when having an attribu-
te “Color” with the allowed values “green”, “blue”, “red”,
and “orange”, traditional metrics are not able to express that
“red” is more similar to “orange” than it is to “blue”.

3.2 Knowledge-Intensive Similarity Mea-
sures

The knowledge-poor similarity measures described in the pre-
vious section certainly have the advantage that they are easy
to apply in many applications. However, their generality is
also their major drawback. Since they do not consider availa-
ble background knowledge about the application domain,
they often fail to estimate the relevance of stored experience
knowledge accurately, where relevance can be interpreted as
the utility of the experience with respect to the query.

In general, the utility of available experience knowledge
strongly depends on the specific application scenario inclu-
ding the characteristics of the domain, the preferences and
background of the users, the context of the query, etc. Ho-
wever, since these influences are typically quite complex, not
well understood, or even partially unknown, a calculation of
the actual utility is impossible. Instead, similarity measures
are used as heuristics for approximating this utility [3].

As typical for heuristics, the quality of this approximation
can be improved by incorporating as much domain knowled-
ge as possible. In order to simplify the definition of such
knowledge-intensive similarity measures [6], a decompositi-
on of the global similarity measure for a class C into a set
of independent local similarity measures simi—one for each
attribute ai—and an accurate amalgamation of the resulting
similarity values has proven its value. By using a weighted
sum as amalgamation function the similarity between two
instances I and J of class C may be computed as follows:

SimC(I, J) =

n∑
i=1

wi · simi(Ii, Ji) with

n∑
i=1

wi = 1

Here, Ii and Ji denote the values and wi > 0 denotes the
weight of attribute ai. In particular the attribute specific local
similarity measures simi can be used to encode a significant
amount of domain knowledge. If ai is a relational attribute
referring to some instance of another class D, the local-
global-principle can be applied in a recursive manner, this
means simi will be the global similarity measure of D.

Since queries and an experience characterizations do not
necessarily have to be described by an instance of the same

Seite 2

class, the following approach to calculate the similarity bet-
ween two arbitrary instances I and J based on the predefined
object-oriented model has been proposed [4]:

Sim(I, J) = Siminter−class(I, J) · Sim<I,J>(I, J)

Here, < I, J > denotes the most specific common super-
class of I and J , i.e. Sim<I,J> is the global similarity measu-
re of class < I, J > which computes a similarity score based
on the common attributes of I and J . Siminter−class(I, J)
computes an additional similarity score that is based on the
structure of the inheritance hierarchy in order to express the
maximal possible similarity between instances of different
classes.

4 myCBR

In order to simplify the implementation of experience mana-
gement applications commercial software tools such as the
empolis:Information Access Suite (e:IAS) have been deve-
loped. On the one hand, such tools provide very powerful
functionality for developing large-scale industrial applicati-
ons. However, on the other hand, they are often not suited
for smaller projects, research development, or teaching sup-
port due to their complexity and financial issues.

A first step to provide CBR researchers a freely availa-
ble platform for rapid prototyping is the open source jCo-
libri system1. In the following we want to present another
open source tool recently developed at the German Research
Center for Artificial Intelligence (DFKI) called myCBR2. In
contrast to the jColibri system which provides a framework
for the most CBR issues, myCBR focuses on advanced sup-
port of the similarity-based retrieval step. It is designed as a
plug-in for the popular ontology editor Protégé, i.e. the ex-
perience characterization can be modeled by using Protégé
functionality. However, myCBR also supports the automa-
tic generation of characterization models from available raw
data given in the csv3 format.

4.1 Similarity Editors

Once a characterization model has been generated, myCBR
provides comfortable graphical user interfaces for modeling
and managing corresponding knowledge-intensive similarity
measures. In particular the definition of domain specific local
similarity measures is supported by various graphical editors.

When dealing with numeric data, the similarity between
two values is usually based on their difference. This has led
to the use of so-called difference-based similarity functions
which map difference values to similarity values. A trivial
mapping is defined by sim(x, y) = 1 − |x−y|

maxd
where maxd

is the maximal possible difference with respect to the attri-
butes’ value range. However, knowledge-intensive similarity
measures typically require very specific mappings in order to

1http://gaia.fdi.ucm.es/projects/jcolibri
2http://mycbr-project.net
3The comma separated values format is also supported by com-

mon database and spreadsheet software.

consider the domain specific utility function. myCBR provi-
des the possibility to choose and parameterize some standard
functions or to define nearly arbitrary functions by applying
an interpolation approach (see Figure 1).

Abbildung 1: Editor for Difference-based Similarity Functions

When dealing with symbolic data, a straight forward way
to model the similarity between different symbols is the de-
finition of a similarity table which allows to enumerate the
similarity between all possible pairs of symbols explicitly. Ho-
wever, when dealing with larger symbol sets, this approach
requires a lot of modeling effort. For example, in the worst
case n allowed symbols would require the complete definiti-
on of a n× n matrix of similarity values. In order to reduce
the modeling effort, different approaches can be applied. The
first possibility is the definition of an order on the symbols
and a corresponding mapping to some integer numbers. This
allows to apply difference-based similarity functions also on
symbolic data.

Another approach is the arrangement of symbols in a ta-
xonomy. In principle, a taxonomy encodes certain knowledge
about the relations between symbols which can be used to
infer appropriate similarity values automatically. By providing
some additional information about the actual semantics of
the taxonomy in the underlying application scenario, even
more specific similarity measures can be modeled with fairly
little modeling effort (see [1] for details). The corresponding
editor of myCBR is shown in Figure 2.

The idea to infer similarity knowledge from taxonomic
relations can also be applied to model the inter-class simi-
larities for more complex object-oriented experience charac-
terizations. To model these similarities, myCBR provides a
corresponding interface which operates on the class inheri-
tance hierarchy.

4.2 Similarity-Based Retrieval

After having modeled accurate similarity measures, an in-
itial test of their capability to identify relevant experience

Seite 3

Abbildung 2: Editor for Taxonomy Similarities

knowledge from a given experience base has to be perfor-
med. Therefore, some experiences have to be entered ma-
nually by using Protégé or they may be imported by using
the csv interface of myCBR. myCBR then provides a special
retrieval interface where the user can define queries and start
similarity-based retrievals (see Figure 3) for testing purposes.
This interface includes comfortable functionality for browsing
through the retrieval result and for analyzing the computed
similarity scores.

Abbildung 3: The Retrieval Interface

Once the modeled similarity measures lead to satisfactory
results, one may integrate them in some external experience
management application in order to provide similarity-based
retrieval functionality there. myCBR allows to export the si-
milarity measures together with the domain model in XML
and also provides an additional stand-alone retrieval engi-

ne4 which can easily be integrated in external software, for
example, to implement web-based experience management
applications. Currently, the retrieval engine still supports on-
ly sequential retrieval which sets some limits with respect to
the manageable size of experience bases.

5 Summary

The retrieval of relevant experience knowledge with respect
to a given query is a central issue in every experience mana-
gement application. In this article we discussed the applica-
tion of similarity-based retrieval techniques for this task. We
described that the definition and application of knowledge-
intensive similarity measures enables an approximation of the
experiences’ actual utility in order to identify relevant experi-
ences more accurately than it is possible with more traditio-
nal, knowledge-poor similarity measures. Moreover, we have
presented the open source tool myCBR which simplifies the
implementation of similarity-based retrieval functionality in
experience management applications dramatically.

For the future, we plan to further extend the functionality
of myCBR. This includes the implementation of database in-
terfaces, advanced retrieval algorithms, advanced explanati-
on functionality, as well as the integration of recently develo-
ped techniques for learning similarity measures automatically
[6]. Since myCBR is an open source project, contributions
from other researchers for the improvement and extension of
myCBR are of course also highly welcome.

Literatur

[1] R. Bergmann. On the Use of Taxonomies for Repre-
senting Case Features and Local Similarity Measures. In
Proceedings of the 6th German Workshop on Case-Based
Reasoning (GWCBR’98), 1998.

[2] R. Bergmann. Experience Management. Springer, 2002.

[3] R. Bergmann, M. Michael Richter, S. Schmitt, A. Stahl,
and I. Vollrath. Utility-Oriented Matching: A New Rese-
arch Direction for Case-Based Reasoning. In Professio-
nelles Wissensmanagement: Erfahrungen und Visionen.
Proceedings of the 1st Conference on Professional Know-
ledge Management. Shaker, 2001.

[4] R. Bergmann and A. Stahl. Similarity Measures for
Object-Oriented Case Representations. In Proceedings
of the 4th European Workshop on Case-Based Reaso-
ning (EWCBR’98). Springer, 1998.

[5] John H. Gennari, Mark A. Musen, Ray W. Fergerson,
William E. Grosso, Monica Crubézy, Henrik Eriksson,
Natalya F. Noy, and Samson W. Tu. The evolution
of Protégé an environment for knowledge-based systems
development. Int. J. Hum.-Comput. Stud., 58(1):89–
123, 2003.

[6] Stahl, A. Learning of Knowledge-Intensive Similarity
Measures in Case-Based Reasoning, volume 986. dis-
sertation.de, 2004.

4written in Java

Seite 4

[7] D. Randall Wilson and Tony R. Martinez. Improved he-
terogeneous distance functions. Journal of Artificial In-
telligence Research, 6:1–34, 1997.

Kontakt

Dr. Armin Stahl
Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH, Trippstadter Straße 122, 67663 Kaiserslautern
e-mail: Armin.Stahl@dfki.de

Bild Armin Stahl studied Computer Science at the
University of Kaiserslautern with focus on AI.
From 2000 to 2003 he worked as a scienti-
fic assistant in the research group “Artifici-
al Intelligence - Knowledge-Based Systems”
directed by Prof. Michael M. Richter where
he finished his Ph.D. in the area of Case-
Based Reasoning in 2003. Since 2004 he is
the deputy director of the Image Understan-
ding and Pattern Recognition Department at
the German Research Center for Artificial In-
telligence (DFKI).

Seite 5

