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Abstract. Mathematical assistance systems and proof assistance systems in
general have traditionally been developed as large, monolithic systems which
are often hard to maintain and extend. In this article we propose a component
network architecture as a means to design and implement such systems. Under
this view a mathematical assistance system is an integrated knowledge-based
system composed as a network of individual, specialized components. These
components manipulate and mutually exchange different kinds of mathemati-
cal knowledge encoded within different document formats. Consequently, sev-
eral units of mathematical knowledge coexist throughout the system within
these components and this knowledge changes non-monotonically over time.
Our approach has resulted in a lean and maintainable system code and makes
the system open for extensions. Moreover, it naturally decomposes the global
and complex reasoning and truth maintenance task into local reasoning and
truth maintenance tasks inside the system components. The interplay be-
tween neighboring components in the network is thereby realized by non-
monotonic updates over agreed interface representations encoding different
kinds of mathematical knowledge.

1. Introduction

The long-term goal of the Ωmega project is the development of a large, integrated
assistance system supporting different mathematical tasks and a wide range of typ-
ical research, publication and knowledge management activities. Examples of such
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tasks and activities are computing, proving, solving, modeling, verifying, structur-
ing, maintaining, searching, inventing, paper writing, explaining, illustrating, and
possibly others.

The engineering of such a system is a non-trivial task for several reasons:

• Mathematical assistance systems are knowledge-based systems in which dif-
ferent kinds of knowledge must be maintained. This includes pure logical
knowledge like axioms and lemmas organized in structured theories, par-
tial proofs, proof procedures, procedure specific information like an ordering
of constant symbols or proof planning methods, and notational information
used in the user-interfaces of the system. Furthermore, the same piece of
knowledge may exist in different, task specific representations. For example,
a declaratively represented axiom in some mathematical theory may corre-
spond to an operationally available inference or rewrite rule in the system’s
proof procedures.

• Mathematical knowledge development is an evolutionary, non-monotonic pro-
cess. New knowledge is defined but also existing knowledge is removed or
transformed, which may in turn affect already derived knowledge. Simply
deleting derived knowledge and trying to re-derive it is often not a suitable
option, in particular, if the derivation has been costly in the first place.

• Large mathematical assistance systems are typically developed by several
people in parallel, each working on different aspects and adding new func-
tionalities. It is thus a challenge to keep the system maintainable and at the
same time open for quick and easy inclusions of new functionalities. Typi-
cally such new functionalities come together with new forms of mathematical
knowledge to be maintained and with dependencies to already existing knowl-
edge in the system. As we have learned from our own experience with the
former Ωmega system [7], a monolithic system design that mixes all knowl-
edge forms and dependencies in a single representation not only increases the
complexity of the system by creating opaque dependencies, it also quickly
makes the whole system resistant for any further extension and increasingly
hard to maintain.

In this paper we propose a component network architecture as a means to
design and implement mathematical assistance systems. The key idea is to achieve
a clean separation of competency by explicitly defining and implementing compo-
nents that are concerned with specific tasks (and related knowledge dependencies)
only. Each component exchanges knowledge with neighboring components by non-
monotonic updates over agreed interface representations encoding different kinds
of mathematical knowledge. This results in an overall system that (i) supports
the evolution of mathematical knowledge, (ii) has lean internal representations in
each component, (iii) avoids accidental and spurious dependencies, and therefore
(iv) remains maintainable while being open for extensions.
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Figure 1: Networked components of the proof assistance system Ωmega

The paper is organized as follows: In Section 2 we describe Ωmega’s main
components [24, 23] and motivate the component network architecture by a run-
ning example. In Section 3 we describe the representations and update operations
of the interfaces between the different components. We then illustrate our com-
ponent network by presenting in detail the propagation of updates through the
network in the different phases of the running example. In Section 4 we discuss
the benefits of our architecture for current and future extensions of the Ωmega

system. We compare the approach to related work in Section 5 and conclude the
paper in Section 6.

2. Component based Architecture of Ωmega

The organization of the Ωmega system as a component network is presented
in Figure 1: The network consists of components of the Ωmega system and
external systems A . In this Section we will introduce the components, illustrate
their interplay with the help of an example, and sketch the overall realization of
Ωmega as a component network.

2.1. The Components

The two core components of Ωmega are Maya and the TaskLayer.
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Maya – The Theory Manager: Mathematical domain knowledge such as axioms,
definitions, lemmas, and theorems – collectively called assertions – are organized
in axiomatic theories and dynamically maintained in Maya. These theories are
built on top of each other by importing knowledge from lower theories via theory
morphisms. Maya’s internal organization is based on the notion of development

graphs [18]. Development graphs are exploited by Maya to dynamically control
which knowledge is available for which conjecture.

Each theory in a development graph contains standard information like the
signature of its mathematical concepts and corresponding axioms, lemmas and
theorems. In addition to these notions, a development graph supports the main-
tenance of other kinds of knowledge. This additional knowledge not necessarily
affects the semantics of a theory but may provide, for example, valuable infor-
mation for proof procedures. An example is ordering information for the function
symbols in the signature of a theory, which can be exploited by simplification pro-
cedures. Other examples are inferences (the proof construction operators of the
TaskLayer), control rules, and strategies.

Finally, Maya maintains the information on how global proof obligations are
decomposed into local proof obligations and which axioms, lemmas and theorems
have been used in which proofs. These dependency relations are exploited to pro-
vide an efficient support for basic update operations to change the graph structure
of the theories (for example, adding or removing new theories and import relations)
as well as their content (for example, adding or deleting axioms or conjectures).
Further information on Maya is available in [5].

TaskLayer – The Proof Manager: The TaskLayer provides the central means to
represent, manipulate and maintain proofs in the Ωmega system and it offers a
rich set of support functionalities for proof construction. Its main tasks are:

(i) to maintain the current states of proof attempts with their open goals, and
(ii) to offer interactive services for proof construction.

To accomplish task (i), the TaskLayer collaborates with Maya, which main-
tains the mathematical theories, including conjectures to be proved and their cur-
rent proof status as well as dependencies between these theories.

For task (ii), the TaskLayer provides the notion of an inference as the basic
unit for proof construction. Inferences are the basic proof construction operators
used by the multiple strategy proof planner Multi and the agent-based sugges-
tion component Ω-Ants. They are either operational representations of domain
axioms, lemmas and theorems or they encode user-defined, domain or problem spe-
cific mathematical methods, possibly including the use of specialized computing
and reasoning systems.

The basic mathematical entities maintained by the TaskLayer are so-called
(proof) tasks, which are Gentzen-style multi-conclusion sequents [13], augmented
by means to define multiple foci of attention on subformulas that are maintained
during the proof. Each task is reduced to a possibly empty set of subtasks by one of
the following proof construction steps: (1) the introduction of a proof sketch [3, 28],



S
ubm

itt
ed

18/2
/2

009

Mathematical Knowledge Management in Ωmega 5

(2) deep structural rules for weakening and decomposition of subformulas, (3) the
application of a lemma that can be postulated on the fly, (4) the substitution of
meta-variables, and (5) the application of an inference. An eminent feature of the
TaskLayer is that inferences cannot only be applied on top-level formulas in a
task, but also to subformulas. The operationalization of mathematical knowledge
into inferences paired with the possibility to apply inferences to subformulas results
in natural, human-oriented proofs where each step is justified by a mathematical
fact, such as a definition, an axiom, a theorem or a lemma.

The TaskLayer supports the representation of alternative proof steps for
both the (horizontal) reduction of a goal as well as for the (vertical) expansion of a
complex proof step to higher granularity. Further information on the TaskLayer

can be found in [12].

The TaskLayer is connected to the proof planner Multi and the reactive
agent-based reasoning system Ω-Ants. Multi supports automated proof con-
struction and Ω-Ants supports the dynamic generation of suggestions (to the
user or other systems) on how to continue a partial proof.

Multi – The Proof Planner: The multi-strategy proof planner Multi performs a
heuristically guided search using the proof strategies which it dynamically receives
from Maya. A proof strategy describes a collection of inferences and control rules.
The control rules, which are together with the inferences also provided by Maya,
represent mathematical knowledge about how to proceed at choice points in the
planning process, for example, which subgoals to tackle next or which inference to
apply first. With the help of strategies the search space is organized and certain
search paths are preferred and others are pruned. Multi can flexibly interleave
different strategies in a proof attempt.

Inferences can also encode some abstract-level proof ideas rather than low-
level calculus rules and thus the proof plans delivered by Multi are not always
necessarily correct. However, abstract proof plans can be recursively expanded to
logic level proofs within a verifiable calculus. If this expansion succeeds, a valid
proof plan and a corresponding checkable low-level proof has been found. If the
expansion fails, the proof plan remains invalidated. More information on multi-
strategy proof planning can be found in [17].

Ω-Ants – The Agent based Suggestion Mechanism: The Ω-Ants component sup-
ports interactive proof construction by generating a ranked list of bids of poten-
tially applicable inferences in each proof situation. In this process, all inferences
are uniformly viewed with respect to their arguments, that is, their premises, con-
clusions, and additional parameters. An inference rule is applicable if there is a
sufficiently complete instantiation for its arguments. The task of Ω-Ants is to
determine the applicability of inference rules by incrementally computing instan-
tiations for the arguments. These applicability checks are performed by separate
processes, that is, software agents which compute and report bids. More details
on Ω-Ants can be found in [9, 10].
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The task of the other components is to make Ωmega’s functionalities avail-
able in different application scenarios. One application scenario is to support the
writing of scientific publications in the WYSIWYG text-editor TEXmacs [15] with
the Ωmega system running in the background. The idea is to provide formal anal-
ysis and verification means for the mathematical theories developed and authored
in TEXmacs. The integration of Ωmega and TEXmacs is thereby realized via the
PlatΩ component.

PlatΩ – The Mediator: The PlatΩ system dynamically establishes and guar-
antees the consistency between the human-oriented representations in TEXmacs
documents and the corresponding machine-oriented representations maintained in
Ωmega.

Mediation between a text-editor and a proof assistance system requires the
extraction of the formal content from the document of the text-editor. For this task
the PlatΩ system employs semantic annotations in the TEXmacs document, which
are pre-defined TEXmacs macros manually provided by the author. The annota-
tions can be nested and they structure the text into dependent and independent
parts containing assertions and (partial or complete) proofs encapsulating proof
steps. From the concrete syntax in the TEXmacs document the PlatΩ system gen-
erates in a multiphase process an abstract syntax. This abstract syntax describes
a formally structured theory with possibly partial formal proofs. The grammar
for PlatΩ’s formula parsers is thereby generated on the fly from the dynamic
notation [4] information as provided by the author inside the TEXmacs document.
In order to preserve consistency, the relationship between transformed knowledge
objects is memorized. More information on PlatΩ is available in [26, 27].

Ωmega is furthermore exploited as a domain reasoner in the proof tutoring
environment Dialog [8]. In the tutorial dialogs as studied and realized in the Di-

alog context, the user is given a proof exercise to be solved interactively with the
system. The Dialog system provides feedback to the student’s solution attempts
and aids the user in finding a solution, with the overall goal to convey specific
concepts and techniques of a given mathematical domain. To support the gener-
ation of appropriate feedback, each proposed proof step needs to be analyzed by
the system in the context of the partial proof developed so far. These tasks are
addressed by the Proof Step Verifier and the Granularity Analyzer.

Proof Step Verifier: The Proof Step Verifier verifies underspecified, ambigu-
ous, and incomplete proof steps as typically uttered by students in a tutorial dialog,
thereby resolving underspecification and ambiguities whenever possible. For this
task the Proof Step Verifier collaborates with the TaskLayer and bene-
fits from its ability to represent multiple alternative proof attempts for the same
proof obligation simultaneously. This feature of the TaskLayer is exploited to
dynamically represent and maintain all proof states that are consistent with the
ambiguous utterances of the student.
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The Proof Step Verifier internally maintains the relationship between
the proof step utterances obtained sequentially from the student and the corre-
sponding proof parts in each alternative proof in the TaskLayer. It exploits the
dependency relations for instance for backtracking, when the student takes back
a proof step or resumes her proof at an earlier stage. Once the student utters a
new proof step, the Proof Step Verifier determines for each derived consis-
tent proof state all possible successor proof states that are consistent with that
utterance. This may result in even more alternative proofs if that utterance was
ambiguous but it may also rule out certain proof alternatives that are no longer
consistent with the student’s utterance. More information on the Proof Step

Verifier is available in [6].

Granularity Analyzer: The Granularity Analyzer evaluates the argumenta-
tive complexity of student proof steps in a tutorial context. The problem is that
student proof steps may well be classified as correct by the Proof Step Veri-

fier but nevertheless be unacceptable from a tutorial perspective since they are
either to ‘big’ (to coarse-grained) or to ‘small’ (to detailed). The Granularity

Analyzer thus categorizes the step size of proof steps performed by the student,
in order to recognize if they are appropriate with respect to the given tutorial
context. The result of the granularity analysis for an uttered proof step is a granu-
larity judgment, which can take one out of three possible values: appropriate, too
detailed, and too coarse-grained.

To compute its granularity judgment the Granularity Analyzer exploits
the results of the proof step verification: It analyzes each student proof step with
respect to (i) the total number of steps required to prove the step, (ii) the number
of different concepts used in that proof, (iii) the number of concepts the student
has used before as well as the number of concepts not used before, (iv) the number
of new hypotheses introduced by the proof step, and (v) the number of introduced
subgoals. For this, the Granularity Analyzer employs a machine learning ap-
proach in which individual preferences and domain dependencies in the granularity
judgments can be learned.

2.2. Motivating Example

We illustrate the overall functioning of the Ωmega system and the roles of the
components Maya, TaskLayer, Multi, PlatΩ, and Ω-Ants with an example.
In this example student Eva wants to prove the commutativity of addition

∀x, y.x + y = y + x (2.1)

in the standard Peano axiomatization. Eva is typing this proof in the text-editor
TEXmacs (cf. Figure 2) while subsequently receiving assistance from the Ωmega

system running in the background.

Phase 1. After having specified the theory and the conjecture in TEXmacs, the
document is uploaded into Ωmega. That is, the whole document is passed to the
PlatΩ component which extracts the formal content of the document including
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Figure 2: Formalization of the example scenario in the scientific TEXmacs editor.

notational information to parse formulas. From the document PlatΩ builds up
the corresponding hierarchically structured theories including the open conjecture,
that is, Theorem (2.1) (resp. “Theorem 10.” in Figure 2). PlatΩ also computes
and maintains the information which part of the document corresponds to which
part of the structured theories. The latter is passed to the Maya component,
which generally maintains structured theories. Maya passes the proof strategies,
control rules, and symbol orderings to the proof planner Multi. Furthermore,
Maya initializes a proof for the open conjecture in the TaskLayer. Thereby,
definitions, axioms, and lemmas are automatically compiled into derived inference
rules and passed to the TaskLayer as well. The TaskLayer builds up a proof tree
and forwards the inference rules to the proof planner Multi and the suggestion
component Ω-Ants. Multi then initializes a proof planning session for the open
conjecture and the Ω-Ants system creates suggestion agents for the obtained
inferences.

Phase 2. Eva begins to prove the conjecture within TEXmacs. First, she requests a
hint from Ωmega on how she could possibly proceed. This request is passed on via
PlatΩ and the TaskLayer to Multi and Ω-Ants. Multi returns a list of avail-
able strategies (via TaskLayer and PlatΩ) back to the TEXmacs editor. From
this list Eva selects the strategy InductThenSimplify. This selection is reported
(via PlatΩ and TaskLayer) to Multi which then executes the strategy and
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applies an induction on x to the open conjecture in the TaskLayer. Immediately
afterwards, the strategy tries to simplify the resulting subgoals using a simplifi-
cation tactic. Unfortunately, however, the strategy does not succeed in finishing
the proof and terminates with the following two open subgoals: (2.1a) z = z + 0
and (2.1b) s(x + z) = z + s(x). The partial proof for Theorem (2.1), maintained
in the TaskLayer, now contains the executed induction and simplification proof
steps and these two new subgoals. These changes of the partial proof are compiled
into patch descriptions for the proof representation and then passed to PlatΩ

via Maya. PlatΩ transforms the obtained tree-like subproof representation into
a linear, text-style proof representation using pseudo-natural language. Moreover,
PlatΩ renders the formulas using the memorized notational information. Finally,
PlatΩ exploits the memorized relationship between structured theories and the
document, to generate a patch description for the document which is then passed
to TEXmacs.

Phase 3. Now Eva is confronted with the partial proof and the two new subgoals.
She quickly realizes that two lemmas are needed. Hence, she leaves the proof of
the theorem as it is and adds the following two lemmas somewhere in the TEXmacs
document:

∀x.x = x + 0 (2.2)

∀x, y.s(x + y) = y + s(x) (2.3)

Similar as before, these lemmas are uploaded into Ωmega, except that now only
patches are transferred. More concretely, a difference analysis is applied between
the old and the new version of the document, and only the new lemmas are parsed
and a patch description to add their formal counter-parts as open conjectures to
the theory is send to Maya. This, in turn, triggers the initialization of proofs in
the TaskLayer and the initialization of Multi and Ω-Ants, respectively.

Phase 4. Eva then tackles these lemmas one by one using the strategy InductThen-
Simplify (again automatically suggested by Multi) and succeeds in proving them
fully automatically. The resulting proof descriptions are again transformed into
proof patches that are included into the document via Maya and PlatΩ. How-
ever, since the lemmas are now proved, their status, which is maintained in Maya,
is set to proved. This, in turn, causes Maya to compile these lemmas and to pass
them as new available knowledge for the ongoing proof of Theorem (2.1) to the
TaskLayer.

Phase 5. Eva continues the proof of (2.1) and the Ω-Ants component now au-
tomatically suggests to apply the lemma (2.2) to the subgoal (2.1a) and the
lemma (2.3) to the subgoal (2.1b). Eva selects these suggestions one by one, which
then completes the proof. Note that the applications of the suggested lemmas are
actually executed by the TaskLayer, and, again, only the proof patch descrip-
tions are transformed into the patches to the TEXmacs document like before.
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2.3. Ωmega’s Realization as Component Network

The Ωmega system is composed of the state-full components introduced in Sec-
tion 2.1. These components are linked to their neighboring components via bidi-
rectional interfaces. Each component maintains and manipulates mathematical
knowledge represented in some suitable data format. This includes knowledge re-
ceived as input from other components and knowledge that is passed as output
to other components. It also includes knowledge which is stored only internally
and which is hidden from other components. Moreover, new knowledge is typically
inferred from knowledge available within these components.

An important aspect in our approach is that the components maintain also
connections and dependencies between the different kinds of knowledge they work
with. The communication between components is realized by exchanging relevant
knowledge in the form of documents. For this, each link in the network employs
a link-specific, semi-structured document format. It is allowed that different links
share the same document format. The bidirectional communication protocol be-
tween two network nodes, connected via a link of some document format is based
on patches for documents of this format. Instead of assuming one general patch

description language for all document formats, we allow each document format to
provide its own one. From an abstract perspective the network components act as
document transformation functions, one for each ordered pair of connected links.

If some change occurs in some component, this change needs to be propagated
through the whole system. In our component network this means that document
patches are propagated along the links. If a patch arrives in some component, it is
transformed into patches for all links connected to this component, including the
link from which it arrived.

For instance consider the following example fragment of Ωmega’s component
network:

PlatΩ Maya TaskLayer

After the student Eva has stated the new lemma (2.2) in our example session
and started its proof, PlatΩ propagates the information to Maya that there is
a new lemma Lemma-2.2 with status open and whose associated proof is empty
(nil). This information is encoded as Lemma-2.2(open, nil) and we depict the
update as

PlatΩ Maya TaskLayer

Lemma-2.2(open, nil)

=⇒

Maya integrates the update and in turn notifies the TaskLayer that there
is a new lemma (2.2) which is open and which has an empty proof (nil). Maya

also adds the information that in order to prove the lemma the set of inferences
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Nat+ are available. They have been synthesized and compiled by Maya from the
axioms defining the naturals and addition. This update is depicted by:

PlatΩ Maya TaskLayer

Lemma-2.2(open, nil, Nat+)

=⇒

As soon as the suggested strategy InductThenSimplify has successfully proved
lemma (2.2), the TaskLayer updates the status information for lemma (2.2) and
informs Maya about this change:

PlatΩ Maya TaskLayer

Lemma-2.2( proved , Induct-

ThenSimplify([])" , Nat+)

⇐=

Here we use the shading X to indicate information bits that have been modi-
fied. "([])" in "InductThenSimplify([])"indicates that the list of open subgoals
after application of the strategy is now empty.

The update of the status information is further propagated by Maya on the
link to PlatΩ. The information about the usable inferences is thereby omitted:

Lemma-2.2(proved, "InductThenSimplify([])")

Since lemma (2.2) is now available for proving the main Theorem (2.1) Maya

furthermore updates the information on the link to the TaskLayer by adding
the inferences automatically synthesized from that lemma:

Theorem-2.1(open, "InductThenSimplify([T, T’])", Lemma-2.2::Nat+)

Here T denotes the open task for subgoal (2.1a) and T’ the open task for subgoal
(2.1b). These two updates occur simultaneously, which is depicted as:

PlatΩ Maya TaskLayer

Lemma-2.2( proved , "In-

ductThenSimplify([])" )

⇐=

Theorem-2.1(open, "Induct-

ThenSimplify([T, T’])",

Lemma-2.2:: Nat+)

=⇒

Without any additional control, the update procedure may run into con-
flicting situations, where one component receives updates simultaneously from
different links. This phenomenon is similar to what can be observed in distributed
databases, where different transaction processes run concurrently.

We solved the problem as follows: A subset of directly connected components
is marked as the network’s kernel components. The invariant is that the kernel
components influence each other in a well-defined manner and mutual updates
are propagated until no more updates are triggered by these components. For all
other components of the network we impose that any change stemming from a
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Inferences Tasks Proof Knowledge
(Strategies, Control

Rules, Orderings, . . . )

DG views TL views

Maya-TaskLayer X X

PlatΩ-Maya X X

TaskLayer-Multi X X

Maya-Multi X

TaskLayer-Ω-Ants X X

Maya-Proof Step Verifier X X

TaskLayer-Gran. Analyzer X

Table 1: The fields marked by X indicate the document (sub-)formats communi-
cated and patched at the individual component interfaces.

component closer towards the kernel components never causes a change that must
be propagated towards the network kernel. Assuming such a network structure and
invariants, a change initially triggered at some arbitrary component is digested in
two phases as follows: In a first phase, the updates are only propagated towards the
kernel components. Any change triggered by intermediate components are also only
relayed towards the kernel components and the updates to any other component
are put on hold. Once the kernel components are reached, their reciprocal updates
are performed only among these components and until the system stabilizes. Only
then the updates are accumulated for the non-kernel components and propagated
outwards through the network in a second phase.

Initially, the system kernel consists of the Maya system and the TaskLayer.
However, to allow for a more efficient propagation of the knowledge during certain
phases, the kernel components can also change. As we will see later, the kernel
components can also consist of the TaskLayer and the Multi component.

3. Interfaces and Interplay of Components

We now present in more detail the interfaces between the different components
of Ωmega as depicted in Figure 1. For each interface, we describe the kind of
knowledge exchanged over that interface as well as the patch operations used by
the involved components to update the knowledge. The knowledge exchanged over
the interfaces comes in specific document formats. Typically they are abstractions
of the internal representations of the individual components. We first introduce
the different document formats in Section 3.1 before describing the individual
interfaces and patch operations in Section 3.2. Using our example scenario from
Section 2.2 we illustrate in Section 3.3 how the knowledge is propagated along the
individual interfaces in each phase of the example.
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3.1. The Document Formats used at the Interfaces

Different document formats are used at the individual interfaces and each docu-
ment format may be a combination of other document formats. Table 1 gives an
overview which document formats are used at which interface.

The inferences are the inferences of the TaskLayer and the tasks are the
open subgoals of the proof trees maintained in the TaskLayer. The proof knowl-

edge entails the strategy descriptions, control rules and symbol orderings used by
the proof planner. All these concepts have already been introduced in Section 2.1.
We now define the notions of TaskLayer views (TL views) and Development
Graph views (DG views).

TL views. The TaskLayer supports the representation of alternative proof steps
for both the (horizontal) reduction of a goal as well as for the (vertical) expansion
of a complex proof step to higher granularity. For the user or a component such
as Maya not all available information on these alternatives is typically needed
or desired. For this purpose the information being communicated is drastically
reduced, by means of a TL view, which selects only one horizontal layer of a
(partial or complete) proof, that is, a proof at a particular level of granularity.
This horizontal layer, however, contains all (horizontal) OR-alternatives of the
proof. Thus, TL views are (partial) proof trees where each subtree is annotated by
a task and a list of alternative justifications for that task.1 A justification is a list2

of proof trees for subtasks together with a description how the task can be justified
from the subtasks. Furthermore, a justification provides status information, such as
whether that justification has been verified and if more details about its verification
are available.

DG views. Remember that the internal representation of the Maya system are
development graphs. They contain the hierarchically structured axiomatic theories
including the conjectures as well as global proof obligations. Maya also maintains
dependency information, such as how global proof obligations are decomposed into
local proof obligations and which assertion has been used in which proof. Finally,
Maya maintains proof knowledge in various forms: (a) predefined inferences, such
as calls to external systems, (b) predefined, domain-specific or problem-specific
strategies and control rules that are used by Multi (c) derived information such
as the orderings among functions extracted from the definitions of these symbols.
Only a subset of all this information is interesting to communicate with other com-
ponents. Therefore we define Development Graph views (DG views) as a subset of
Maya’s internal representation that consists of (i) the structured theories, (ii) their
signature declarations, axioms, and conjectures, (iii) the global proof obligations
without decomposition information.

1If the list of justifications is empty, then the task is an open goal.
2This list can be empty, for instance in case of the axiom rule.
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3.2. The Interfaces

We now describe the patch operations used at the individual interfaces.

The Maya–TaskLayer Interface. Maya maintains the hierarchical theories and
the TaskLayer their proofs. The information exchanged at the interface between
these components consists of all conjectures in all theories along with their cur-
rently available inferences and their TL view. The patch operations for the infer-
ences are addition and deletion. The patch operations for TL views are addition
and deletion of proof steps, replacement of fragments of proof trees by other proof
tree fragments and modification of the status information of proof steps. The re-
placement of tree fragments is not restricted to proper subtrees and can be applied
to arbitrary fragments. This supports the selective and flexible change of proof
step granularities by a simple patch replacing a number of abstract proof steps
by their subproofs with a higher granularity or vice versa. Changing the proof
step granularity is a feature supported by the TaskLayer like the simultaneous
representation of (OR-)alternative sub-proofs.

The PlatΩ–Maya Interface. The information exchanged on that interface are hier-
archically structured theories. Each theory in Maya extends the imported under-
lying theories by signature declarations for new sorts and constants, axioms and
conjectures together with their TL views. The non-TL view parts of the theory
representation are the DG views and we denote the combined structured theory
representation as DG+TL views. The patch operations for DG+TL views include:
the addition or deletion of whole theories or theory elements such as sort dec-
larations, constant declarations, axioms and conjectures. It further includes the
patch operation on TL views as already described for the interface between Maya

and the TaskLayer. In contrast to the patch operations for replacement of frag-
ments of TL views, we currently do not support the modification of other theory
elements, such as changing an axiom by changing the formula. However, such an
extension is a hot topic for future work and will be discussed in Section 4.

The TaskLayer–Multi Interface. For each conjecture the TaskLayer maintains
simultaneously a proof at different (vertical) granularity levels and with OR-alter-
natives (horizontal). From each such complex proof object, Multi receives from
the TaskLayer a proof at one level of granularity, but with all OR-alternatives,
that is a TL view. The decision on which alternative proof the proof search should
proceed is part of Multi’s strategical proof search mechanism. For each TL view,
Multi also obtains all available inferences from the TaskLayer. Hence, the in-
terface representation is a list of triples that consist of conjectures along with their
corresponding TL view and available inferences. The patch operations are the ad-
dition or deletion of entire triples, the addition or deletion of inferences and the
patch operations for TL views.
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The Maya–Multi Interface. Maya maintains for each theory not only the available
assertions, but also domain specific inferences (such as calls to external systems),
strategy descriptions, control rules or symbol orderings. For each of its conjectures
Maya makes this information available on the interface to Multi. Aside from
adding and deleting whole entries, the patch operations are the deletion or addition
of elements for the different fields of an information record, like, for instance, the
addition of a strategy description or the ranking of two symbols.

The TaskLayer–Ω-Ants Interface. The Ω-Ants system obtains for each open task
in each proof maintained by the TaskLayer the list of inferences available for
that task. The patch operations consist of adding and deleting open tasks as well
as inferences. Consider as an example an inference that has been applied by the
TaskLayer on some open task and which resulted in two new tasks: the Ω-Ants

system is informed to delete the old task, to add the two new tasks and to search
now for suggestions how to apply inferences on the latter.

The Maya–Proof Step Verifier Interface. This interface has the same representa-
tion and patch operations as the interface between PlatΩ and Maya. However,
only a subset of the available patch operations are currently used. At present, the
Proof Step Verifier uploads the DG view that sets up the context of a proof
tutor exercise and then only adds or deletes individual proof steps. In the other
direction, Maya simply changes the status information of proof steps (checked vs.
unchecked).

The TaskLayer–Granularity Analyzer Interface. This interface uses TL views as
the interface representation and the corresponding patch operations for TL views.
The interface is currently unidirectional, since the Granularity Analyzer never
changes the TL view so that changes are only propagated from the TaskLayer

to the Granularity Analyzer.

3.3. Illustration of Information Flow

We now illustrate the functioning of the whole system by describing for each phase
of the example scenario (Section 2.2, p. 7) which patches are propagated via the
interfaces through the network.

Phase 1. After Eva has edited the formalizations in TEXmacs and stated the main
theorem, she uploads the document into PlatΩ. PlatΩ parses the document and
creates a corresponding DG+TL view for it, that consists of a single theory with
signature declarations and axioms and one conjecture with an empty proof. It

patches the representation on its interface with Maya, which is depicted by
1.1
=⇒

in Figure 3.

After updating its internal representation, Maya patches the document at
the interface with the TaskLayer by adding a new conjecture (Theorem (1.2)),
an empty proof for it and the list of inferences that are available to prove the
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PlatΩ Maya

Multi

TaskLayer Ω-Ants1.1
=⇒

1.2
=⇒

⇑1.4

1.3
=⇒

1.5
=⇒

Figure 3: Flow of document patches in Phase 1

conjecture. The inferences have been synthesized from the available axioms. Fur-
thermore, Maya patches its representation at the interface with Multi by adding
all available strategies, control rules and symbol orderings for the new conjecture.

The TaskLayer sets up a new active proof tree, and forwards the single
open tasks and inferences to the Ω-Ants system (1.5) and the corresponding TL
view and the related inferences to Multi (1.4). The Ω-Ants system initializes a
new agent society for the new open task and Multi starts a new proof planning
session based on the TL view and the received inferences. Multi also includes the
additional proof knowledge available for that conjecture obtained via its interface
with Maya (1.3).

Phase 2. Eva invokes the InductThenSimplify strategy provided by Multi, which
initially suggests to apply the inference that stems from the induction axiom. The
application request is passed over to the TaskLayer. At the same time, the kernel
components are switched temporarily to consist of the TaskLayer and Multi.
This allows Multi to apply multiple inferences before the patches are propagated
to the other connected components (Maya and Ω-Ants), which avoids unneces-
sary updates. The TaskLayer first applies the inference requested by Multi and
patches the TL view towards Multi (patch 2.1 in Figure 4).

PlatΩ Maya

Multi

TaskLayer Ω-Ants2.6
⇐=

2.5
⇐=

2.1⇑ ⇑2.2,⇑2.3

2.4
=⇒

Figure 4: Flow of document patches in Phase 2

After that, Multi requests the application of X + 0 = X and X + S(Y ) =
S(X +Y ) on either subgoal which gives rise to the patches 2.2 and 2.3. Finally, the
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InductThenSimplify strategy terminates. The kernel components are set back to
consist of Maya and the TaskLayer, and the accumulated patches are propa-
gated further: the old open task for Ω-Ants is removed and the two new open
tasks are instead propagated to Ω-Ants (2.4). Furthermore, the patch of the TL
view is applied on the interface to Maya (2.5) and further propagated to PlatΩ

(2.6). PlatΩ then integrates a description of the three new proof steps in pseudo-
natural language into the TEXmacs document. This completes the processing of
Phase 2.

Phase 3. In this phase Eva adds the lemmas (2.2) and (2.3) to the document.
The updates are propagated analogously to the updates in Phase 1, except that
the patch consists now only of the two additional conjectures with empty proofs.
These are inserted into the DG+TL view by PlatΩ and propagated to Maya (3.1
in Figure 5).

PlatΩ Maya

Multi

TaskLayer Ω-Ants3.1
=⇒

3.2
=⇒

⇑3.3

3.4
=⇒

3.5
=⇒

Figure 5: Flow of document patches in Phase 3

Maya forwards the empty TL views to the TaskLayer together with the
available inferences (3.2) and makes the strategies, control rules and ordering infor-
mation for these conjectures available to Multi (3.4). The TaskLayer initializes
two new proof trees and forwards the respective patches to Multi (3.3), which
creates two new proof planning sessions. The TaskLayer also forwards these
patches to Ω-Ants (3.5), which initializes the suggestion agents for the two new
open tasks.

Phase 4. Now Eva applies the InductThenSimplify strategy to both lemmas.
Similar to Phase 2, this triggers the repeated propagation of TL view updates
from the TaskLayer to Multi. We have summarized this by the single ⇑ 4.1
in Figure 6. Different to Phase 2 the strategies now succeed in proving the two
lemmas. The information that these two proofs are complete is propagated to Ω-

Ants (4.2), which then removes the open tasks and the suggestion agents, and
to Maya (4.3). Maya forwards the TL view patches for both lemmas to PlatΩ

(4.4). Furthermore, since the lemmas are now proved, the internal management of
Maya makes these lemmas subsequently available for the interrupted proof of the
main theorem. More concretely, it synthesizes the inferences for these two lemmas
and adds them to the available inferences for the main theorem by patching the
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PlatΩ Maya

Multi

TaskLayer Ω-Ants4.4
⇐=

4.3
⇐=

4.5
=⇒

4.1⇑ ⇑4.6

4.2
=⇒

4.7
=⇒

Figure 6: Flow of document patches in Phase 4

document at the interface to the TaskLayer (4.5). The TaskLayer propagates
these new inferences to Multi (4.6) and for both open tasks of the main proof
to Ω-Ants (4.7). Ω-Ants creates and includes the suggestion agents for these
inferences and is hence able to suggest the application of the lemmas in the next
phase.

Phase 5. Eva selects the two inferences suggested by Ω-Ants for the two subgoals
and requests the TaskLayer to apply them. The TaskLayer applies both which
completes the proof of the main theorem. It also informs the Ω-Ants system
to delete both open tasks (5.1, Figure 7) and patches the TL view for Multi

PlatΩ Maya

Multi

TaskLayer Ω-Ants5.4
⇐=

5.3
⇐=

5.2⇑

=⇒

5.1

Figure 7: Flow of document patches in Phase 5

(5.2) and Maya (5.3) accordingly. Maya in turn forwards the TL view patches to
PlatΩ, which integrates a pseudo-natural language description for the two new
proof steps into the TEXmacs document. Since the theorem is now proved, Maya

checks whether it should make it subsequently available for other proofs, like the
proved lemmas in Phase 4. However, since the proofs maintained in the Task-

Layer for these two lemmas contributed to establishing the main theorem, the
theorem is not propagated to them. This completes the description of how updates
of interface documents are propagated in each phase of our running example.
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4. Discussion

Why is the propagation of mathematical knowledge by non-monotonic patches a

good choice? To discuss this we consider the use case of interactive mathematical
authoring with TEXmacs. In this scenario a mathematician develops a mathemat-
ical document with definitions, axioms, theorems and proofs in the text-editor.
Efficient propagation of mathematical knowledge is essential here since the doc-
ument needs to be continuously synchronized with its formal counterpart in the
proof assistance system. If we always performed a global transformation, we would
rewrite the whole document in the text-editor. Consequently we would lose large
parts of the natural language text written by the user. On the other hand we would
lose the verification previously performed by the proof assistance system. For ex-
ample, any already verified proof or any computation result from external systems
would be lost. Clearly, propagating the changes between both sides preserves most
of the work done on either side.

Can we do better than just computing and propagating syntactic changes?

Currently, the document in the text-editor is structured which enables the medi-
ator PlatΩ to extract a tree-structured representation. Structured means here,
for example, that proof steps are classified into assumptions, facts, subgoal in-
troductions and other steps. Additionally, the syntactic formulas are converted
into structural formulas making variables and operators explicit. Any syntactic
change of the document is reflected in a change of the tree-structure and would
trigger changes inside the proof assistance system–even if the change was only a
reorganization of the document and semantically irrelevant.

How can we use the semantics to optimize the differencing mechanism? We
integrated the differencing mechanism XMLdiff [21] that can be parameterized
by equivalence classes for structural elements. This way we are able to efficiently
deal with document rearrangement : A proof has in general to be re-verified when
proof steps are permuted but not if the order of subgoals or the order of their
subproofs changes. The latter is in fact only syntax sugaring and irrelevant to
the formal verification. Although the document syntactically changes in that case,
such a modification is filtered out by specifying the equivalence class for subgoal
introductions in a way that their content, that is the subgoals und subproofs,
are orderless. Furthermore, for the formal verification all definitions, axioms and
theorems are visible inside the whole theory. Hence, a rearrangement has no effect
and does not need to be propagated from the text-editor to the proof assistance
system.

Can the semantics-based differencing be used for further improvements of

the authoring process? In [19] we describe a possible extension of the semantics-
based approach to ontology-driven management of change aiming at the support
of document refactoring. If an author for example modifies the formula ∀A, B.A =
B ⇔ A ⊂ B∧B ⊂ A to the formula ∀C , B.A = B ⇔ A ⊂ B∧B ⊂ A, the modified
variable (indicated by C ) is identified and instead of propagating this modification
to the proof assistance system we preview the renaming effects by displaying the
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formula ∀C , B. C = B ⇔ C ⊂ B ∧ B ⊂ C . By improving consistency on the
document level the semantic differencing should also act like a firewall blocking
erroneous input to prevent unnecessary verification of inconsistent input. When
the author modifies the initial formula in our example to ∀C , B. D = B ⇔ A ⊂
B∧B ⊂ A, the automatic adaptation fails in the former occurrence of the variable
A that has been renamed to D. Therefore the author will be asked whether or
not this conflict is intended. Moreover, by identifying dependent modifications we
are able to return a combined meta change information. Considering the example
with the old formula ∀A, B.A = B ⇔ A ⊂ B ∧ B ⊂ A and the new formula
∀C , B. C = B ⇔ C ⊂ B ∧ B ⊂ C , we propagate the α-conversion of the
variable A to C as replacement {A 7→ C} instead of propagating the renaming
of each single occurrence of the variable A in that formula. The implementation
of this extension of the management of change mechanism is on the way. The
main obstacle for the support of evolutionary proof authoring is that changes
may invalidate proofs, which then need to be rebuilt using an inhibitive amount of
resources. Therefore we will investigate whether a set of edit operations in the text-
editor can be classified into preconceived transformations [22] that are operating
on the state of the formal development, motivated by the question: How would one

patch the proofs on paper given a consistent transformation?

Although mathematical knowledge management clearly benefits in our sce-
nario from the presented techniques, there is room for many improvements. For
example, the differencing mechanism could be extended to detect the replacement
of equivalent subterms. Adding a property to a definition could automatically
result in a new case popping up in an existing proof rather than pruning and
reworking that proof.

What is required to efficiently deal with changes? If the components support
only the change operators addition and deletion the system only supports a lim-
ited management of change. However, efficient document refactoring requires the
system-wide support of the change operator update. Otherwise, proofs are always
pruned when definitions used are slightly modified, even if a simple proof repair is
possible.

Is it always reasonable to propagate arbitrary small changes? The more elab-
orate the semantics-based differencing mechanism gets, the more expensive it gets.
We need to develop a framework for estimating these costs in order to decide on
which granularity level changes have to be propagated. The level of granularity
also depends on the least common level supported by all system components. For
example, it does not make sense to compute subterm differences, like variable
renaming, for formulas in the text-editor when the proof assistance system only
supports the replacement of whole formulas.
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5. Related Work

The design of the new Ωmega system as a component network shares many as-
pects of service oriented architectures (SOA) [16]. In fact, we follow and apply
many prominent SOA principles: A main objective in our work has been to mod-
ularize the overall mathematical assistance system into reusable individual au-
tonomous components of appropriate size. Our components single out and encap-
sulate well defined subtasks of the overall mathematical assistance system and
they hide and abstract the component-internal reasoning and knowledge mainte-
nance/management processes from the outer world. The components are interop-
erable and depend on the specific application context (interactive theorem proving
inside TEXmacs or proof tutoring in Dialog). They are composed in a suitable
way so that they can optimally serve the specific needs. Different to SOA we do
not employ service contracts but develop own mathematical document formats to
serve our specific needs. Moreover, our mathematical documents so far are not
compliant to industrial standards.

The way proof updates are handled in our approach differs to the best of our
knowledge significantly from the way they are handled in other proof assistants,
for example, Isabelle [20], Coq [25], or HOL [14]. Two prominent user interfaces
for such proof assistants are CtCoq [11] and ProofGeneral[2]. In these systems
the user develops a proof of a particular theorem of a given theory in form of a
proof script by textually typing commands in an ASCII text editor. Feedback in
form of information about the open goals and other messages are sent to separate
buffers of the text editor. Proof scripts are composed of commands and they can be
stepwise executed by moving the execution point of the proof script. The already
executed parts of a proof script are thereby locked to avoid accidental editing.
The current execution point is visible in the document. An undo step moves the
execution point one step backwards.

In our approach a proof step or an undo operation corresponds to a document
update which allows for more general updates as is possible in the work cited above:

Locality of Proof Script Updates. In CtCoq and ProofGeneral an update
can only be performed at the current execution point, while in our approach
the user can directly edit arbitrary parts of the proof script, in which case a
corresponding patch description is sent to the proof assistance system.

Parallel Editing of Proof scripts. Our approach allows the user to edit the proofs
of several theorems simultaneously, which is not possible if updates are re-
stricted to one reference point only. In the latter case there is obviously no
need for an advanced update mechanism for proved theorems, since the asser-
tions that are available at a specific reference point are always those which
are available in the theory plus those proved in the document before the
reference point. In our approach we have to deal with more complex situa-
tions and rely on the elaborate truth maintenance capabilities of the proof
assistance system.
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A more sophisticated theory update mechanism that comes close to our ap-
proach is implemented in Matita [1], which is an interactive theorem prover, that
organizes the mathematical knowledge in a searchable knowledge base. To ensure
consistency of the library, Matita employs two mechanisms called invalidation

and regeneration. If a mathematical concept is changed, the concept itself and
all concepts depending on it are invalidated and need to be regenerated to ver-
ify whether they are still valid. To regenerate an invalidated part of the library,
Matita re-executes the scripts that produced the invalidated concepts.

In our approach we do not invalidate the complete proofs, but only those
proof steps that depended on a changed part: for these parts we would also have
to re-execute the scripts. However, we refrain to do so, because re-execution of
scripts is time consuming and in our interactive settings the response time of the
system is crucial. Therefore our objective has been to extend the update mecha-
nisms to propagate modifications and develop mechanisms to repair proofs locally
depending on the kinds of modification.

6. Conclusion

We have presented the component network based design and implementation of the
new Ωmega system, and we have described the mathematical knowledge manage-
ment and transformation techniques required to organize the overall functioning
of the system in different application contexts. The challenge was that throughout
the system various kinds of given and derived knowledge occur in different formats
and with different dependencies. These pieces of knowledge and their dependencies
need to be maintained and, if changes occur in some component, they need to be
effectively propagated.

The approach described in this article enables a rather flexible and indepen-
dent addition of new system functionalities while assuring a maintainable system
code by clear separation of concerns and decomposition of the system into individ-
ual components with its own internal representations. The architecture provides
an adequate basis for truth maintenance techniques that accommodates the non-
monotonic evolution of mathematical knowledge by enforcing the propagation of
updates as the basic communication means between components. To our knowl-
edge, basing the processing style of a whole mathematical assistance system on a
non-monotonic update style rather than an incremental input processing style has
not been addressed as systematically as in our approach.

Future work includes further investigation of the component network archi-
tecture and, in particular, the replacement of the current pragmatic change prop-
agation mechanism by a general mechanism exploiting structural properties of
the network. We also want to study how updates can be more efficiently propa-
gated through the network and explore further techniques to merge updates ob-
tained from different components. Moreover, we plan to integrate a service-passing
mechanism where functionalities of remote components can be requested via the
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network. On the application side, we plan to investigate domain-specific change
protocols based on typical transformations of the mathematical knowledge (see for
example [22]) towards supporting mathematical knowledge refactoring.
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