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Abstract

We present an implemented approach for domain-
restricted question answering from structured knowl-
edge sources, based on robust semantic analysis in a
hybrid NLP system architecture. We build on a lexical-
semantic conceptual structure for question interpreta-
tion, which is interfaced with domain-specific con-
cepts and properties in a structured knowledge base.
Question interpretation involves a limited amount of
domain-specific inferences and accounts for quantifi-
cational questions. We extract so-called proto queries
from the linguistic representation, which provide par-
tial constraints for answer extraction from the under-
lying knowledge sources. The search queries we con-
struct from proto queries effectively constitute mini-
mum spanning trees that restrict the possible answer
candidates. Our approach naturally extends to multilin-
gual question answering and has been developed as a
prototype system for two application domains: the do-
main of Nobel prize winners and the domain of Lan-
guage Technology, on the basis of the large ontology
underlying the information portal LT World.

Introduction
The recent TREC and CLEF competitions have engen-
dered significant progress both in the underlying research
and the performance of practical Question Answering (QA)
systems. While these competitions are focusing on open-
domain textual QA on the basis of large document bases,
there is increasing interest in QA in restricted domains.
There are several motivations for this move. First, where
open-domain QA exploits the wealth of information on the
Web, it is also confronted with the problem of reliability:
information on the Web may be contradictory, outdated, or
utterly wrong. Second, the utilisation of formalised knowl-
edge in a restricted domain can improve accuracy, since both
questions and potential answers may be analysed w.r.t. to the
knowledge base. Third, there is a market for accurate spe-
cialised information management solutions in both business
intelligence and public administration.

QA systems for restricted domains may be designed to
retrieve answers from unstructured data (free texts), semi-
structured data (such as XML-annotated texts), or structured
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data (ontologies or data bases). Whenever structured data
can be exploited, this option offers clear advantages over
open text QA. However, despite a tendency towards deeper
analysis, current techniques in QA are still knowledge-lean
in exploiting data redundancy and paraphrasing techniques.
That is, textual QA works on the assumption that the answer
to a question is explicitly stated in some textual passage—
which is typically not the case in restricted domains.

Question answering applied to restricted domains is there-
fore interesting in two important respects. Restricted do-
mains tend to be small and stable enough to permit care-
ful modelling in terms of structured knowledge bases that
can serve as certified information sources. More importantly
though, QA in restricted domains requires techniques that
crucially differ from the techniques that are currently applied
in open-domain textual QA. Since document sizes tend to
be small, textual QA techniques cannot exploit data redun-
dancy. Further, both in domain-restricted textual QA and QA
from structured knowledge sources, we cannot expect the
answer to a given question to be explicitly stated.

Since the question is the primary source of information to
direct the search for the answer, a high-quality question anal-
ysis is of utmost importance in domain-restricted QA. Since
the answer may not be literally stated in the underlying doc-
ument or knowledge base, we need a semantic interpretation
of the question that can be tightly connected to the domain
knowledge sources and the process of answer extraction.

In this paper we present an approach to domain-restricted
QA from structured knowledge sources that starts from these
considerations. We focus on a high-quality deep linguistic
analysis of the question, with conceptual-semantic interpre-
tation of the question relative to the chosen application do-
main. Our approach extends to multilingual QA scenarios
and provides a natural interface to the underlying knowledge
bases, enabling flexible strategies for answer extraction.

In the following we give an overview of the architec-
ture and the base components of the system. We introduce
the main aspects of domain modelling for our two applica-
tion domains: Nobel prizes and Language Technology. We
then describe our approach to question analysis. We start
from HPSG analyses of questions, which are enriched with a
conceptual-semantic representation that can be further mod-
ified by domain-specific inference rules. Next, we describe
the interface between question interpretation and domain



ontologies. We define a mapping between domain-specific
concepts in the semantic representation of the question and
corresponding concepts in the underlying domain ontology.
This mapping is used to extract so-called proto queries from
the semantic representation of the question. These abstract
query patterns are translated to concrete data base or on-
tology query language constructs in the answer extraction
phase. We go into the details of the concrete query construc-
tion and explain how a proto query can be mapped to SQL
in the MySQL system and to SeRQL in the Sesame RDF
framework. We conclude with a preliminary evaluation of
our system and a short comparison to earlier approaches.

Architecture and Domain Modelling
Overall system architecture The QA system for struc-
tured knowledge sources described below is part of a gen-
eral QA system architecture, the QUETAL1 architecture. The
hypothesis underlying the QUETAL architecture design is
that QA systems perform best if they combine virtues of
domain-specialised and open-domain QA, accessing struc-
tured, semi-structured, and unstructured knowledge bases.
The core idea is that—instead of providing specific in-
formation portals (with system-specific user interfaces)—
the QUETAL system provides a single and uniform natural
language-based QA access to different information sources
that exhibit different degrees of structuring.

The QUETAL architecture is hybrid in two senses. The
question analysis is hybrid in that shallow and deep NLP are
combined to yield both robustness and a rich semantic rep-
resentation of questions. The answer document base is hy-
brid in that three types of information sources are employed:
(i) unstructured text retrieved via Web-based or local full-
text search engines and information retrieval systems, (ii)
semi-structured text that has been enriched offline with IE
and NLP techniques, and (iii) structured fact databases, e.g.,
ontologies and traditional relational databases containing
domain-specific facts, relations, and concepts.2

In the overall QUETAL architecture, the QA process starts
with linguistic analysis and a subsequent interpretation of
the question. After a question type has been identified to-
gether with the expected answer type, one (or more than
one) information source is selected to retrieve answer candi-
dates. From these, an answer is prepared. As QUETAL sup-
ports crosslingual QA, the architecture integrates intermedi-
ate translation stages (Neumann & Sacaleanu, 2003).

Architecture for domain-restricted QA The architec-
ture for domain-restricted QA from structured knowledge
sources (Figure 1) is embedded in the general QUETAL
architecture. A question is linguistically analysed by the
Heart-of-Gold (HoG) NLP architecture, which flexibly in-
tegrates deep and shallow NLP components (Callmeier et
al., 2004), e.g., PoS tagger, named entity recognition and
HPSG parser. The semantic representations generated by the

1See the QUETAL project homepage at http://quetal.dfki.de.
2See Neumann & Sacaleanu (2003, 2004) for textual QA in

QUETAL. Semi-structured text is not yet covered by the current
system, but will be addressed at a later stage of the project.

Figure 1: QA from structured knowledge sources.

HoG are then interpreted and a query object is generated
that contains a proto query. This proto query can be viewed
as an implementation-independent, ‘higher-level’ represen-
tation of a data base or ontology query. From this, an in-
stance of a specific data base or ontology query is con-
structed. From the result(s) returned by the queried informa-
tion source, an answer object is generated which forms the
basis for subsequent natural language answer generation.

Domain Modelling and Inference Services
The Nobel Prize Ontology and Data Base The domain
ontology plays a crucial role in our approach. It is used as the
interface between question analysis, answer extraction and
knowledge database design. We chose Nobel Prize as our
initial subject domain, since it is a domain for which both
complete records of all awarded prizes in structured formats
and thousands of free texts about awards and laureates can
be found on the web.3 Furthermore the data are manageable
in size, authoritative and can be used as our gold-standard for
evaluation of the QA task. Here we focus on the exploitation
of the structured data for QA.4

We started our specification with an existing general on-
tology as reference. Two sources have been selected: the
knowledge-engineering-based top-level ontology SUMO
(Niles & Pease, 2001) and its mid-level specification MILO
(Niles & Terry, 2004), and on the other hand the structured
thesaurus WordNet (Miller et al., 1993). Since there is a
mapping between the artificial concepts in SUMO and the
word senses in WordNet (Niles & Pease, 2003), we decided
to choose the SUMO ontology as our backbone and define
sub-concepts by referring to the mapping between SUMO
concepts and WordNet word senses.

The main concepts in our application domain are prize,
laureate, prize-area, incl. domain-independent gen-
eral concepts, such as person or organization. Fig-
ure 2 lists some of the mappings between domain con-
cepts and SUMO concepts. laureate corresponds to the
SUMO concept cognitiveAgent, inheriting therefore its
two subconcepts human and organization. Most subcon-
cepts of the concept prize-area, except for Peace, are

3Peace Nobel Prizes (as many other prizes) can be also awarded
to organisations and not just to persons.

4The utilisation of structured data as seed data for learning IE
patterns is described in Uszkoreit & Xu (2005).



subconcepts of the general concept fieldOfStudy, e.g.,
Chemistry. Each concept is further specified by its at-
tributes. E.g., person is assigned the attributes firstname
and surname. The concepts are organized via hierarchical
relations. In addition to the domain-specific relations, such
as nobel-prize-nomination, we also model some gen-
eral relations like person-affiliation.

type domain SUMO
entity prize award, . . .

entity laureate cognitiveAgent
entity person human
entity organization group
entity prize-area fieldOfStudy
event nobel-prize-winning unilateralGetting
event nobel-prize-nomination declaring, deciding

Figure 2: Mappings between domain and SUMO concepts.

The LT WORLD Ontology and Data Base As our second
scenario for domain-restricted QA, we have chosen the Lan-
guage Technology World information portal (http://www.lt-
world.org). LT WORLD is an ontology-based virtual infor-
mation center on Human Language Technology, providing
information about people, products, resources, projects, and
organisations. The service is free and is provided by the Ger-
man Research Center for Artificial Intelligence (DFKI) to
the R&D community, potential users of language technolo-
gies, students and other interested parties.

Most of the concepts referred to in LT WORLD have
a direct counterpart in its underlying ontology (Uszkor-
eit, Jörg, & Erbach 2003). For example, people actively
working in Language Technology are modelled as instances
of the class/concept Active Person. This concept is a
subclass of Players and Teams which has further sub-
classes such as Projects or Organisations. The fact
that people coordinate projects is represented by the prop-
erty/role hasCoordinated which maps from People ∪
Organisations (domain) to Projects (range).

The original ontology behind LT WORLD made use of
RDF and RDF Schema. The ontology has recently been
ported to the Web ontology language OWL, the new emerg-
ing language for the Semantic Web that originates from the
DAML+OIL standardisation. OWL still makes use of con-
structs from RDF and RDFS such as rdf:resource or
rdfs:subClassOf, but its two important variants OWL
Lite and OWL DL restrict the expressive power of RDFS,
thereby ensuring decidability. What makes OWL unique
(as compared to RDFS) is the fact that it can describe
resources in more detail and that it comes with a well-
defined model-theoretical semantics, inherited from descrip-
tion logic (Baader et al. 2003). The description logic back-
ground furthermore provides automated reasoning support
such as consistency checking of the TBox and the ABox,
subsumption checking, etc. Even though the least expres-
sive variant of OWL, viz., OWL Lite has an EXPTIME
worst-case complexity, optimised implementations based on
tableaux algorithms are known (Horrocks, Sattler, & Tobies
2000), which actually work well for most practical cases and
have been implemented in a few systems (see below).

Inference Services The new LT-WORLD ontology was
developed using the OWL plugin of the Protégé knowl-
edge base editor (Knublauch, Musen, & Rector 2004). This
version of Protégé comes with partial OWL Lite support
by means of the Jena Semantic Web framework (Reynolds
2004).

The latest version of LT WORLD consists of more than
600 concepts, 200 properties, and 17,000 instances. From
an RDF point of view, we have more than 400,000 unique
triples. It was confirmed by several tests that querying the
ontology through Jena (using RDQL) will take too much
time, the main reason being that the OWL reasoner uses
the rule engines in Jena for all kinds of inference, especially
when querying for instances of a specific concept, meaning
that we are not only interested in the direct instances, but
also in instances of subconcepts of this concept.

We then experiment with implemented description logic
systems providing OWL support. The FaCT system (Hor-
rocks 1998) seemed a good candidate but does not pro-
vide much ABox support, which is vital for us (17,000 in-
stances) and other Semantic Web applications. For a long
time, we were using the Racer system (Haarslev & Möller
2003). Racer helped to uncover many modelling errors in
LT WORLD which fell through the “grid” of Protégé/Jena.

During ontology development, the number of instances
grew and the complexity of instance descriptions raised. Un-
fortunately, it turned out that the ABox does not scale up
well: 5,000 instances is the maximum that Racer can han-
dle when complex queries on parts of LT WORLD are pro-
cessed. TBox reasoning (as is the case for the FaCT system)
is fine, though.

Therefore we moved to RDF data base systems (see Guo,
Pan, & Heflin 2004). Even though we are developing OWL
ontologies (LT WORLD) with Protégé, the information that
is stored on disk is still RDF on the syntactic level. We
are thus interested in RDF DB systems which make sense
of the semantics of OWL and RDFS constructs such as
rdfs:subClassOf.

We solved the scalability problem by porting the ontol-
ogy to Sesame (http://www.openrdf.org/), an open-source
middleware framework for storing and retrieving RDF data.
Sesame partially supports the semantics of RDFS and OWL
constructs via entailment rules that compute “missing” RDF
triples in a forward-chaining style at compile time. LT
WORLD originally consists of about 200,000 RDF triples,
resulting from the 17,000 instances. The closure computa-
tion adds almost the same number of new entailed triples,
so that Sesame must handle in the end 404,767 statements.
Closure computation is fast and takes only a few seconds of
real time on a mid-size Linux machine.

Since sets of RDF statements represent RDF graphs,
querying information in an RDF framework means to spec-
ify path expressions. Sesame comes with a powerful query
language, SeRQL. It includes: (i) generalised path expres-
sions, including multi-value nodes and branches, (ii) a re-
stricted form of disjunction through optional matching, (iii)
existential quantification over predicates, and (iv) Boolean
constraints. We will see below that all of the above features,
even predicate quantification (which gives us some decid-



able second-order expressiveness here) are needed to arrive
at a SeRQL query to correctly constrain the object retrieval
from LT WORLD.

Sesame has been tested with several 100,000 instances
(Guo, Pan, & Heflin 2004). Its storage model can be con-
figured by either using an existing data base system (e.g.,
PostgreSQL, MySQL, or Oracle) or by going for a pure in-
memory representation of the data. We have opted for the
latter version in LT WORLD to speed up query time. The
system scales up very well, giving satisfactory performance.
The memory footprint ranges from 70 to 200 MBytes.

Question Analysis and Interpretation
Hybrid NLP for Question Analysis For question analy-
sis we employ deep HPSG syntactic and semantic analysis.
HPSG parsing is efficiently performed using the PET parser
(Callmeier, 2000). For increased robustness, the parser is
embedded in an NLP processing platform for integrated
shallow and deep analysis, the Heart-of-Gold (HoG) ar-
chitecture (Callmeier et al., 2004). Within this architec-
ture, HPSG parsing is seamlessly integrated with the In-
formation Extraction system SProUT (Drożdżyński et al.,
2004). SProUT performs named entity recognition on the
basis of unification-based finite-state transduction rules and
gazetteers. It provides structured representations both for
general named entity classes and domain-specific terms and
named entities. The Heart-of-Gold architecture is designed
for integration of NLP components for multiple languages.

In our QA application we are using wide-coverage HPSG
grammars for English (Baldwin et al., 2004) and German
(Crysmann et al., 2002). Both grammars are integrated with
shallow NE recognition. HPSG parsing delivers semantic
representations in the formalism of Minimal Recursion Se-
mantics (MRS) (Copestake et al., 2005). MRS is designed
for underspecification of scope ambiguities, using a flat,
non-recursive representation format. A variant of MRS, Ro-
bust Minimal Recursion Semantics (RMRS) has recently
been designed in Copestake (2003), facilitating the integra-
tion of deep semantic structures with partial semantic struc-
tures, as produced by more shallow NLP components, such
as chunkers or robust PCFGs. Within the HoG architecture,
RMRS constitutes the interchange format for all the differ-
ent NLP components, including named entity recognition.

Figure 3 displays an RMRS produced by HPSG pars-
ing, along with RMRS representations from the NE recogni-
tion. The RMRSs of the SProUT NER component are highly
structured, IE-like NE representations, decomposing, e.g., a
person name into surname and given name relations. The
identified NE classes are further mapped to coarse-grained
HPSG NE-types (cf. named abb rel), which are directly de-
livered to the HPSG parser to enhance robustness.

Question interpretation RMRS representations of ques-
tions are marked by way of a semantic relation int m rel,
for interrogative message type. In wh-questions, interroga-
tive pronouns introduce sortal relations for the queried con-
stituent, such as person rel (who), time rel (when), etc. For
wh-phrases with nominal heads, the semantic relation intro-
duced by the nominal constrains the semantic type of the
queried constituent (cf. year rel in Figure 3). Yes/no ques-

tions are simply marked as interrogative by int m rel. Im-
perative sentences such as “List all persons who work on
IE.” introduce an imperative message type imp m rel.

While the RMRS representation of questions encodes
important semantic information for question interpretation,
such as message type and the marking of wh-phrases, the
representation must be further enriched in order to de-
rive concise queries for answer extraction from structured
knowledge sources. The minimal information we need to
identify is the queried variable (q var) in the RMRS logi-
cal form. We further want to determine sortal information
for the queried variable, that is, the expected answer type
(EAT). This information is usually employed in textual QA
systems, but can also be effectively used for answer extrac-
tion from structured knowledge sources, as will be discussed
below.

The semantic interpretation process is driven by a term
rewriting system (Crouch, 2005) that takes as input the
RMRS analyses provided by “general purpose” HPSG pars-
ing, along with the RMRS for recognised named entities.
We apply interpretation rules that refer to (partial) argument
structures in the RMRS in order to identify and mark the
queried variable q var in the logical form of the RMRS. We
further determine the ontological type of the queried vari-
able, which provides important semantic constraints for an-
swer extraction. Pronominal wh-phrases introduce a seman-
tic relation for the queried variable, such as person, loca-
tion, or reason. For these general concepts, as well as for
wh-phrases headed by common nouns, we perform a con-
cept lookup, either by selecting an ontological class from
SUMO, by way of its WordNet lookup facility, or else
by directly mapping the lexeme to its corresponding do-
main concept.5 For the example displayed in Figure 3, this
yields the additional semantic constraints: q var(x10) and
EAT(x10, ’year’), with x10 the variable corresponding to
“year”. These are encoded in the RMRS by way of elemen-
tary predications (EPs) q focus and EAT rel, as seen below.
In both EPs the value of ARG0 identifies the queried variable.
EAT rel in addition encodes the feature SORT, which takes
as value the sortal type determined for the queried variable.

[

REL q focus
ARG0 x10

]



REL EAT rel
ARG0 x10
SORT year





The RMRS as a logical form now explicitly encodes the
queried variable, with ontological restrictions as sortal con-
straints. The remaining EPs define relational constraints on
the requested information: in our example we are looking
for the time when a Nobel prize was won by a person named
“Nadine Gordimer”, where the area was “Literature”. These
are the key relational constraints that need to be satisfied
when retrieving the answer from the knowledge base.

It is the task of question interpretation to identify these
relational constraints on the basis of the semantic represen-
tation of the question. These constraints can then be trans-
lated to a search query in the formal query language of the

5In our current prototype system concept lookup is encoded
manually. In future work we will experiment with automated meth-
ods for concept lookup similar to (Burchardt, Erk, & Frank, 2005).



Figure 3: RMRS of HPSG analysis (left) and SProUT NE recognition (right).

underlying knowledge base. We perform this task in three
steps: We first project a conceptual, frame semantic repre-
sentation from the RMRS of the question. On the basis of a
pre-defined set of domain-relevant frames and roles, we ex-
tract from this representation relational constraints for query
construction. These relational constraints, defined in a so-
called proto query, are then translated to a search query with
corresponding domain-specific concepts and properties, to
retrieve the requested information from the knowledge base.

The motivation for this approach is twofold: First, the
projection of a lexico-conceptual structure yields a norma-
lisation of the semantic representation that naturally ac-
counts for linguistic variants, or paraphrases of questions.
It further constitutes a natural approach for multilingual and
crosslingual QA in restricted domains. Second, by defining
a set of domain-relevant frames and roles, we can establish
a modular interface between the linguistically determined
conceptual-semantic representation of the question and the
concepts of the underlying knowledge bases. On the basis
of a mapping between domain-relevant frames and corre-
sponding concepts in the domain ontologies, we efficiently
identify and extract the domain-relevant constraints from the
semantic representation of the question. These constraints
are encoded in the proto query that is handed over to the an-
swer extraction process. Evidently, the use of abstract proto
queries gives us a clean interface that abstracts away from
the syntax and functionality of the backend query languages.

Mapping RMRS to conceptual representations To ob-
tain a conceptual semantic representation for the question,
we project a frame semantic representation from the RMRS.
Frame Semantics is pursued in the FrameNet project (Baker,
Fillmore, & Lowe, 1998). FrameNet is building a database
of frame semantic descriptions for English verbs, nouns, and
adjectives, where a frame models a conceptual situation with
concept-specific roles that identify the participants in the sit-
uation. In addition, FrameNet defines peripheral or extra-
thematic roles, such as MANNER and TIME (cf. example (1)).

(1) [Grant RECIPIENT ] obtainedGETT ING [his first degree
T HEME] [by attending evening classes at Queen Mary
College, London MANNER].

Due to their design as conceptual semantic structures,
frames account very naturally for the normalisation of para-

phrases. For illustration, consider the semantically equiva-
lent paraphrases in (2.a), which are typical expressions for
requesting information about Nobel prizes. HPSG semantic
representations in terms of (R)MRS are tailored to account
for structural semantic properties such as quantifier scoping
and predicate-argument structure, and thus still reflect the
various different argument structures involved, as illustrated
in (2.b). Following related work in Frank & Erk (2004), we
enrich the RMRS representation with a frame semantic pro-
jection, by mapping the different argument structures to their
corresponding frame structure, which states the name of the
frame and its roles. An example of a frame assignment rule
is given in (2.c). (2.d) displays the uniform frame semantic
representation obtained from the RMRS variants in (2.b).

(2) a. (win/ be awarded/ obtain/ get/ be winner of) a prize
b. Different argument structures in RMRS





















REL win/get/
obtain

ARG0 e1
ARG1 x1
ARG2 x2











∨











REL award
ARG0 e1
ARG1 u1
ARG2 x2
ARG3 x1











∨





REL winner
ARG0 x1
ARG1 x2















[

REL prize
ARG0 x2

]

c. RMRS-based frame assignment rules






REL win
ARG0 e1
ARG1 x1
ARG2 x2







[

REL prize
ARG0 x2

]

⇒







GETTING e1
SOURCE u1
THEME x2
RECIPIENT x1







[

AWARD x2
LAUREATE x1
DOMAIN u3

]

d. Conceptual (frame semantic) representation






GETTING e1
SOURCE u1
THEME x2
RECIPIENT x1











AWARD x2
LAUREATE x1
DOMAIN u3





Inferences The frame semantic representations can be fur-
ther enriched by applying simple inference rules.

Frames define a number of core frame elements, which
can be understood to be existentially quantified even in cases
where the role is not overtly realised. Thus, we can introduce
non-instantiated argument variables for unexpressed frame
elements (e.g., SOURCE in the GETTING frame in (2)).



We further define domain-specific inference rules that can
be derived from inherent semantic relations between frames.
The rule in (3), for example, defines that whenever there is
an AWARD frame where the role LAUREATE refers to some
variable in the logical form, this variable in turn projects a
frame LAUREATE, with its own specific core semantic roles,
such as NAME, etc. By application of rule (3) we extend the
frame representation in (2.d) with an additional frame LAU-
REATE, bound to the variable x1. Inferences of this type turn
out to be very effective to obtain maximally connected frame
semantic representations.

(3)
[

AWARD x2
LAUREATE x1

]

⇒
[

LAUREATE x1
NAME u5

]

In addition we define a number of inference rules that are
crucial to bridge mismatches between the conceptual repre-
sentation that is generated from the linguistic structure and
the conceptual model structure of the underlying knowledge
base. In example (4), the linguistic analysis of the question
renders a frame semantic structure where the temporal mod-
ifier of the winning event is mapped to the TIME role of the
GETTING frame. The domain ontology, however, does not
encode a concept that corresponds to the GETTING frame.
Instead, this temporal information is encoded as a property
of the award. Mismatches of this type can be accounted for
by inference rules, as in (4.c). The rule states that if there
is a GETTING frame where the THEME is an AWARD, and
its TIME role refers to some temporal variable, the AWARD
frame inherits the value of this TIME role. This corresponds
to an inference according to which the time of receiving an
award is equal to the time (attribute) of the award.

(4) a. When did Marie Curie win the Physics prize?

b. Partial RMRS and frame semantic projection




REL sciencearea
ARG0 x3
CARG physics









REL person
ARG0 x1
CARG Marie Curie





[

REL q focus
ARG0 t1

]



REL eat rel
ARG0 t1
SORT time















GETTING e1
SOURCE u1
THEME x2
RECIPIENT x1
TIME t1

















AWARD x2
LAUREATE x1
DOMAIN x3
TIME u2











LAUREATE x1
NAME Marie Curie
AFFILIATION u6





c. Inference rule




GETTING e1
THEME x2
TIME t1





[

AWARD x2
TIME u2

]

⇒
[

AWARD x2
TIME t1

]

Inferences of this type allow us to map linguistically deter-
mined frame semantic representions to the structure of the
domain ontology, and thus, to extract appropriate query con-
straints for answer extraction. This will be discussed below.

Multilinguality Our approach to question interpretation
naturally extends to multilingual and crosslingual QA sce-
narios. Since frames are defined as conceptual structures,
they are to a large extent language independent. Thus, ques-

tion interpretation in terms of a frame semantic representa-
tion effectively implements an interlingua approach for QA.

In our NLP architecture, HPSG grammars for different
languages—here, German and English—provide semantic
structures in the uniform formalism (R)MRS. The language-
specific relations in these semantic forms are translated by
language- and lexeme-specific frame projection rules to a
common, language-independent frame semantic representa-
tion. The remaining parts of the question interpretation and
answer extraction processes are then uniform across lan-
guages. Both the domain-specific inference rules and the
rules for the extraction of proto queries uniformly operate on
the language-independent frame semantic representations,
thus they are applied to the same type of intermediate struc-
tures in question interpretation, irrespective of whether they
were produced by German or English HPSG grammars.

For crosslingual QA from structured data we perform
term translation for instances (i.e., named entities) and
domain-specific terms of the knowledge base that can appear
as values in search queries constructed from the question.

Interfacing Question Interpretation and
Domain Ontologies

Mapping frames to domain concepts For the extraction
of queries to the domain knowledge bases we define a set
of domain-relevant frames and roles, for which the domain
models specify corresponding concepts and properties. This
is illustrated for the frame AWARD from Nobel prizes.

frame role2nobel domain(award,laureate, , ).
frame role2nobel domain(award,domain, , ).

Besides identification of domain-relevant frames, we can
further specify a mapping to corresponding concepts in the
underlying ontology. This option we pursued in the LT
World scenario. Here the clauses additionally state target
concepts and properties in the LT World ontology.

frame role2ltw domain(project,leader,
ActiveProject,coordinatedBy).

frame role2ltw domain(project,name,
ActiveProject,projectNameVariant).

On the basis of this information we extract domain-
relevant concepts from the semantic representation of the
question, and turn them into abstract query terms that are
then translated to concrete data base or ontology queries.

Construction of Proto Queries A basic distinction for the
construction of structured query terms is the distinction be-
tween queried vs. constraining concepts. For the extraction
of queried concepts in (5.a), we select those domain-relevant
frames and/or roles that correspond to the queried variable
in the logical form, represented as ARG0 of the q focus rela-
tion. We further extract the ontological restrictions encoded
as the expected answer type in EAT rel. In (5.b) we extract
all remaining (i.e., non-queried) domain-relevant frames and
roles, which provide additional constraints on the queried
concepts. Again, we extract ontological restrictions, here in
terms of their named entity type, as encoded by the RMRS
structures provided by NE recognition in the HoG.

(5) a. q focus(Y), frame(Frame,X), fe(Role,X,Y),
frame role2domain(Frame,Role, , ), EAT rel(Y,Sort)
=> select cond(Qid,Frame,Role,Sort).



b. -q focus(Y), frame(Frame,X), fe(Role,X,Y),
frame role2domain(Frame,Role, , ), ne type(Y,NE)
=> where cond(Qid,Frame,Role,NE).

By this method we extract so-called proto queries from the
frame semantic structures, as illustrated in (6) below.6

(6) a. In which areas did Marie Curie win a Nobel prize?
b. Question interpretation

[

REL q focus
ARG0 x10

]



REL EAT rel
ARG0 x10
SORT FieldofStudy









REL person
ARG0 x17
CARG Marie Curie









GETTING e2
THEME x21
RECIPIENT x17









AWARD x21
LAUREATE x17
DOMAIN x10





[

LAUREATE x17
]

c. Proto Query
<PROTO-QUERY id="1">

<SELECT-COND qid="0" rel="award" attr="domain"
sort="FieldofStudy">

<WHERE-COND qid="0" rel="award" attr="laureate"
netype="person" val="Marie Curie">

</PROTO-QUERY>

Quantificational Questions QA from structured knowl-
edge bases is particularly well suited to answer questions
where the answer is not explicitly represented in the docu-
ment or knowledge base, but must instead be inferred from
the available basic information. Prime examples are cardi-
nality, quantificational or comparative questions, as in (7).

(7) a. How many researchers have won a Nobel prize for
Physics before 1911?

b. Which institution has published most papers be-
tween 2000 and 2004?

c. Which nation has won more Nobel prizes in Physics
than the U.S.?

To account for quantificational aspects, we employ spe-
cial proto query conditions OP-COND and QUANT-COND.
These constructs go beyond the formal power of most data
base query languages, but can be translated to special post-
processing operations in the answer extraction phase.

The quantificational conditions are determined by the se-
mantic representation of the question. Cardinality questions
(cf. (7.a)) are marked by operators like how many that range
over the queried variable. For such configurations we gen-
erate, in the proto query, a condition OP-COND that specifies
the operator relation op-rel that corresponds to the seman-
tics of the quantifier. Since the quantification ranges over the
queried variable, the domain of computation is defined as the
answer for the sub-query for the queried variable.

In quantificational and comparative questions (cf. (7.b,c)
and Figure 4) the quantification ranges over a non-queried
variable. In these cases we perform query decomposition.
We compute conditions for a base query that retrieves in-
stances for the domain of quantification (nation in Figure
4). The quantifier condition QUANT-COND defines that for

6Proto queries may be complex, i.e., may be decomposed into
individual sub-queries with specially marked dependencies. There-
fore, all conditions that pertain to a single sub-query are marked by
a common index (qid).

<PROTO-QUERY id="8">

<SELECT-COND qid="0" rel="laureate" attr="origin"
sort="?"/>

<QUANT-COND qid="1" quantrel="foreach" domain="answer"
domain-id="0"/>

<SELECT-COND qid="1" rel="award" attr="" sort=""/>

<WHERE-COND qid="1" rel="laureate" attr="origin"
valfunc="answer of" valarg="0"/>

<WHERE-COND qid="1" rel="award" attr="domain"
val="Physics"/>

<OP-COND oprel="max card" domain="answer" domain-id="1"/>

</PROTO-QUERY>

Figure 4: Proto query: Which nation has won most Nobel
prizes for Physics?

each instance in this domain we perform a sub-query for the
queried variable and the non-queried relational constraints
(select and where conditions), by referring to each instance
of the quantifier domain. An operator condition encodes the
quantifier-specific relation (e.g., max-card for most) that is
to be computed over the retrieved data records.

Extraction of concept-relating paths The rules for ex-
traction of proto queries (5.a,b) only consider local frames
and roles to define relational constraints for query extraction.
Thus, the concepts that appear in the individual select and
where conditions may be unconnected, as in Figure 4. The
frame semantic representation of the question does, how-
ever, often specify connecting paths between these frames
and roles. In part, these connections are introduced by the
linguistic structure, in part by domain-specific inferences.
We extract such connecting paths and record them as a path
attribute in the proto query conditions. This path information
is used in the answer extraction phase to further specify the
connections between the partial search constraints.

Answer Extraction
Answer Extraction from Nobel Prize Data Base The
instances of domain relations are stored in the relational
database MySQL. We store the Nobel prize winners in two
separate tables: one for persons and one for organisations,
since the two concepts person and organization are associ-
ated with different attributes. In the following examples, we
call these winner-person and winner-organization.

The first step to be taken in answer extraction is to trans-
late proto queries provided by question interpretation to
SQL queries. Proto queries identify: (i) the answer type con-
cept, which corresponds to the value of the SQL SELECT
command, (ii) additional concepts and their values, which
constrain the answer type value (these concepts will fill the
SQL WHERE conditions), and (iii) dependencies between el-
ementary questions, if a question is complex and needs to be
decomposed into subqueries.

For example, for a simple fact-based question such as
Who won the Nobel Prize in Chemistry in 2000? question
analysis returns the following proto query:
<PROTO-QUERY id="q13" type="sql">
<SELECT-COND rel="award" attr="laureate" />
<WHERE-COND rel="award" attr="domain" val="Chemistry"/>
<WHERE-COND rel="award" attr="time" val="2000"/>

</PROTO-QUERY>

The task of SQL query translation is to first identify the



tables where the requested concepts can be found, and sec-
ond, the relevant table fields which can match the values
given in the proto query. We have defined mapping rules
between FrameNet frames and their roles and their cor-
responding data base tables and their fields. In a special
field event-dependent we further mark concepts that are
events. Below we list some examples of table entries:

Relation Attr val-concept DBTable DBField event-dependent
award laureate person winner-person name yes
award laureate organization winner-organization name yes
award domain prize-area winner-person area no
award domain prize-area winner-organization area no
award time date time winner-person year yes
award time date time winner-organization year yes

The SELECT-COND in the example above only men-
tions the frame semantic rel and attr attributes award
and laureate. Yet, there is no direct mapping to a ta-
ble for laureate. In such cases we make use of our
ontology and discover that laureate corresponds to
cognitiveAgent which has two subconcepts: human and
group. Their corresponding domain concepts are person
and organization. We thus expand laureate to person
and organization and find their corresponding tables. In
the same way, we identify the tables for the WHERE-COND. In
this example, SELECT- and WHERE-COND require access to
the same tables. Thus, we generate the following two SQL
queries:
SELECT name FROM winner-person
WHERE year="2000" AND area="chemistry"

SELECT name FROM winner-organization
WHERE year="2000" AND area="chemistry"

The final answer is obtained by merging their results.
While the example just considered involves concept ex-

pansion, we also perform concept disambiguation. This is il-
lustrated by the example In which year did Nadine Gordimer
win the Nobel prize for Literature?, with the proto query
<PROTO-QUERY id="1">
<SELECT-COND rel="award" attr="time" sort="Year" />
<WHERE-COND rel="award" attr="domain"

netype="prize-area" val="Literature" />
<WHERE-COND rel="award" attr="laureate"

netype="person" val="Nadine Gordimer" />
</PROTO-QUERY>

Again, both the SELECT-COND and the first
WHERE-COND identify the two tables winner-person
and winner-organization. However, in the second
WHERE-COND, the linguistic analysis recognises that the
entity type of laureate is person. We can use this
information for table disambiguation and choose the table
winner-person. The SQL query for this question then is:
SELECT year FROM winner-person
WHERE area="Literature" AND name="Nadine Gordimer"

Finally, we distinguish queried entities that are inde-
pendent of individual prize winning events from event-
dependent entities. Consider the two questions:

(8) How many areas are there for the Nobel Prize?
(9) How many Nobel Prize winners has France produced?

In the first case, every area in which a person or organi-
sation has won a Nobel prize is only counted once. For an-
swering the second question, we could also count every per-
son once, even if the person has been awarded two prizes,

such as, e.g., Marie Curie. We thus decided to make the car-
dinality of recipients event-dependent.

Thus, the answer to the first question will be: Six areas,
although all areas occur more than once in award-winning
events. We treat area as event-independent, generating an
SQL query with a DISTINCT condition:

SELECT DISTINCT area FROM table

The answer to the second question will be: Three winners:
Marie Curie (2) and Pierre Curie (1). Here, the person in the
award relation is handled as event-dependent. In this case
we generate the SQL query

SELECT person FROM table WHERE country="France"

Answer Extraction from the LT World Ontology In this
section, we show how a proto query can be mapped to an
expression in the query language SeRQL of Sesame.

Based on the mapping from domain-specific frames and
roles in the proto query conditions to domain concepts and
properties, we first perform a translation of the values of rel
and attr attributes to the corresponding domain concepts
and attributes of the LT World ontology. Thus, each relation
(value of rel) now denotes a concept in the ontology and
each attribute (value of attr) denotes an OWL property.

In a SeRQL query, instances of a concept are identified
by variables in the subject position of an RDF triple. The
concept itself is stated in the object position, and subject and
object are connected by rdf:type—this is exactly the way
how instances of a specific concept are represented in the
RDF base of Sesame. For example,

<SELECT-COND rel="Organisations" attr="locatedIn" ... />

leads to the introduction of the following RDF triple ( r is a
fresh variable, ltw the LT WORLD namespace):

{_r} rdf:type {ltw:Organisations}

Since attributes like locatedIn refer to properties of a
concept, we obtain a further triple:

{_r} ltw:locatedIn {_q}

The property locatedIn connects instances of the main
concept Organisations via the root variable r with the
queried information. The queried information is bound to a
new question variable q that will be returned. It is marked
by the SELECT clause in a SeRQL query:

SELECT {_q}
FROM {_r} rdf:type {ltw:Organisations},

{_r} ltw:locatedIn {_q} ...

In Figure 5 we give an overview of the main principles of
the transformation from proto queries to SeRQL queries.

In order to illustrate the transformation principles, let us
consider the question Who is working in the Quetal project?,
with its (simplified) proto query that contains a SELECT and
a single WHERE condition:
<PROTO-QUERY>
<SELECT-COND rel="Active_Person" attr="">
<WHERE-COND rel="Active_Project" attr="projectName"

val="Quetal">
</PROTO-QUERY>

Given this proto query, we generate the SeRQL query



(1) for each SELECT-COND and WHERE-COND
– each relation denotes a concept
– each attribute denotes a property
– each unique relation introduces a new root variable

(2) each SELECT-COND introduces a new query variable
(3) each WHERE-COND introduces a new local variable
(4) guarantee that the RDF triples form a connected graph

– if path constraints are specified, link the root variables
– otherwise, introduce new property vars linking the roots

(5) finally apply OP-COND to the result table

Figure 5: Transforming proto queries into SeRQL queries.

SELECT DISTINCT _q0
FROM {_r1} rdf:type {ltw:Active_Person},

{_r2} rdf:type {ltw:Active_Project},
{_r1} ltw:name {_qo},
{_r2} ltw:projectName {_l3},
[ {_r1} _p4 {_r2} ],
[ {_r2} _p4 {_r1} ]

WHERE (NOT (_p4 = NULL) AND (_p5 = NULL)) AND
(_l3 LIKE "Quetal")

Query construction comprises three main aspects. Firstly,
information that is requested must be encoded by variables
following the starting SELECT clause. We make use of the
keyword DISTINCT to rule out duplicate occurrences in case
no OP-COND condition (which enforces counting) is spec-
ified in the proto query. However, if an operator condition
is present, DISTINCT should not be added because dupli-
cates must be taken into account for arithmetic operations
in quantificational questions (e.g. Who led most projects in
Information Extraction?).

Secondly, RDF triples are collected in the FROM clause,
separated by commas, which implicitly express logical con-
junction. A restricted form of disjunction is available at this
point due to the optionality operator [ ] which expresses
information that need not be matched.

Thirdly, additional restrictions on variables can be formu-
lated in the WHERE clause, including equality (=), inequality
(!=) and string matching (LIKE). These restrictions can be
combined using the Boolean connectives.

Returning to the example above, according to princi-
ple (1) of Figure 5, two root variables r1 and r2 are
introduced and linked to concepts Active Person and
Active Project via rdf:type. Principle (2) leads to the
query variable q0 which is linked to r1 via the property
name, the default property in case the attribute value in a
SELECT-COND is empty (= ""). From (3), we get a variable
l3 which binds the value of attribute val ("Quetal") in

the proto query above. The value itself is specified in the
WHERE clause of the SeRQL query.

The most interesting aspect in the query construction pro-
cess is how to account for partially connected concepts, cf.
principle (4). In our example, two relations/concepts r1
and r2 are introduced in the proto query. Since we want
to retrieve information related to r1 (via q0), it is impor-
tant that r1 and r2 are connected. Otherwise the informa-
tion from r2 (through rdf:type and ltw:projectName)
can not be incorporated into the search of the RDF data
base. Put differently, if we did not account for connect-
ing concepts/properties between r1 and r2, the above
SeRQL query would simply retrieve all instances of concept

Active Person.
It is the last two clauses of the FROM condition and the first

WHERE clause that account for this problem. Since r1 and
r2 are not connected and no information is given regarding

a connecting property and the direction of such a connect-
ing property (from r1 to r2, or vice versa?), we let Sesame
“guess” this information. Firstly, in order to guess the prop-
erty, we use property variables in the predicate position of
an RDF triple. Secondly, in order to guess the direction, we
need some kind of disjunction on the FROM level. Here the
optionality operator comes into play. Notice that there may
be several different properties, connecting r1 and r2, even
properties from r1 to r2 and from r2 to r1 at the same
time. In order not to rule out both optionality statements, we
have to formulate further constraints, specifying that the two
property variables should not be NULL at the same time.

Looking at this from a graph-theoretical perspective, we
are interested in constraints, characterising directed mini-
mum spanning trees (Garey & Johnson, 1979, p. 130). The
nodes in such a tree are exactly the root nodes representing
the concepts, and the edges which connect the nodes rep-
resent the missing properties. The missing edges are either
specified via path expressions, or represented by property
variables which need to be instantiated by Sesame through
a DB search. Clearly, if path expressions are specified in a
proto query, they will be utilized to speed up the ontology
serch, resulting in less non-determinism.

Related Approaches and Future Work
In this paper we presented an approach for domain-restricted
QA from structured knowledge bases, building on deep se-
mantic question analysis with a modular interface between
conceptual semantic representations and domain-specific
ontologies or data bases. The architecture embodies a flexi-
ble interface to various types of knowledge storage devices
and their corresponding query languages.

Our architecture extends traditional NL-based interfaces
to data bases (NLIDB), developed in the seventies and eight-
ies (cf. overview in Androutsopoulos & Ritchie, 2000). It
builds on more general resources in both linguistic and
knowledge modeling, and a clear separation into modular
layers: linguistic semantic analysis, lexical-conceptual rep-
resentation and knowledge-based conceptual modeling. For
these reasons, our approach promises to be more scalable
and portable to new domains.

The large-scale grammars are not tailored to a specific
domain. They deliver a semantic representation (RMRS)
that is uniform across languages and is shared with shal-
low NE recognition grammars. The frame semantic layer
accounts for multi- and crosslingual QA, by capturing lin-
guistic variation and paraphrases of semantically equivalent
questions. It offers a modular interface for the mapping of
general linguistic concepts to domain-dependent ontologies
that can be systematically adapted to new domains. More-
over, the normalised conceptual linguistic structures could
be employed for textual QA tasks, in open or restricted do-
mains, by matching enriched question and answer candidate
analyses. Contrary to traditional NLIDB approaches, our ar-



chitecture uses ontologies as the interface between question
analysis, answer extraction and knowledge engineering.

Our prototype system is still small, but has been tested on
various question types (wh-, yes/no-, imperative, definition,
quantified questions). Future work will focus on adding fur-
ther question types as well as research into automation tech-
niques for frame and sense assignment, and the induction
of mappings to domain concepts. We will further investigate
disambiguation of the stochastically ranked question analy-
ses by selecting maximally specific proto queries.

For our current system we performed an impressionistic
evaluation by sending 10 questions from the Nobel Prize do-
main to the web-based open-domain QA system Answerbus
(http://www.answerbus.com). They include factoid, list and
enumeration questions, to which our system provides cor-
rect answers. Some questions contain time expressions and
quantification. Answerbus answers 4 out of 5 factoids cor-
rectly, yet cannot answer list and enumeration questions, nor
does it deliver correct answers when precise semantic anal-
ysis is needed, such as ”prize winners before 1911”.

An issue to be solved for the envisaged integration of
open text unrestricted domain QA and restricted QA on
structured, semistructured and unstructured data is the se-
lection of the returned response in cases where the individ-
ual searches yield different results. The above experiment
suggests that even without an empirically validated selec-
tion strategy, a mere preference for the restricted domain re-
sponse over the result of open domain free text QA would
improve overall accuracy.
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F. 2004. Shallow processing with unification and typed feature
structures — foundations and applications. K ünstliche Intelli-
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