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Abstract 

A minimally supervised machine learning 
framework is described for extracting rela-
tions of various complexity. Bootstrapping 
starts from a small set of n-ary relation in-
stances as “seeds”, in order to automati-
cally learn pattern rules from parsed data, 
which then can extract new instances of the 
relation and its projections. We propose a 
novel rule representation enabling the 
composition of n-ary relation rules on top 
of the rules for projections of the relation. 
The compositional approach to rule con-
struction is supported by a bottom-up pat-
tern extraction method. In comparison to 
other automatic approaches, our rules can-
not only localize relation arguments but 
also assign their exact target argument 
roles. The method is evaluated in two 
tasks: the extraction of Nobel Prize awards 
and management succession events. Perfor-
mance for the new Nobel Prize task is 
strong. For the management succession 
task the results compare favorably with 
those of existing pattern acquisition ap-
proaches.  

1 Introduction 

Information extraction (IE) has the task to discover 
n-tuples of relevant items (entities) belonging to an 
n-ary relation in natural language documents. One 
of the central goals of the ACE program1 is to de-
velop a more systematically grounded approach to 
IE starting from elementary entities, binary rela-

                                                 
1 http://projects.ldc.upenn.edu/ace/ 

tions to n-ary relations such as events. Current 
semi- or unsupervised approaches to automatic 
pattern acquisition are either limited to a certain 
linguistic representation (e.g., subject-verb-object), 
or only deal with binary relations, or cannot assign 
slot filler roles to the extracted arguments, or do 
not have good selection and filtering methods to 
handle the large number of tree patterns (Riloff, 
1996; Agichtein and Gravano, 2000; Yangarber, 
2003; Sudo et al., 2003; Greenwood and Stevenson, 
2006; Stevenson and Greenwood, 2006). Most of 
these approaches do not consider the linguistic in-
teraction between relations and their projections on 
k dimensional subspaces where 1≤k<n, which is 
important for scalability and reusability of rules.  
Stevenson and Greenwood (2006) present a sys-
tematic investigation of the pattern representation 
models and point out that substructures of the lin-
guistic representation and the access to the embed-
ded structures are important for obtaining a good 
coverage of the pattern acquisition. However, all 
considered representation models (subject-verb-
object, chain model, linked chain model and sub-
tree model) are verb-centered. Relations embedded 
in non-verb constructions such as a compound 
noun cannot be discovered: 
(1)  the 2005  Nobel Peace Prize 
 

(1) describes a ternary relation referring to three 
properties of a prize: year, area and prize name. 
We also observe that the automatically acquired 
patterns in Riloff (1996), Yangarber (2003), Sudo 
et al. (2003), Greenwood and Stevenson (2006) 
cannot be directly used as relation extraction rules 
because the relation-specific argument role infor-
mation is missing. E.g., in the management succes-
sion domain that concerns the identification of job 
changing events, a person can either move into a 
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job (called Person_In) or leave a job (called Per-
son_Out). (2) is a simplified example of patterns 
extracted by these systems: 
(2) <subject: person> verb <object:organisation> 
 

In (2), there is no further specification of whether 
the person entity in the subject position is Per-
son_In or Person_Out.   

The ambitious goal of our approach is to provide 
a general framework for the extraction of relations 
and events with various complexity. Within this 
framework, the IE system learns extraction pat-
terns automatically and induces rules of various 
complexity systematically, starting from sample 
relation instances as seeds. The arity of the seed 
determines the complexity of extracted relations. 
The seed helps us to identify the explicit linguistic 
expressions containing mentionings of relation in-
stances or instances of their k-ary projections 
where 1≤k<n. Because our seed samples are not 
linguistic patterns, the learning system is not re-
stricted to a particular linguistic representation and 
is therefore suitable for various linguistic analysis 
methods and representation formats. The pattern 
discovery is bottom-up and compositional, i.e., 
complex patterns can build on top of simple pat-
terns for projections.  

We propose a rule representation that supports 
this strategy. Therefore, our learning approach is 
seed-driven and bottom-up. Here we use depend-
ency trees as input for pattern extraction. We con-
sider only trees or their subtrees containing seed 
arguments. Therefore, our method is much more 
efficient than the subtree model of Sudo et al., 
(2003), where all subtrees containing verbs are 
taken into account. Our pattern rule ranking and 
filtering method considers two aspects of a pattern: 
its domain relevance and the trustworthiness of its 
origin. We tested our framework in two domains: 
Nobel Prize awards and management succession. 
Evaluations have been conducted to investigate the 
performance with respect to the seed parameters: 
the number of seeds and the influence of data size 
and its redundancy property.  The whole system 
has been evaluated for the two domains consider-
ing precision and recall. We utilize the evaluation 
strategy “Ideal Matrix” of Agichtein and Gravano 
(2000) to deal with unannotated test data.   

The remainder of the paper is organised as fol-
lows: Section 2 provides an overview of the system 
architecture. Section 3 discusses the rule represen-

tation. In Section 4, a detailed description of the 
seed-driven bottom-up pattern acquisition is pre-
sented. Section 5 describes our experiments with 
pattern ranking, filtering and rule induction. Sec-
tion 6 presents the experiments and evaluations for 
the two application domains. Section 7 provides a 
conclusion and an outline of future work.   

2 System Architecture 

Given the framework, our system architecture 
can be depicted as follows: 

 
Figure 1. Architecture 

 

This architecture has been inspired by several 
existing seed-oriented minimally supervised ma-
chine learning systems, in particular by Snowball 
(Agichtein and Gravano, 2000) and ExDisco 
(Yangarber et al., 2000). We call our system 
DARE, standing for “Domain Adaptive Relation 
Extraction based on Seeds”. DARE contains four 
major components: linguistic annotation, classifier, 
rule learning and relation extraction. The first com-
ponent only applies once, while the last three com-
ponents are integrated in a bootstrapping loop.  At 
each iteration, rules will be learned based on the 
seed and then new relation instances will be ex-
tracted by applying the learned rules. The new re-
lation instances are then used as seeds for the next 
iteration of the learning cycle.  The cycle termi-
nates when no new relations can be acquired. 

The linguistic annotation is responsible for en-
riching the natural language texts with linguistic 
information such as named entities and depend-
ency structures.  In our framework, the depth of the 
linguistic annotation can be varied depending on 
the domain and the available resources. 

The classifier has the task to deliver relevant 
paragraphs and sentences that contain seed ele-
ments. It has three subcomponents: document re-
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trieval, paragraph retrieval and sentence retrieval. 
The document retrieval component utilizes the 
open source IR-system Lucene2. A translation step 
is built in to convert the seed into the proper IR 
query format. As explained in Xu et al. (2006), we 
generate all possible lexical variants of the seed 
arguments to boost the retrieval coverage and for-
mulate a boolean query where the arguments are 
connected via conjunction and the lexical variants 
are associated via disjunction. However, the trans-
lation could be modified. The task of paragraph 
retrieval is to find text snippets from the relevant 
documents where the seed relation arguments co-
occur. Given the paragraphs, a sentence containing 
at least two arguments of a seed relation will be 
regarded as relevant. 

As mentioned above, the rule learning compo-
nent constitutes the core of our system. It identifies 
patterns from the annotated documents inducing 
extraction rules from the patterns, and validates 
them.  In section 4, we will give a detailed expla-
nation of this component.  

The relation extraction component applies the 
newly learned rules to the relevant documents and 
extracts relation instances. The validated relation 
instances will then be used as new seeds for the 
next iteration.  

3 DARE Rule Representation  

Our rule representation is designed to specify the 
location and the role of the arguments w.r.t. the 
target relation in a linguistic construction. In our 
framework, the rules should not be restricted to a 
particular linguistic representation and should be 
adaptable to various NLP tools on demand.  A 
DARE rule is allowed to call further DARE rules 
that extract a subset of the arguments. Let us step 
through some example rules for the prize award 
domain. One of the target relations in the domain is 
about a person who obtains a special prize in a cer-
tain area in a certain year, namely, a quaternary 
tuple, see (3). (4) is a domain relevant sentence.  
(3) <recipient, prize, area, year> 
(4) Mohamed ElBaradei won the 2005 Nobel 
Peace Prize on Friday for his efforts to limit the 
spread of atomic weapons. 
(5) is a rule that extracts a ternary projection in-
stance <prize, area, year>  from a  noun phrase 

                                                 
2 http://www.lucene.de 

compound, while (6) is a rule which triggers (5) in 
its object argument and extracts all four arguments. 
(5) and (6) are useful rules for  extracting argu-
ments from (4). 
(5)  

 
 (6) 

 
 
Next we provide a definition of a DARE rule: 
A DARE rule has three components  

1. rule name: ri; 
2. output: a set A containing the n arguments 

of the n-ary relation, labelled with their ar-
gument roles; 

3. rule body in AVM format containing: 
- specific linguistic labels or attributes 

(e.g., subject, object, head, mod), de-
rived from the linguistic analysis, e.g., 
dependency structures and the named en-
tity information 

- rule: its value is a DARE rule which ex-
tracts a subset of arguments of A  

The rule in (6) is a typical DARE rule. Its sub-
ject and object descriptions call appropriate DARE 
rules that extract a subset of the output relation 
arguments.  The advantages of this rule representa-
tion strategy are that (1) it supports the bottom-up 
rule composition; (2) it is expressive enough for 
the representation of rules of various complexity; 
(3) it reflects the precise linguistic relationship 
among the relation arguments and reduces the 
template merging task in the later phase; (4) the 
rules for the subset of arguments may be reused for 
other relation extraction tasks.  

The rule representation models for automatic or 
unsupervised pattern rule extraction discussed by 
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Stevenson and Greenwood (2006) do not account 
for these considerations.  

4 Seed-driven Bottom-up Rule Learning  

Two main approaches to seed construction have 
been discussed in the literature: pattern-oriented 
(e.g., ExDisco) and semantics-oriented (e.g., 
Snowball) strategies. The pattern-oriented method 
suffers from poor coverage because it makes the IE 
task too dependent on one linguistic representation 
construction (e.g., subject-verb-object) and has 
moreover ignored the fact that semantic relations 
and events could be dispersed over different sub-
structures of the linguistic representation. In prac-
tice, several tuples extracted by different patterns 
can contribute to one complex relation instance.   

The semantics-oriented method uses relation in-
stances as seeds. It can easily be adapted to all re-
lation/event instances. The complexity of the target 
relation is not restricted by the expressiveness of 
the seed pattern representation. In Brin (1998) and 
Agichtein and Gravano (2000),  the semantics-
oriented methods have proved to be effective in 
learning patterns for some general binary relations 
such as booktitle-author and company-headquarter 
relations. In Xu et al. (2006), the authors show that 
at least for the investigated task it is more effective 
to start with the most complex relation instance, 
namely, with an n-ary sample for the target n-ary 
relation as seed, because the seed arguments are 
often centred in a relevant textual snippet where 
the relation is mentioned.  Given the bottom-up 
extracted patterns, the task of the rule induction is 
to cluster and generalize the patterns. In compari-
son to the bottom-up rule induction strategy (Califf 
and Mooney, 2004), our method works also in a 
compositional way. For reasons of space this part 
of the work will be reported in Xu and Uszkoreit 
(forthcoming).  

4.1 Pattern Extraction 

Pattern extraction in DARE aims to find linguistic 
patterns which do not only trigger the relations but 
also locate the relation arguments. In DARE, the 
patterns can be extracted from a phrase, a clause or 
a sentence, depending on the location and the dis-
tribution of the seed relation arguments.   

 
Figure 2. Pattern extraction step 1 

 
Figure 3. Pattern extraction step 2 

 
Figures 2 and 3 depict the general steps of bot-

tom-up pattern extraction from a dependency tree t 
where three seed arguments arg1, arg2 and arg3 are 
located. All arguments are assigned their relation 
roles r1, r2 and r3. The pattern-relevant subtrees are 
trees in which seed arguments are embedded: t1, t2 
and t3. Their root nodes are n1, n2 and n3.  Figure 2 
shows the extraction of a unary pattern n2_r3_i, 
while Figure 3 illustrates the further extraction and 
construction of a binary pattern n1_r1_r2_j and a 
ternary pattern n3_r1_r2_r3_k. In practice, not all 
branches in the subtrees will be kept. In the follow-
ing, we give a general definition of our seed-driven 
bottom-up pattern extraction algorithm: 
input:  (i) relation = <r1, r2, ..., rn>: the target rela-

tion tuple with n argument roles. 
 T: a set of linguistic analysis trees anno-

tated with i seed relation arguments (1≤i≤n) 
output: P: a set of pattern instances which can ex-

tract i or a subset of i arguments.  
Pattern extraction: 
 for each tree t ∈T 
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Step 1: (depicted in Figure 2) 
1. replace all terminal nodes that are instanti-

ated with the seed arguments by new 
nodes. Label these new nodes with the 
seed argument roles and possibly the cor-
responding entity classes; 

2. identify the set of the lowest nonterminal 
nodes N1 in t that dominate only one ar-
gument (possibly among other nodes). 

3. substitute N1 by nodes labelled with the 
seed argument roles and their entity classes 

4. prune the subtrees dominated by N1 from t 
and add these subtrees into P. These sub-
trees are assigned the argument role infor-
mation and a unique id. 

Step2: For i=2 to n: (depicted in Figure 3) 
1. find the set of the lowest nodes N1 in t that 

dominate in addition to other children only 
i seed arguments; 

2. substitute N1 by nodes labelled with the i 
seed argument role combination informa-
tion (e.g., ri_rj) and with a unique id. 

3. prune the subtrees Ti dominated by Ni in t; 

4. add Ti to P together with the argument role 
combination information and the unique id  

With this approach, we can learn rules like (6) in 
a straightforward way. 

4.2 Rule Validation: Ranking and Filtering 

Our ranking strategy has incorporated the ideas 
proposed by Riloff (1996), Agichtein and Gravano 
(2000), Yangarber (2003) and Sudo et al. (2003). 
We take two properties of a pattern into account: 
• domain relevance: its distribution in the rele-

vant documents and irrelevant documents 
(documents in other domains); 

• trustworthiness of its origin: the relevance 
score of the seeds from which it is extracted.   

In Riloff (1996) and Sudo et al. (2003), the rele-
vance of a pattern is mainly dependent on its oc-
currences in the relevant documents vs. the whole 
corpus.  Relevant patterns with lower frequencies 
cannot float to the top. It is known that some com-
plex patterns are relevant even if they have low 
occurrence rates. We propose a new method for 
calculating the domain relevance of a pattern. We 
assume that the domain relevance of a pattern is 

dependent on the relevance of the lexical terms 
(words or collocations) constructing the pattern, 
e.g., the domain relevance of (5) and (6) are de-
pendent on the terms “prize” and “win” respec-
tively. Given n different domains, the domain rele-
vance score (DR) of a term t in a domain di is: 
DR(t, di)= 

0, if df(t, di) =0; 

df(t,di)
N×D

×LOG(n× df(t,di)

df(t,dj)
j=1

n
∑

), otherwise 

where 
• df(t, di): is the document frequency of a 

term t in the domain di  
• D: the number of the documents in di 
• N: the total number of the terms in di 

Here the domain relevance of a term is dependent 
both on its document frequency and its document 
frequency distribution in other domains. Terms 
mentioned by more documents within the domain 
than outside are more relevant (Xu et al., 2002).   
In the case of n=3 such different domains might 
be, e.g., management succession, book review or 
biomedical texts. Every domain corpus should ide-
ally have the same number of documents and simi-
lar average document size. In the calculation of the 
trustworthiness of the origin, we follow Agichtein 
and Gravano (2000) and Yangarber (2003). Thus, 
the relevance of a pattern is dependent on the rele-
vance of its terms and the score value of the most 
trustworthy seed from which it origins. Finally, the 
score of a pattern p is calculated as follows: 

score(p)= }:)(max{)(
0

SeedsssscoretDR
T

i
i ∈×∑

=

 

where    |T|> 0 and ti ∈ T 
• T: is the set of the terms occur in p; 
• Seeds: a set of seeds from which the pat-

tern is extracted; 
• score(s): is the score of the seed s; 

This relevance score is not dependent on the distri-
bution frequency of a pattern in the domain corpus. 
Therefore, patterns with lower frequency, in par-
ticular, some complex patterns, can be ranked 
higher when they contain relevant domain terms or 
come from reliable seeds. 

588



5 Top down Rule Application 

After the acquisition of pattern rules, the DARE 
system applies these rules to the linguistically an-
notated corpus. The rule selection strategy moves 
from complex to simple. It first matches the most 
complex pattern to the analyzed sentence in order 
to extract the maximal number of relation argu-
ments. According to the duality principle (Yangar-
ber 2001), the score of the new extracted relation 
instance S is dependent on the patterns from which 
it origins. Our score method is a simplified version 
of that defined by Agichtein and Gravano (2000): 

score(S)=1− (1− score(Pi )
i=0

P
∏ )  

where P={Pi} is the set of patterns that extract S. 
 
The extracted instances can be used as potential 

seeds for the further pattern extraction iteration, 
when their scores are validated.  The initial seeds 
obtain 1 as their score. 

6 Experiments and Evaluation 

 We apply our framework to two application do-
mains: Nobel Prize awards and management suc-
cession events.  Table 1 gives an overview of our 
test data sets. 
Data Set Name Doc Number Data Amount 
Nobel Prize A  (1999-2005) 2296 12,6 MB 
Nobel Prize B (1981-1998)  1032 5,8 MB 
MUC-6 199 1 MB 
Table1. Overview of Test Data Sets.  

For the Nobel Prize award scenario, we use two 
test data sets with different sizes: Nobel Prize A 
and Nobel Prize B. They are Nobel Prize related 
articles from New York Times, online BBC and 
CNN news reports.   The target relation for the ex-
periment is a quaternary relation as mentioned in 
(3), repeated here again: 

<recipient, prize, area, year> 
 Our test data is not annotated with target rela-

tion instances. However, the entire list of Nobel 
Prize award events is available for the evaluation 
from the Nobel Prize official website3. We use it as 
our reference relation database for building our 
Ideal table (Agichtein and Gravano, 2000).      

For the management succession scenario, we use 
the test data from MUC-6 (MUC-6, 1995) and de-
                                                 
3 http://nobelprize.org/ 

fine a simpler relation structure than the MUC-6 
scenario template with four arguments:  

<Person_In, Person_Out, Position, Organisation> 
In the following tables, we use PI for Person_In, 

PO for Person_Out, POS for Position and ORG for 
Organisation. In our experiments, we attempt to 
investigate the influence of the size of the seed and 
the size of the test data on the performance. All 
these documents are processed by named entity 
recognition (Drozdzynski et al., 2004) and depend-
ency parser MINIPAR (Lin, 1998).      

6.1 Nobel Prize Domain Evaluation 

For this domain, three test runs have been evalu-
ated, initialized by one randomly selected relation 
instance as seed each time.  In the first run, we use 
the largest test data set Nobel Prize A. In the sec-
ond and third runs, we have compared two random 
selected seed samples with 50% of the data each, 
namely Nobel Prize B. For data sets in this do-
main, we are faced with an evaluation challenge 
pointed out by DIPRE (Brin, 1998) and Snowball 
(Agichtein and Gravano, 2000), because there is no 
gold-standard evaluation corpus available. We 
have adapted the evaluation method suggested by 
Agichtein and Gravano, i.e., our system is success-
ful if we capture one mentioning of a Nobel Prize 
winner event through one instance of the relation 
tuple or its projections. We constructed two tables 
(named Ideal) reflecting an approximation of the 
maximal detectable relation instances: one for No-
bel Prize A and another for Nobel Prize B. The 
Ideal tables contain the Nobel Prize winners that 
co-occur with the word “Nobel” in the test corpus. 
Then precision is the correctness of the extracted 
relation instances, while recall is the coverage of 
the extracted tuples that match with the Ideal table. 
In Table 2 we show the precision and recall of the 
three runs and their random seed sample: 

Recall Data 
Set 

Seed Preci-
sion total time interval 

Nobel 
Prize A

[Zewail, Ahmed H], 
nobel, chemistry,1999 

71,6% 50,7% 70,9% 
(1999-2005) 

Nobel 
Prize B

[Sen, Amartya], no-
bel, economics, 1998 

87,3% 31% 43% 
(1981-1998) 

Nobel 
Prize B

[Arias, Oscar],  
nobel, peace, 1987 

83,8% 32% 45% 
(1981-1998) 

Table 2. Precision, Recall against the Ideal Table  
The first experiment with the full test data has 
achieved much higher recall than the two experi-
ments with the set Nobel Prize B. The two experi-
ments with the Nobel Prize B corpus show similar 
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performance. All three experiments have better 
recalls when taking only the relation instances dur-
ing the report years into account, because there are 
more mentionings during these years in the corpus.  
Figure (6) depicts the pattern learning and new 
seed extracting behavior during the iterations for 
the first experiment. Similar behaviours are ob-
served in the other two experiments.   

 
Figure 6. Experiment with Nobel Prize A  

6.2 Management Succession Domain 

The MUC-6 corpus is much smaller than the Nobel 
Prize corpus. Since the gold standard of the target 
relations is available, we use the standard IE preci-
sion and recall method. The total gold standard 
table contains 256 event instances, from which we 
randomly select seeds for our experiments. Table 3 
gives an overview of performance of the experi-
ments. Our tests vary between one seed, 20 seeds 
and 55 seeds. 
Initial Seed Nr.  Precision Recall 

A 12.6% 7.0% 1  
B 15.1% 21.8% 

20  48.4%  34.2% 
55  62.0% 48.0% 
Table 3. Results for various initial seed sets  

The first two one-seed tests achieved poor per-
formance. With 55 seeds, we can extract additional  
67 instances to obtain the half size of the instances 
occurring in the corpus. Table 4 show evaluations 
of the single arguments. B works a little better be-
cause the randomly selected single seed appears a 
better sample for finding the pattern for extracting 
PI argument.  
Arg precision 

(A) 
precision 
(B) 

Recall 
(A) 

Recall 
(B) 

PI 10.9% 15.1% 8.6% 34.4% 
PO 28.6% - 2.3% 2.3% 
ORG 25.6% 100% 2.6% 2.6% 
POS 11.2% 11.2% 5.5% 5.5% 
Table 4. Evaluation of one-seed tests (A and B) 

Table 5 shows the performance with 20 and 55 
seeds respectively. Both of them are better than the 
one-seed tests, while 55 seeds deliver the best per-
formance in average, in particular, the recall value. 

  
arg precision 

(20) 
precision 
(55) 

recall 
(20) 

recall 
(55) 

PI 84% 62.8% 27.9% 56.1% 
PO 41.2% 59% 34.2% 31.2% 
ORG 82.4% 58.2% 7.4% 20.2% 
POS 42% 64.8% 25.6% 30.6% 
Table 5. Evaluation of 20 and 55 seeds tests 
Our result with 20 seeds (precision of 48.4% and 
recall of 34.2%) is comparable with the best result 
reported by Greenwood and Stevenson (2006) with 
the linked chain model (precision of 0.434 and re-
call of 0.265). Since the latter model uses patterns 
as seeds, applying a similarity measure for pattern 
ranking, a fair comparison is not possible. Our re-
sult is not restricted to binary relations and our 
model also assigns the exact argument role to the 
Person role, i.e. Person_In or Person_Out.   

We have also evaluated the top 100 event-
independent binary relations such as Person-
Organisation and Position-Organisation. The preci-
sion of these by-product relations of our IE system 
is above 98%.  

7 Conclusion and Future Work 

Several parameters are relevant for the success 
of a seed-based bootstrapping approach to relation 
extraction. One of these is the arity of the relation.  
Another one is the locality of the relation instance 
in an average mentioning. A third one is the types 
of the relation arguments:  Are they  named entities 
in the classical sense? Are they lexically marked? 
Are there several arguments of the same type? 
Both tasks we explored involved extracting quater-
nary relations. The Nobel Prize domain shows bet-
ter lexical marking because of the prize name.  The 
management succession domain has two slots of 
the same NE type, i.e., persons. These differences 
are relevant for any relation extraction approach.   

The success of the bootstrapping approach cru-
cially depends on the nature of the training data 
base.  One of the most relevant properties of this 
data base is the ratio of documents to relation in-
stances. Several independent reports of an instance 
usually yield a higher number of patterns.   

The two tasks we used to investigate our method 
drastically differ in this respect.  The Nobel Prize 
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domain we selected as a learning domain for gen-
eral award events since it exhibits a high degree of 
redundancy in reporting.  A Nobel Prize triggers 
more news reports than most other prizes.  The 
achieved results met our expectations.  With one 
randomly selected seed, we could finally extract 
most relevant events in some covered time interval. 

However, it turns out that it is not just the aver-
age number of reports per events that matters but 
also the distribution of reportings to events.  Since 
the Nobel prizes data exhibit a certain type of 
skewed distribution, the graph exhibits properties 
of scale-free graphs.  The distances between events 
are shortened to a few steps. Therefore, we can 
reach most events in a few iterations. The situation 
is different for the management succession task 
where the reports came from a single newspaper.  
The ratio of events to reports is close to one.  This 
lack of informational redundancy requires a higher 
number of seeds.  When we started the bootstrap-
ping with a single event, the results were rather 
poor.  Going up to twenty seeds, we still did not 
get the performance we obtain in the Nobel Prize 
task but our results compare favorably to the per-
formance of existing bootstrapping methods.  

The conclusion, we draw from the observed dif-
ference between the two tasks is simple:  We shall 
always try to find a highly redundant training data 
set.  If at all possible, the training data should ex-
hibit a skewed distribution of reports to events.  
Actually, such training data may be the only realis-
tic chance for reaching a large number of rare pat-
terns.  In future work we will try to exploit the web 
as training resource for acquiring patterns while 
using the parsed domain data as the source for ob-
taining new seeds in bootstrapping the rules before 
applying these to any other nonredundant docu-
ment base.  This is possible because our seed tu-
ples can be translated into simple IR queries and 
further linguistic processing is limited to the re-
trieved candidate documents.   
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