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Abstract

We examine the existential fragment of a feature logic� which is
extended by regular path expressions� A regular path expression
is a subterm relation� where the allowed paths for the subterms
are restricted to any given regular language� We will prove that
satis�ability is decidable� This is achieved by setting up a quasi�
terminating rule system�



Contents

� Introduction �

� The Method �

� Preliminaries �

� Feature Trees ��

� Prime� Pre	Solved and Solved Clauses ��


 The First Phase ��

��� A Set of Rules � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��	 Some Properties of the Rule System � � � � � � � � � � � � � � �


��� Soundness and Completeness � � � � � � � � � � � � � � � � � � 		

��� Quasi�Termination � � � � � � � � � � � � � � � � � � � � � � � � 	


� The Second Phase� Satis�ability of Pre	Solved Clauses ��


 Conclusion ��

	



� Introduction

Feature descriptions are used as the main data structure of so�called uni��
cation grammars� which are currently a popular family of declarative for�
malisms for processing natural language �Shi
��� More recently� feature de�
scriptions have been proposed as a constraint system for logic program�
ming �AKN
�� AKLN
�� AKP
�� AKPS
	b� ST
	�� They provide for a
partial description of abstract objects by means of functional attributes
called features� As an example consider the feature description �in matrix
notation��

x � �y

�
��������

woman

father �

�
engineer

age � y

�

husband �

�
painter

age � y

�

�
��������
�

which may be read as saying that x is a woman whose father is an engineer�
whose husband is a painter and whose father and husband are both of the
same age�

Feature description have been proposed in various forms with various for�
malizations �AK
�� KR
�� RK
�� Joh

� Smo
	� Joh
��� We will follow the
logical approach introduced by Smolka �Smo
	�� where feature descriptions
are standard �rst order formulae interpreted in �rst order structures� In
this formalization features are considered as functional relations� Atomic
formulae �which we will call atomic constraints� are of the form A�x� or
xfy� where x� y are �rst order variables� A is some sort predicate and f is a
feature �written in in�x notation�� Then we can express the above feature
description by the �admittedly less suggestive� formula

�y � x� � x� � woman�x� �

x father x� � engineer�x� � � x� age y� �

x husband x� � painter�x� � � x� age y ��

This feature logic has been investigated in detail� A complete axiomatization
of the standard model �so�called feature graphs� is given in �BS
��� There
it was shown that the standard model is elementarily equivalent to a tree
model� Additionally� a connection to �rst order constructor terms has been
examined �ST
	��

In this paper we will be concerned with an extension to feature descriptions
introduced as �functional uncertainty� by Kaplan and Zaenen �KZ

�� and
Kaplan and Maxwell �KM

�� This extension is made by adding a subterm

�



relation� where the allowed paths for the subterms are restricted to any giv�
en regular language� It was invented for handling so�called long�distance
dependencies in the grammar formalism LFG �KB
	�� For a detailed de�
scription the reader is referred to �KZ

�� Further applications can be found
in �Kel
���

To accomplish this extension we must �rst generalize the constraints of the
form xfy to constraints of the form xwy� where w � f� � � � fn is a string of
features �called a feature path�� Such feature paths are interpreted using
simple relational composition�

This generalization is just syntactic sugar �see Smolka �Smo

��� This is no
longer the case if we add functional uncertainty in form of constraints xLy�
where L is a regular expression denoting a regular language of feature paths�
A constraint xLy holds if there is a word w � L such that xwy holds� By this
existential interpretation a constraint xLy can be seen as the disjunction

xLy �
	
fxwy j w � Lg�

As this disjunction may be in�nite� functional uncertainty yields additional
expressivity� Note that the constraint xwy is a special case of a functional
uncertainty constraint�

Kaplan and Maxwell �KM

� have shown that the satis�ability problem
of the pure existential fragment �i�e� the satis�ability of formulae built with
A�x�� xLy and equations x

�
� y� is decidable� provided that a certain acyclic�

ity condition is met� Baader et al� �BBN�
�� have shown that satis�ability
is undecidable if we add unrestricted negation� It has� however� remained
an open problem whether satis�ability of the purely existential fragment is
decidable in the absence of additional conditions �such as acyclicity�� In this
paper we will show that it is indeed decidable�

� The Method

We will �rst sketch the method for testing satis�ability of the standard
feature descriptions� and then turn to the systems as extended by functional
uncertainty� To get a good intuition note that some sort of tree model is
canonical for satis�ability� a pure existential formula is satis�able if it is
satis�able in this tree model� Thus� the feature paths used in the language
can be compared directly with paths in trees�

Consider a clause � � xp�y��xp�y� �in the rest of the paper we will call pure
conjunctive formulae clauses�� Although only subterm relations for x� y� and
x� y� are contained in this clause� an additional subterm or equality relation
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can be implied depending on the paths p� and p�� If p� equals p�� we
know that y� and y� must be equal� which implies that � is equivalent to
xp�y��y�

�
� y�� If p� is a pre�x of p� and hence p� � p�p

�� we can transform
� into the equivalent formula xp�y� � y�p

�y�� thus additionally stating that
y� is a subterm of y�� The reverse case is handled similarly� If neither pre�x
nor equality holds between the paths� there is nothing to do� By and large�
clauses where the last condition holds for every x and every pair of di�erent
constraints xp�y� � � and xp�y� � � are the solved forms of �Smo

�� which
are satis�able�

If we consider a clause of the form � � xL�y� � xL�y�� then we have again
to check the relation between y� and y�� But now there is in general no
unique relation determined by �� since this depends on which paths p� and
p� are used out of L� and L�� Hence� we have to select non�deterministically
a relation between p� and p� before we can calculate the relation between
y� and y�� In the following� we will often just say �guess� instead of �select
non�deterministically��

But there is a problem with the original syntax� namely that it does not allow
one to express any relation between the chosen paths�� Therefore� we ex�
tend the syntax by introducing so�called path variables �written �� �� ��� � � ���
which are interpreted as feature paths� If we use in addition the modi�ed
subterm relation x�y and a restriction constraint �

�
�L� a path expression

xLy can be expressed by the equivalent clause x�y � �
�
�L �� new��

Using this extended �two�sorted� syntax we are now able to reason about
the relations between di�erent path variables� To do this we introduce addi�

tional constraints �
�
� � �equality�� �

�
� � �pre�x� and �

�
q � �divergence��

Divergence holds if neither equality nor pre�x does� Now we can describe a
normal form equivalent to the solved clauses in Smolka�s work� which we will
call pre�solved clauses� A clause � is pre�solved if for each pair of di�erent

constraints x�y� and x�y� in � there is a constraint �
�
q � in �� Additional�

ly� we require pre�solved clauses to contain at most one constraint �
�
�L for

each path variable �� We call these clauses pre�solved� since these clauses
are not necessarily satis�able� it may happen that the divergence constraints
together with the restrictions of the form �

�
� L are inconsistent �think of

the clause �
�
� f� � �

�
� ff� � �

�
q �� e�g��� But pre�solved clauses have the

property that if we �nd a valuation for the path variables� then the clause
is satis�able�

Our algorithm �rst transforms a clause into a set of pre�solved clauses� which

�Maxwell and Kaplan solved this problem by using operations on regular languages

such as intersection and calculating pre�x languages directly� The use of this method

forced them to introduce a new variable each time a transformation rule was applied� For

a feature description that contains a cycle of the form xL�y� � � � � yn��Lnx this resulted

in the introduction of an in�nite number of variables�
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is �when viewed as a disjunction� equivalent to the initial clause� In a second
phase the pre�solved clauses are checked for satis�ability with respect to
the path variables� In both phases we use a set of deterministic and non�
deterministic transformation rules�

Before starting with the technical part we will illustrate the �rst phase� since
it is the more di�cult� For the rest of the paper we will write clauses as sets
of atomic constraints� Consider the clause � � fx�y� ��

�
�L�� x�z� �

�
�L�g�

Initially� one guesses the relation between the path variables � and �� In our
example there are four di�erent possibilities� Therefore� � can be expressed
equivalently by the set of clauses

�� � f�
�
q �� x�y� �

�
�L�� x�z� �

�
�L�g

�� � f�
�
� �� x�y� �

�
�L�� x�z� �

�
�L�g

�� � f�
�
� �� x�y� �

�
�L�� x�z� �

�
�L�g

�� � f�
�
� �� x�y� �

�
�L�� x�z� �

�
�L�g�

The clause �� is pre�solved� For the others we must evaluate the relation
between � and � as follows� In �� we substitute � for � and y for z� which
yields

fy
�
� z� x�y� �

�
�L�� �

�
�L�g�

We keep only the equality constraint for the �rst order variables since we
are interested only in their valuation� Combining f�

�
� L�� �

�
� L�g into

f�
�
� �L� � L��g will then give us an equivalent pre�solved clause� For ��

we know that the variable � can be split up into two parts� one of them
covered by �� We can use concatenation of path variables to express this�
that means we can replace � by the term ���� with �� new� This would lead
to the clause

f�
�
� ����� x�y� �

�
�L�� x���

�z� ����
�
�L�g�

But this could easily be expressed more simply� First� the constraint �
�
�

���� is super�uous� Second� the constraint x����z in combination with x�y
can also be expressed by fx�y� y��zg� We now obtain the clause

��� � fx�y� �
�
�L�� y�

�z� ����
�
�L�g�

This shows that we do not need concatenation of path variables within
subterm agreements� and we will avoid them for simplicity�

The only thing that remains in order to achieve a pre�solved clause is to
resolve the constraint ����

�
�L�� To do this we have to guess a decomposition

P� S of L� with P �S � fps j p � P� s � Sg � L� such that �
�
�P and ��

�
�S

holds� In general� there can be an in�nite number of decompositions �think
of the possible decompositions of the language f�g�� But as we use regular
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languages� there is a �nite set of regular decompositions which covers all
possibilities� Finally� reducing f�

�
�L�� �

�
�Pg to f�

�
��L� � P �g will yield a

pre�solved clause�

Note that the evaluation of the pre�x relation in �� has the additional e�ect
of introducing a new constraint y��z� In general this implies that after
the evaluation of pre�x constraints there may be some path variables whose
relation is unknown� Hence� after reducing the terms of form �

�
� � or �

�
� ��

we may have to repeat the non�deterministic choice of relation between path
variables� In the end� the only remaining constraints between path variables

are of form �
�
q ��

Now let�s turn to an additional point we have to consider� namely that the
rules we present will �naturally� loop in some cases� Roughly speaking� one
can say that this occurs if a cycle in the graph co�incides with a cycle in the
regular language� To see this let us vary the above example and let � be the
clause

fx�x� �
�
�f� x�z� �

�
�f�gg

Then a possibly looping derivation could be

f�
�
� �� x�x� �

�
�f� x�z� �

�
�f�gg adding relation �

�
� �

fx�x� �
�
�f� x��z� ����

�
�f�gg splitting � into ����

fx�x� �
�
�f� x��z� �

�
�f�� ��

�
�f�gg decomposing ����

�
�f�g

fx�x� �
�
�f� x�z� ��

�
�f�gg joining ��restrictions

But we will prove that we get a quasi�terminating rule system� which means
that the rule system may cycle� but produces only �nitely many di�erent
clauses �see �Der
���� This is achieved by the following measures� �rst� we
will guarantee that the rules do not introduce additional variables� second�
we restrict concatenation to length 	� and third� we will show that the rule
system produces only �nitely many regular languages� In order to show
that our rewrite system is complete� we must additionally show that every
solution can be found in a pre�solved clause�

� Preliminaries

Throughout this paper we assume a signature consisting of a set of sorts
S �A�B� � � ��� features F �f� g � � ��� �rst order variables X �x� y� � � �� and
path variables P ��� �� � � ��� We use a �nite set of features and in�nite sets
of variables and sorts� The sets S� F � X and P are pairwise disjoint�

�



A path is a �nite string of features� We say that a path u is a pre�x of a
path v �written u � v� if there is a non�empty path w such that v � uw�
Note that � is neither symmetric nor re�exive� We say that two paths u� v
diverge �written u q v� if there are features f� g with f �� g� and possibly
empty paths w�w�� w�� such that u � wfw� � v � wgw�� It is clear that q
is a symmetric relation�

Proposition ��� Given two paths u and v� then exactly one of the relations
u � v� u � v� u 	 v or uq v holds�

A path term �p� q� � � �� is either a path variable � or a concatenation of
path variables ���� We will allow complex path terms only in divergence
and restriction constraints� but not in pre�x or equality constraints� The
set of atomic constraints is given by

c
 Ax sort restriction

x
�
� y agreement

x f� � � � fn y subterm agreement �

x�y subterm agreement �
p
�
�L path restriction

p
�
q q divergence

�
�
� � pre�x

�
�
� � path equality

We exclude empty paths in subterm agreements� since x�y is equivalent to
x
�
� y� Therefore� we require f� � � �fn � F�� L is a regular expression denot�

ing a regular language L�L� � F�� In the following we will not di�erentiate
between the regular expression and the language it denotes� and we will feel
free to mix both�

A clause is either the special symbol � ��false�� or a �nite set of atomic
constraints denoting their conjunction� We will say that a path term ���
is contained �or used� in some clause � if � contains either a constraint

���
�
�L or a constraint ���

�
q q�� Constraints of the form p

�
�L� p

�
q q� �

�
� �

and �
�
� � will be called path constraints�

An interpretation I is a standard �rst order structure� where every feature
f � F is interpreted as a binary� functional relation F I � and where sort
symbols are interpreted as disjoint� unary predicates �hence AI � BI � �
for A �� B�� A valuation is a pair �VX � VP�� where VX is a standard �rst
order valuation of the variables in X and VP is a function VP � P 
 F��
We de�ne VP����� to be VP���VP����

�We will not distinguish between p
�
q q and q

�
q p�






The validity of an atomic constraint in an interpretation I under a valuation
�VX � VP� is de�ned as follows�

�VX � VP� j�I Ax �
� VX �x� � AI

�VX � VP� j�I x
�
� y �
� VX �x� � VX �y�

�VX � VP� j�I x f� � � � fn y �
� VX �x� F I
� � � � � � F

I
n VX �y�

�VX � VP� j�I x�y �
� �VX � VP� j�I x VP��� y

�VX � VP� j�I p
�
�L �
� VP�p� � L

�VX � VP� j�I p
�
� q �
� VP�p� � VP�q� for � � fq����g

Note that subterm agreement 	 is the only constraint where an interaction
between VX and VP happens� The validity of sort restriction� agreement and
subterm agreement � depend only on VX and I� Hence� we will sometimes
omit the path valuation VP and write VX j�I � if � consists only of these
forms of constraint and � is valid under I and VX � Similar� validity of path
constraints depend only on the path valuation� We will write VP j� � if �
is a clause consisting of path constraints that are valid under VP �

For checking satis�ability of clauses we will use a set of deterministic and
non�deterministic transformation rules� Which set of rules is used will de�
pend on the initial clause� Let � be a clause and r be a rule instance� We
say that r is applicable on � if � matches the de�nition of r and the ap�
plication conditions noted in the de�nition of r are satis�ed� We will write
� 
r � if r is applicable on � and the result of the application is �� For a
set of rules R we say � 
R � if there is an r � R with � 
r �� � is called
R	irreducible if no rule instance r � R applies to �� We will say that a
clause � is R�reducible if � is not R�irreducible� A sequence

�� 
r� �� � � ��i 
ri �i�� � � �

is called a derivation� A clause � is called a ���R�	derivative if there is
a derivation from � to � that uses only rule instances of R�

Since we have a two�sorted logic� we have to rede�ne the notions of soundness
and preservingness� For a set � � X we de�ne �� to be the following relation
on �rst order valuation�

VX �� V
�
X i� for all x � � the equation VX �x� � V �

X �x� holds�

Similar we de�ne �� with 	 � P for path valuations� Let 
 � X �P be a set
of variables� For a given interpretation I we say that a valuation �VX � VP�
is a 
	solution of a clause � in I if there is a valuation �V �

X � V
�
P� in I such

that
VX �X�� V

�
X � VP �P�� V

�
P and �V �

X � V
�
P� j�I ��






The set of all 
�solutions of � in I is denoted by �����I�� We call X �solutions
just solutions and write �����I instead of �����IX � A clause � is 
	equivalent to
a clause � �resp� a set of clauses �� if for every interpretation I �����I � �����I�
�resp� �����I� �

S
��������

I
��� Again we use equivalent as short for VX �equivalent�

A rule R is 
	sound if �
R � implies �����I� � �����I� for every interpretation
I� R is called 
	preserving if � 
R � implies �����I� � �����I� for every I�
And R is globally 
	preserving if

�I � �����I� �



��R�

�����I��

� Feature Trees

In this section we will establish two di�erent interpretations� namely the
feature tree structure and the rational feature tree structure� These inter�
pretations are canonical for satis�ability� This means that if a clause is
satis�able� then it is also satis�able in these interpretations� These models
were introduced in �AKPS
	a�� �ST
	� and �BS
��� In �BS
�� a complete
axiomatization of the the full �rst order theory of these models with respect
to a restricted syntax has been set up� The restricted syntax uses only Ax�
xfy and x

�
� y as atomic constraints�

A tree domain is a nonempty set D � F� of paths that is pre�x	closed�
that is� if wu � D� then w � D� Note that every tree domain contains the
empty path�

A feature tree is a partial function ��F� 
 S whose domain is a tree
domain� The paths in the domain of a feature tree represent the nodes
of the tree� the empty path represents its root� We use D� to denote the
domain of a feature tree �� A feature tree is called �nite �in�nite� if its
domain is �nite �in�nite�� The letters � and � will always denote feature
trees�

The subtree w��� of a feature tree � at a path w � D� is the feature tree
de�ned by �in relational notation�

w��� �� f�q� A� j �wu�A� � �g�

A feature tree � is called a subtree of a feature tree � if � is a subtree of �
at some path w � D	 � and a direct subtree if w � f for some feature f �

A feature tree � is called rational if ��� � has only �nitely many distinct
subtrees and �	� � is �nitely branching �i�e�� for every w � D�� the set
fwf � D� j f � Fg is �nite�� Note that for every rational feature tree �
there exist �nitely many features f�� � � � � fn such that D� � ff�� � � � � fng

��

��



The feature tree structure T is de�ned as follows�

� the universe of T is the set of all feature trees

� � � AT i� ��
� � A �i�e�� ��s root is labeled with A�

� ��� �� � fT i� f � D� and � � f��� �i�e�� � is the subtree of � at f��

The rational feature tree structureR is the substructure of T consisting
only of rational feature trees�

� Prime� Pre�Solved and Solved Clauses

In this section� we will de�ne the input and output clauses for both phases
of the algorithm�

Let � be some clause and x� y be di�erent variables� We say that � binds
y to x if x

�
� y � � and y occurs only once in �� Here it is important that

we consider equations as directed� that is� we assume that x
�
� y is di�erent

from y
�
� x� We say that � eliminates y if � binds y to some variable x� A

clause is called basic if it is either � or�

�� an equation x
�
� y appears in � if and only if � eliminates y� and

	� for every path variable � used in � there is at most one constraint
x�y � ��

A clause � is called prime if � is basic� � does not contain a path term of

the form ��� and � does not contain an atomic constraint of form p
�
q q�

�
�
� � or �

�
� ��

As mentioned� Kaplan and Maxwell stated the satis�ability problem for
functional uncertainty in an unsorted syntax� Essentially� this syntax con�
sists of the atomic constraints Ax� x f� � � �fn y and x

�
� y together with the

additional constraint xLy� This constraint is interpreted as

xLy �
	
fxwy j w � Lg�

It is easy to show that every clause in this syntax can be transformed into
an equivalent prime clause�

Proposition ��� Every clause � in the Kaplan�Maxwell syntax can be
translated into a prime clause � such that for every interpretation I and
for every �rst order valuation VX

VX j�I � 
� there is a VP with �VX � VP� j�I ��

��



Proof� The translation can be de�ned by the two rewrite rules

�Rename�
fxLyg � �

fx�y� �
�
�Lg � �

� new

�Elim�
fx

�
� yg � �

fx
�
� yg � ��x�y�

x �� y� x � VarsX ���

It is easy to check that the system consisting of these two rules will always
terminate and that the result satis�es the required conditions� �

This implies that it su�ces to check satis�ability of prime clauses in order to
check satis�ability of clauses in the Kaplan�Maxwell syntax� Hence� prime
clauses are the input clauses for the �rst phase�

Now we turn to the output clauses of the �rst phase� A basic clause is said
to be pre	solved if it is either � or the following hold�

�� Ax � � and Bx � � implies A � B�

	� �
�
�L � � and �

�
�L� � � implies L � L��

�� �
�
�� is not in ��

�� � contains no terms of form ����

�� � contains no constraints of form �
�
� � or �

�
� ��

�� �
�
q � � � if and only if � �� �� x�y � � and x�z � ��

Lemma ��� Let � be a pre�solved clause di�erent from �� Then � is sat�
is�able i� there is a path valuation VP with VP j� �p� where �p is the set of
path constraints in ��

Proof� Without loss of generality we can assume that for every x �
VarsX ��� there is a sort restriction Ax � �� Let

� � fxVP���y j x�y � �g � fAx � �g�

Then for each interpretation I and each �rst order valuation VX we have
�VX � VP� j�I � i� VX j�I ��

Let T be the feature tree model as de�ned before� For a feature tree � and
each word w � F� we de�ne w� to be the feature tree

w� � f�wu�A� j �u�A� � �g�

�	



It is easy to check that w��w� � � holds� but not in general ww��� � ��

For every n � N we de�ne V n
X to be the following �rst order valuation on

VarsX ����

�� V �
X �x� � f��� A�g� where Ax � ��

	� V n��
X �x� � f��� A�g �

�
xwy��

wV n
X �y�� where Ax � ��

The union in the de�nition of V n��
X �x� is a disjoint union as w � F� and

�xwy� xuz � � � w �� u� w q u by the pre�solved conditions ���� Thus we
can prove by induction that for each n � �

�� xwy � � implies w��V n
X �x� � V n��

X �y��

	� V n
X �x� � V n��

X �x� and

�� V n
X �x� is a partial function F

� 
 S�

Now we de�ne VX to be the valuation with

VX �x� �


n�N

V n
X �x�

By the above propositions for V n
X we know that w

��VX �x� � VX �y� holds for
each xwy � �� Although VX �x� is a partial function F

� 
 S for every x� it
is not yet a valuation in T since the VX �x� are not necessarily pre�x�closed�
This can be overcome by de�ning V �

X to be the valuation

V �
X �x� � VX �x�� f �w�A� j �C � �w�C� �� VX �x�

� �u �� �� B � �wu�B� � VX �x� g�

where A is an arbitrary but �xed sort symbol� Then again w��VX �x� �
VX �y� holds for each xwy � �� This implies that V �

X �x�w
T V �

X �y� holds and
hence V �

X j�T �� But then we get �V �
X � VP� j�T �� Since the feature trees

V �
X �x� are even rational� we get also �VX � VP� j�R � �

Note that this implies that the structure T �resp� R� is canonical for pre�
solved clauses� that is� a normal form clause is satis�able if it is satis�able
in T �resp� R�� Since in the �rst phase we transform each prime clause into
an equivalent set of pre�solved clauses� we know that T is also canonical for
prime clauses�

In the second phase we will check satis�ability of a pre�solved clause by
transforming it into an equivalent set of solved clauses� A clause � is called
solved if it is either � or

��



�� Ax � � and Bx � � implies A � B�

	� �
�
�L � � and �

�
�L� � � implies L � L��

�� �
�
�� is not in ��

�� � contains no terms of form ����

�� � contains no constraints of form �
�
� �� �

�
� � or �

�
q ��

�� for every pair of variables �� � such that � �� �� x�y � � and x�z � �

we have � j� �
�
q ��

Here � j� � means that for every I and every �VX � VP� in I �VX � VP� j�I
� implies �VX � VP� j�I �� Note that the de�nition of pre�solvedness and
solvedness di�er in the last two conditions and that every solved clause is
also a prime clause�

Lemma ��� Every solved clause di�erent from � is satis�able�

Proof� For every solved clause � there is a VX �VP�equivalent clause � such
that � is pre�solved� Thus� a solved clause � is �by lemma ��	� satis�able if
there is a path valuation VP with VP j� �� But this is guaranteed by the
conditions 	�� in the de�nition of solvedness� �

	 The First Phase

��� A Set of Rules

The �rst rule is the non�deterministic addition of relational constraints be�
tween path variables� In one step we will add the relations between one
�xed variable � and all other path variables � which are used under the

same node x as �� We will consider only the constraints �
�
� �� �

�
q �

and �
�
� � but not �

�
	 �� Thus the rule can be described by the following

pseudo code�

Choose x � VarsX ��� �don�t care�
Choose x�y � � �don�t know�

For each x�z � � with � di�erent from � and �
�
q � �� �

add �
�
�
 � with

�
�
 � f

�
��

�
��

�
qg �don�t know�

Formally� this rule is written as

��



�PathRel�
fx�yg � �

f�
�
�
 � j x�z � � � � �� � � �

�
q � �� �g � fx�yg � �

where
�
�
 � f

�
��

�
��

�
qg�

This rule will only by applied if

� � contains no pre�x and path equality constraint�

� � contains no path concatenation�

� the rule adds at least one constraint�

Although we have restricted the relations
�
�
 to f

�
��

�
��

�
qg� this rule is global�

ly preserving since we have non�deterministically chosen x�y� To see this let
� be a clause� I be an interpretation and �VX � VP� be a valuation in I with
�VX � VP� j�I �� To �nd an instance of �PathRel� such that �VX � VP� j�I �

where � is the result of applying this instance� we choose x�y � � with
VP��� ��minimal in

fVP��� j x�z � �g�

Then for each x�z � � with � �� � and �
�
q � �� � we add �

�
�
 � where

VP��� �
 VP��� holds� Note that
�
�
 equals

�
	 will not occur since we

have chosen a path variable � the interpretation of which is ��minimal�

Therefore� the restriction
�
�
 � f

�
��

�
��

�
qg is satis�ed�

The de�nition of �PathRel� is more complex than the naive one in the intro�
duction� The reason for this is that only by using this special de�nition can
we maintain the condition that concatenation of path variables is restricted
to binary concatenation� To see this suppose that we had added both ��

�
� �

and �
�
� �� to a clause �� Then �rst splitting up the variable �� into �����

and then � into ����
� will result in a substitution of �� in � by ����

������ By
the de�nition of �PathRel� we have ensured that this does not happen�

The second non�deterministic rule is used in the decomposition of regular
languages� For decomposition we have the following rules�

�DecClash�
f���

�
�Lg � �

�
if fw � L j jwj � �g � �

�LangDec��
f���

�
�Lg � �

f�
�
�Pg � f�

�
�Sg � �

P �S � L

where L� P� S � F� and  is a given �nite set of reg� lan�
guages with L� P� S �  � L must contain a path w with
jwj � ��

��



The clash rule is needed since we require regular languages not to contain
the empty path�

We use  in �LangDec�� as a global restriction� which means that for every
 we get a di�erent rule �LangDec�� �and hence a di�erent rule system
R��� This is done as the rule system is quasi�terminating� By restricting
�LangDec�� we can guarantee that only �nitely many regular languages are
produced�

For �LangDec�� to be globally preserving we need to �nd� for every possible
valuation of � and �� a suitable pair P� S in  � Therefore� we require  to
satisfy

�L �  � �w�� w� �� � �
�w�w� � L� �P� S �  � �P �S � L � w� � P � w� � S���

We will call  closed under decomposition if it satis�es this condition�
Additionally� we have to ensure that L �  for every L that is contained in
some clause �� We will call such a set  �	closed�

The remaining rules are listed in �gure �� Note that we have not considered
clauses containing subterm agreement �� since these constraint are super�u�
ous for checking satis�ability� A constraint x f� � � � fn y can be expressed by
the equivalent clause fx�y� �

�
�f� � � � fng �� new��

The �Pre� rule needs some additional explanation� One might expect �Pre�
to be of the form

�Pre��
f�

�
� �g � fx�yg � fx�zg � �

fx�yg � fy��zg � ���������
�� new�

But as we have mentioned� we have to de�ne our rules in a way such that no
additional variables are introduced� This is not satis�ed by the rule �Pre���
For solving this problem note that � is not used in the result of applying
�Pre��� Hence� we can substitute �� by �� which has the e�ect that no new
variable is needed� This leads to the de�nition of �Pre� as presented in
�gure ��

The following proposition and lemma will show that the de�nition of
�LangDec�� is meaningful�

Proposition 
�� If  is ��closed and closed under intersection� then  is
��closed for all ���R���derivatives ��

Proof� We will prove this lemma by induction over the length of derivations�
We use the term reg��� to denote the set of regular languages used in ��
Then R� is ��closed if reg��� �  �

��



�Eq�
f�

�
� �� x�y� x�zg � �

fy
�
� z� x�yg � ������ z�y�

�Join�
f�

�
�L� �

�
�L�g � �

f�
�
��L � L��g � �

L �� L�

�Div��
f�

�
q ��g � f���

�
q ��g � �

f�
�
q ��g � �

�Div	�
f���

�
q ����g � �

f�
�
q ��g � �

�DClash��
f���

�
q �g � �
�

�DClash	�
f�

�
q �g � �
�

�Empty�
f�

�
��g � �

�
�SClash�

fAx� Bxg � �

�
A �� B

�Pre�
f�

�
� �� x�y� x�zg � �

fx�yg � fy�zg � ��������
� �� �

Figure �� Simpli�cation rules
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Let � be some ���R��derivative� For the base step � � � the lemma
holds trivially� For the induction step let � satisfy the induction hypotheses
reg��� �  and let r � R� be a rule such that � 
r �

��

If r is some clash rule� then reg���� � ��

If r is not a clash rule and not in �LangDec�� or �Join�� then reg��
�� � reg���

and therefore reg���� �  by induction hypotheses� If r � �LangDec��� then
r adds only regular languages P� S �  �

Now let

r� �
f�

�
�L� �

�
�L�g � �

f�
�
��L � L��g � �

� �Join��

By induction hypotheses we know that L� L� �  � But then �L � L�� �  
since  is closed under intersection� �

Lemma 
�� For every prime clause � there is a �nite  such that  is
��closed� closed under intersection and decomposition�

Proof� We de�ne a deterministic automaton A over F to be a tuple
�QA� iA� �A� F inA�� where

�� QA is a �nite set of states�

	� iA � QA is the initial state�

�� �A � QA �F 
 QA is a transition function�

�� and FinA � QA are the �nal states�

With ��A we mean the unique extension of �A to F�� The regular language
that is accepted by an automaton A is de�ned as

L�A� � fw j ��A�iA� w� � FinAg�

Let reg��� � fL�� � � � � Lng � P �F�� be the set of regular languages used
in � and let Ai � �QAi

� iAi
� �Ai

� F inAi
� be �nite� deterministic automatons

such that Ai accepts Li� For each Ai we de�ne dec�Ai� to be the set

dec�Ai� � fLq
p j p� q � QAi

g�

where Lq
p � fw � F� j ��Ai

�p� w� � qg�

Of course� each dec�Ai� is �nite and contains Li� Furthermore� it is al�
so closed under decomposition� The complete set of decompositions for a
language Lq

p � dec�Ai� consists of the languages

P � Ls
p and S � L

q
s for s � QAi

�

�




We de�ne  � to be
Sn
i	� dec�Ai��  � contains each Li � reg��� and is closed

under decomposition� Now let

 � fi � ��

be the least set that contains  � and is closed under intersection� Then  
is �nite and ��closed� since it contains each Li � reg����

We will prove that  is also closed under decomposition� Given some L �  
and a path w � w�w� � L� we have to �nd an appropriate decomposition
P� S in  � Since each L in  can be written as a �nite intersection

L �
m�
k	�

Lk

with Lk in  �� we know that w � w�w� is in Lk for ���m� As  � is closed
under decomposition� there are languages Pk and Sk for k � ���m with
w� � Pk� w� � Sk and Pk�Sk � Lk� Let P �

Tm
k	� Pk and S �

Tm
k	� Sk�

Clearly� w� � P � w� � S and P �S � L� Furthermore� P� S �  as  is closed
under intersection� This implies that P� S is an appropriate decomposition
for w�w�� �

��� Some Properties of the Rule System

For the rest of the paper we will call clauses that are derivable from prime
clauses admissible�

Lemma 
��

�� Every admissible clause is basic�

	� If �
�
� �� �

�
� � or �

�
q � is contained in some admissible clause ��

then there is a variable x such that x�y and x�z is in ��

Proof� The proof of the �rst claim is left to the reader� The second claim
will be proved by induction over the length of derivations� For prime clauses
the claim holds trivially� For the induction hypotheses assume that we have
proven the claim for every admissible clause � that is derivable from a prime
clause in n steps and let � 
r �

�� If r is di�erent from �Pre�� �PathRel��
�Eq� or �Div	�� there is nothing to prove� Thus we have the following cases�

r � �PathRel�� the claim holds by de�nition of �PathRel��

�




r � �Eq�� the claim is invariant under substitution of one variable � by
another variable � if both x�y and x�z are contained in ��

r � �Pre�� then � � f�
�
� �� x�y� x�zg � � and �� � fx�y� y�zg � ����

����� The only subterm agreement constraint that is changed is x�z�
But as � is substituted by ���� �� does not contain any path equality
or pre�x constraints involving ��

r � �Div	�� then � � f���
�

q ����g�� and �� � f�
�
q ��g��� We will prove

below that if ��� is contained in some admissible clause �� then there
are variables x� y� z such that x�y and y�z are contained in �� This

will complete the proof� since then ���
�
q ���� in � implies that there

are variables x� y� z and x�� y�� z� with fx�y� y�z� x��y�� y���z�g � ��
But as � is admissible� it is also basic by the �rst claim� Hence� x
equals x� and y equals y�� Therefore� both y�z and y��z� are in � and
in ���

Thus it remains to show that if ��� is used in some admissible clause ��
then there are variables x� y� z such that x�y and y�z are in �� Let � be
an admissible clause for which this holds� and let � 
r �

�� The only rules
we have to consider are �Eq� and �Pre�� For �Eq� note that the claim is
invariant under consistent variable renaming� If r � �Pre�� then we have to
check the path term ��� that is introduced by r� But by de�nition of �Pre�
the clause �� must contain both x�y and y�z� �

This lemma implies that �Eq� can always be applied if a constraint �
�
� �

is contained in some admissible clause� The next lemma will show that
di�erent applications of �Pre� or �Eq� will not interact� This means the
application of one of these rules to some pre�x or path equality constraint
will not change any other pre�x or path equality constraint contained in the
same clause�

Lemma 
�� Given some prime clause � and a derivation

� � �� 
r� �� � � ��n�� 
rn�� �n � �

that contains an application of �PathRel�� Then �
�
� � � � 
resp� �

�
� � �

�� implies �
�
� � � �i 
resp� �

�
� � � �i� for i � k� where k is the number

of the last application of �PathRel�� Furthermore� if ��� is contained in ��
then either ��� or �

�
� � is contained in �i for i � k�

Proof� We will use induction over length of derivations� Assume that we
have proven the lemma for admissible clauses � that are derivable in n steps

	�



and let � 
r �
� with r �� �PathRel�� If r is di�erent from �Eq� or �Pre�� then

there is nothing to prove� If r � �Eq�� then a constraint �
�
� � or �

�
� � in

�� can be missing in � if and only if � contains a constraint �
�
� �� or �

�
� ��

�resp� ��
�
� � or ��

�
� �� and r is of the form

f�
�
���� � � �g � �

� � �
with �� �� � �resp�

f�
�
���� � � �g � �

� � �
with �� �� ���

Hence� � must contain at least two pre�x or path equality constraints� the
left sides of which are di�erent� By induction hypotheses these path equality
or pre�x constraints must have been introduced by the last application of
�PathRel�� But this contradicts to the de�nition of �PathRel�� A similar
argument can be given for the part of the lemma concerning path terms of
form ����

If r is in �Pre�� then we have to check only the second claim of the lemma�
namely that ��� contained in �� implies that either �

�
� � is in � or ��� is

used in �� For the all path terms in �� that are not introduced by this
application of �Pre� this holds trivially� For the path term ��� that is
introduced� this is guaranteed by the application condition of �Pre�� namely
that � must contain �

�
� �� �

We can derive from this lemma certain syntactic properties of admissible
clauses which are needed for proving completeness and quasi�termination�

Corollary 
�� If �
�
� � is contained in an admissible clause �� then � is

di�erent from �� Furthermore� there is no other pre�x or equality constraint
in � involving � and neither ���� nor ���� is in ��

Note that by lemma ��� together with this corollary� the rule �Pre� is al�
ways applicable if a constraint �

�
� � is contained in an admissible clause�

Furthermore� an application of �Pre� causes no violation of the restrictions
that we have imposed on the syntax� This means that concatenation does
not occur in pre�x or path equality constraints� and concatenation of path
variables is restricted to binary concatenation�

Lemma 
�
 If ���
�
q �� is contained in an admissible clause � with �

di�erent from ��� then � contains a constraint of form �
�
q ��� �

�
� �� or

�
�
� ���

Proof� We will prove a stronger result� namely that if f�
�
� �� �

�
q ��g � �

or f���
�
q ��g � �� then � contains a constraint of form �

�
q ��� �

�
� �� or

	�



�
�
� ��� We will prove this by induction over length of derivations� Assume

that we have proven the claim for every admissible clause � that is derivable
in n steps from a prime clause and let �
r �

�� Again we have to check only
the rules �Pre�� �PathRel�� �Eq� or �Div	��

r � �PathRel�� we have to check only constraints �
�
q �� that are already

in �� By lemma ��� we know that if �
�
q �� is in �� then there is a

variable x with both x�y and x��z in �� Hence� if �PathRel� adds the

constraint �
�
� �� it must by de�nition also add a constraint �

�
q ���

�
�
� �� or �

�
� ���

r � �Eq�� the claim is invariant under consistent variable renaming�

r � �Pre�� then � � f�
�
� �� x�y� x�zg � � and �� � fx�y� y�zg � ����

����� The only case that we have to check is that � contains a con�

straint �
�
q ��� Then �� contains ���

�
q ��� By induction hypotheses

� must contain a constraint c of form �
�
q ��� �

�
� �� or �

�
� ��� Since

�Pre� does not change c� this must holds also for ���

r � �Div	�� then � � f���
�

q ����g�� and �� � f�
�
q ��g��� The only new

divergence constraint that comes in is �
�
q ��� But as � contains both

��� and ����� it may not contain �
�
� � or �

�
� �� by corollary ����

Hence� �� does not contain such a constraint�

�

This lemma ensures that a constraint ���
�
q �� is always reducible� If ��

equals �� then we could apply �DClash��� If �
�
q �� is in �� we can apply

�Div��� If �
�
� �� is in � we can apply �Eq� followed by �DClash��� If � �

f�
�
� ��� ���

�
q ��g ��� then we can apply �Pre� yielding f���

�
q ����g ����

where we can apply �Div	��

��� Soundness and Completeness

Proposition 
�� The rules �Eq�� �Div��	�� �SClash�� �Join�� �Empty� and
�DClash��	� are X � P�sound and X � P�preserving�

Proposition 
�
 The rule �Pre� is X �sound and X �preserving�

For �Pre� we can even characterize pairs of path valuations which preserve
the X �solutions�

		



Proposition 
�� Let � � f�
�
� �� x�y� x�zg � � and � be the result of

applying 
Pre� to �� Given a pair of path valuations VP � V
�
P with

VP �P�f
g V
�
P and VP��� � VP���V

�
P��� � V �

P���V
�
P����

then for each interpretation I and for each �rst order valuation VX

�VX � VP� j�I � 
� �VX � V
�
P� j�I ��

Proposition 
��� If  is closed under decomposition� then �LangDec��
is X � P�sound and globally X � P�preserving� Furthermore� �PathRel� is
X � P�sound and globally X � P�preserving�

Finally� we have to prove that the rules are complete� This means that given
an input clause �� for every solution VX of � in some interpretation I there
is a pre�solved clause � derivable from � such that VX is a solution of �� If
the rule system is terminating� then for completeness one has to prove that
the pre�solved clauses are just the irreducible clauses�

In our case this is not enough since the rule system can loop� Therefore� we
have to prove explicitly that each solution of a given prime clause � can be
found in some pre�solved ��derivative� We de�ne Irred���R�� to be the set
all ���R���derivatives which are R��irreducible� and Pre�Solved���R�� to
be the set of all pre�solved clauses which are derivable from �� A set of rules
R� is said to be �	complete w�r�t� to a set of variables 
 if

�� Irred���R�� � Pre�Solved���R���

	� for every interpretation I

�����I� �



��Pre
Solved���R��

�����I��

We will show that for every prime clause � there is a set of regular languages
 such that R� is ��complete w�r�t the �rst order variables X �

Theorem 
��� �Completeness I� Given a prime clause �� If  is a set
of regular languages that is ��closed� closed under intersection and closed
under decomposition� then every ���R���derivative � that is not pre�solved
is R��reducible�

Proof� Let � be a ���R���derivative that is not pre�solved� We will check
all conditions that are stated in the de�nition on page �	�

If one of the conditions ��� is not satis�ed by �� then one of the rules
�SClash�� �Join� or �Empty� will apply�

Now let�s check the conditions � and ��

	�



� contains a constraint ���
�
�L� As  is ��closed� we know that  is al�

so ��closed by lemma ���� Therefore we can apply �LangDec�� or
�DecClash��

� contains a constraint ���
�
q ������ By lemma ��� we know that �

equals ��� Hence� we can apply �Div	��

� contains a constraint ���
�
q ��� If �� equals �� then we can directly

apply �DClash��� Otherwise� there is by lemma ��� a constraint �
�
�

��� �
�
� �� or �

�
q �� in �� If �

�
� �� is in �� we can apply �Eq�

by lemma ���� This will result in the substitution of �� by �� The

remaining constraint ���
�
q � can be reduced using �DClash��� If

�
�
� �� is in �� then we can apply �Pre� by lemma ��� and corollary ����

We will obtain the constraint ���
�
q ����� which can be reduced using

�Div	�� The last case is that �
�
q �� is in �� where we can apply �Div���

� contains a constraint �
�
� �� Then �Eq� is applicable by lemma ����

� contains a constraint �
�
� �� Then �Pre� is applicable by lemma ���

and corollary ����

The remaining case is that � does not satisfy the last condition of a pre�

solved clause� namely that �
�
q � with � �� � in � if and only if x�y and

x�y in �� Given the above� we can now assume that � does not contain a
path concatenation or a pre�x or path equality constraint�

There are three possibilities for � to violate the last condition� The �rst

is that � contains a constraint of the form �
�
q �� Then �DClash	� is

applicable� The second is that there is a constraint �
�
q � with x�y � � and

x��y� � � such that x is di�erent from x�� But this is excluded by lemma ����

The last case is that there are di�erent path variables � and � such that

x�y and x�z are in � but �
�
q � is not� As � contains no concatenation and

no path equality or pre�x constraints� the rule �PathRel� is applicable� �

Next we have to prove the second property for ��completeness� namely that
for every interpretation I and for every solution VX of � there is a pre�
solved ��derivative � with VX � �����I� This property is needed since our rule
system can loop� Let us recall an example of a looping derivation in order
to explain the main idea involved in the second part of the completeness
proof� In contrast to our �rst example of a looping derivation �see page ���
we will now omit the path restrictions� since they are not needed for what
we want to demonstrate� Let � be the clause

� � fx�x� x�yg�
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A looping derivation can consist of an application of �PathRel� yielding the
clause �� � f�

�
� �� x�x� x�yg� followed by an application of �Pre� on �

yielding �� � ��� As one can imagine� the reason for looping derivation is
the rule �Pre�� We will later prove that indeed every in�nite derivation must
use the �Pre� rule in�nitely often�

For proving the second completeness property we restrict the set of allowed
derivations depending on some arbitrary but �xed valuation �VX � VP� with
�VX � VP� j�I �� This control will guarantee that

�� VX is a solution of every clause in the derivation�

	� under this control� all derivations are �nite�

Will we additionally show that even under this control the irreducible clauses
are just the pre�solved clauses� Hence� this control will give us� for every
clause � and every initial solution VX � a pre�solved ��derivative that has VX
as an solution�

We will add this further control only on the non�deterministic rules
�PathRel� and �LangDec��� thus restricting the set of instances of these
rules that may be applied� We allow only those instances which preserve
the valuation �VX � VP�� Using our above example� if VP satis�es

VP��� � f and VP��� � g

we may apply only that instance of �PathRel� which transforms � into �� �

f�
�
q �� x�x� x�yg� Since the choice of the instances depends only on the

path valuation� we will call such restricted derivations VP�strict�

It is easy to see that the above restriction will always enforce �niteness of
derivations if the initial path valuation VP satis�es

VP��� �� VP��� where � �� � � x�y � � � x�z � ��

One could say that in this case VP is pre�x free with respect to ��

For the initial path valuations which are not pre�x free we must have a closer
look at the �Pre� rule� since this rule is the reason for looping derivations�
As �Pre� is a rule which is not P�preserving� the path valuation has to be
changed in a VP�strict derivation when �Pre� is applied� This implies that
we can yield �niteness of VP�strict derivations if we guarantee that after
a �nite number of �Pre� applications the initial path valuation has been
transformed into a pre�x free path valuation�

�The �rst example of a looping derivation on page � shows that the situation is no

di�erent if we add path restrictions�
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We will again turn to our example to clarify this� If the initial path valuation
VP for � is of the form

VP��� � f and VP��� � fffg�

the �rst rule in a VP�strict ��derivation could be an application of �PathRel�
transforming � � �� into �� � f�

�
� �� x�x� x�yg� Now we are able to apply

�Pre�� which implies that we have to change VP � Using proposition ��
 we
can use the following V �

P �

V �
P��� � f and V �

P��� � ffg�

Proposition ��
 guarantees that this can be done without loosing X �
preservingness� Note that we have shortened VP��� by f � Now we could
iterate this twice more before ending up with a pre�x free path valuation�

After these remarks we can turn to the technical part�

Theorem 
��� �Completeness	II� Let � be a prime clause� let  be a
set of regular languages which is ��closed� closed under intersection and
decomposition� Then R� is ��complete w�r�t� the �rst order variables X �

First we need an additional lemma�

Lemma 
��� There are no in�nite derivations using only �nitely many
instances of �Pre��

Proof� Assume there is such a derivation� Then there exists an in�nite
sub�derivation not using any instance of �Pre�� Let � be the starting point
of such a derivation� Let � be some clause� Then we de�ne the following
functions on ��

!���� � number of concatenations in �

!���� � number of di�erent path variables in �

"���� � number of constraints �
�
� � with

�
� � f

�
��

�
��

�
qg�

�� � � VarsP��� and �
�
� � not in �

#��� � total number of constraints in �

We de�ne !��� to be the tuple h!�����!����i� Using the functions !� "
�

and # we can construct a partial order on clauses by de�ning � �� �
� i�

�!��� � !�����
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!� !� "� #

�PathRel� � � �

�Eq� � �

�LangDec�� � �
�Join� � � � �

�Div�� � �
�Div	� � �

Table �� Monotonicity of the rules w�r�t the measure functions�

or
�!��� � !����� � �"���� � "������

or
�!��� � !����� � �"���� � "������ � �#��� � #������

Here � is the lexicographic ordering on tuples for !��� and elsewhere the
usual numeric comparison� It is easy to check� that �� de�nes a well�
founded� partial ordering on clauses�

Let � be some derivation of �� Now VarsP��� � VarsP��� holds� which is
important for the value of "�� In table � we have summarized for every non�
clash rule other than �Pre� the variation of !���� "���� and #����� The
clash rules are not considered because they automaticly terminate every
derivation� The table shows that for every rule r � 
r �

� implies �� �� ��
Because �� is a well�founded ordering and therefore cannot have in�nite
descending chains� this contradicts our assumption that there is a in�nite
derivation not using �Pre�� �

Corollary 
��� There are no in�nite derivations using only �nitely many
instances of �PathRel��

Proof� By the above lemma we know that there are no in�nite derivations
without in�nite use of �Pre�� But �Pre� removes the constraints �

�
� ��

the existence of which is an application condition for �Pre�� But additional
constraints of form �

�
� � are only introduced by �PathRel�� �

Proof of theorem 
��� �Completeness II�� The �rst condition for ��
completeness was proved in theorem ���� �Completeness I�� For the second�

�If a rule decreases the ��value� the clause resulting from applying this rule is smaller

than the input clause w�r�t �� independently of the e�ects of the rule on the 	��part�

Therefore� we omit the corresponding 	��entries in this case
 and similarly for the ��part�
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let I be some interpretation and �VX � VP� be a valuation with �VX � VP� j�I ��
We have to show that there is a ���R���derivative � which is pre�solved and
satis�es �V �

P � �VX � V
�
P� j�I �� This will be done by de�ning VP�strict

derivations� which will always end up in a pre�solved clause� As we have
mentioned� we have to rede�ne the path valuation every time �Pre� is ap�
plied� This leads to the following de�nition� a derivation

� � �� 
r� �� � � ��n 
rn �n�� � � �

is called VP�strict if there is a family of path valuations �V
i
P� such that

�� V �
P � VP �

	� for each i the proposition �VX � V
i
P� j�I �i holds� and

�� for each i

� ri �� �Pre� implies V i
P � V i��

P and

� ri �
f

�
�
� ��� g 	 �

��� � �Pre� implies

V i
P �P�f
g V i��

P and V i
P��� � V i��

P ���V i��
P ����

Now for every VP�strict ���R���derivation

� � �� 
r� �� � � ��n�� 
rn�� �n

where �n is not pre�solved� there is a VP�strict continuation� as the following
argumentation shows� If �n is not pre�solved� then there is �by theorem �����
a rule which is applicable� We have to show that there is an applicable rule
instance such that a corresponding V n��

P can be found�

If the applicable rule is di�erent from �Pre�� then we know that there is an
appropriate path valuation V n��

P � as all rules di�erent from �Pre� are either
X � P�preserving or globally X � P�preserving� If �Pre� is applicable� then
proposition ��
 shows that we can �nd an appropriate V n��

P �

Next we must show that there is no in�nite VP�strict ���R���derivation�
which �nally proves the lemma� This is done by introducing a norm on path
valuations� For a path valuation VP we de�ne jVP j� to be�

jVPj� �
X


�VarsP���

jVP���j�

Now let
�i 
ri �i��

	




be a step in some VP�strict ���R���derivation and let V
i
P � V

i��
P be the cor�

responding path valuations� If ri �� �Pre� we know that V i
P � V i��

P and
hence jV i

Pj� � jV i��
P j�� If ri � �Pre� we know by the third condition of

VP�strictness that there are � and � such that

V i
P �P�f
g V i��

P and V i
P��� � V i��

P ���V i��
P ����

As VarsP��i��� � VarsP��i� � VarsP��� this implies jV
i��
P j� � jV i

Pj��

As there are no in�nite derivations without in�nite use of �Pre� this proves
that there are no in�nite VP�strict derivations� �

��� Quasi�Termination

Lemma 
��� Let � be a prime clause and  be a �nite ��closed set of
regular languages� Then the set of all ���R���derivatives is �nite�

Proof� We will �rst consider the sets C which contains every atomic con�
straint that occur in at least one ���R���derivative� C could be seen as the
union of all ���R���derivatives� We will show that C is �nite� As every
���R���derivative is a subset of C this will prove the lemma�

First we know that no rule adds new variables� This implies that there
are at most n� � jVarsP���j$ jVarsP���j� many di�erent path terms� By
lemma ��� we know that  is ��closed for every ���R���derivative� which
implies that at most j j di�erent regular languages are used in the ���R���
derivatives�

Therefore C contains at most jVarsX ���j� node agreements� jVarsX ���j �
jVarsP���j�jVarsX ���j subterm agreements� n�� path divergence constraints�
jVarsP���j� pre�x and equality constraints and n� � j j path restriction
constraints� Since no rule adds new sort symbols we know that C contains
at most n� � jVarsX ���j di�erent node restrictions� where n� is the number
of sort symbols in �� �

Theorem 
��
 For every prime clause � there exists a set of regular lan�
guages  such that R� is ��complete w�r�t� X and the set Pre�Solved���R��
is �nite and computable�

Proof� Let reg��� be the set of regular languages used in �� By lemma ��	
there must be a �nite  such that  is ��closed� closed under intersection
and decomposition� Then R� is ��complete w�r�t� X by theorem ���	� By
lemma ���� we know that Pre�Solved���R�� must be �nite� Hence� it su�ces
to prove that the set Pre�Solved���R�� is computable�

	




To do this we will consider loop�free derivations� A derivation is called
loop�free if it is not of the form

�� 
r� � � �
ri �i � � �
rk �k � � � �

where �i � �k� In order to generate the set of derivatives �or a subset of
them� it is enough to consider loop�free derivations� This is because for
every pair �� � � every ��derivation which yields �� and is not loop�free can
be replaced with a shorter derivation by removing some loop� Iterating this
step �nally yields a loop�free ��derivation for ���

Furthermore� the set of all loop�free ���R���derivations must be �nite since
R� can only generate �nitely many ���R���derivatives by lemma ����� and
there are only �nitely many rules ofR applicable on every ���R���derivative�
But as we have mentioned we need to consider only the loop�free derivations�
which shows that Pre�Solved���R�� is computable� �

Corollary 
��� For every prime clause � there exists a �nite and com�
putable set of pre�solved clauses � such that � is equivalent to ��

Proof� Follows from the last theorem and the fact� that every rule is at
least VX �sound� �


 The Second Phase� Satis�ability of Pre�Solved

Clauses

In this section we will present a rule system that transforms each pre�solved
clause into an equivalent set of solved clauses� which are satis�able by lem�
ma ����

We will �rst make a minor rede�nition of divergence� We say that two paths
u� v are directly diverging �written uq� v� if there are features f �� g such
that u � fF� and v � gF�� Then u q v holds if there are a possible empty
pre�x w and paths u�� v� such that u � wu� and v � wv� and u�q� v

�� Using
this de�nition of divergence and the additional atomic constraint

�
�
q� � direct divergence�

we can �non�deterministically� transform a clause � � f��
�
q ��g � � into

either f��
�
q� ��g � � or f��

�
� ������ ��

�
� ������ �

�
�

�
q� ���g � ��
 By

�The �rst case is needed because we do not allow values of path variables to be empty

paths�

��



the de�nition of q� we can reduce �non�deterministically� the constraints of

form ��
�
q� �� into f��

�
�fF�� ��

�
�gF�g with f �� g� The aim is to process

all divergence constraints this way in order to achieve a solved clause�

But we have to reformulate the reduction of divergence constraints� The rea�
son is that we have to evaluate constraints of the form ��

�
� ������ This can

produce constraints of the forms ���
�
�L and ���

�
q ��� The second is prob�

lematic as we must guess the relation between � and ��� This complicates
the termination proof�

We will avoid this problem by using a special property of pre�solved clauses�

namely that �
�
q � is in a pre�solved clause � i� x�y and x�z are in ��

Hence� if �
�
q � and �

�
q � are in �� then �

�
q � is also in �� This implies

that we can write � as
�
q �A�� � � � ��

�
q �An� � �� where

�
q �A� is syntactic

sugar for

f�
�
q �� j � �� �� � �� �� � Ag�

A�� � � � � An are disjoint sets of path variables and � contains no divergence

constraints� Now given such a constraint
�
q�A�� suppose that a whole set of

path variables A� � A diverge with the same pre�x� Then we can replace
�
q �A�� �

�
q�A� by

A� � ��A�� �
�
q ��A

�
���

where � is new� A�� � f���� � � � � �
�
ng is a fresh copy of A� � f��� � � � � �ng

and A
�
� ��A�� abbreviates the clause f��

�
� ������ � � � � �n

�
� ����ng�

�
q ��A�

is de�ned similarly to
�
q �A�� Under the additional assumption that the

common pre�x � is maximal� it follows that �
�
q � holds for � � �A� A���

If we consider also the e�ects of A�
�
� ��A�

� on the subterm agreements in
�� then we get the following non�deterministic rule�

�Reduce��
xA�Y� �

�
q�A� � �

fx�zg � zA��Y� �
�
q��A

�
�� �

�
q �f�g�A�� � ��

where �� � ���� � ������ � � � � �n � ����n�� A� � A� � A�
jA�j � � and z� � new� A�� is a disjoint copy of A�� xA�Y� is
short for fx��y�� � � � � x�nyng� � may not contain constraints
of form ����

�
�L in ��

Note that we have avoided constraints of the form ���
�
q ��� Additionally�

we use the non�deterministic rules

��



�Reduce��

�
q�A�� �
�
q��A�� �

�Solv�

�
q��A�� �

f� � f
�F
� j � � Ag � �

f
 �� f
� for � �� ���

�Reduce�� is needed as path variables always denote non�empty paths� We
will see �Reduce�� and �Reduce�� as one single rule �Reduce�� To complete
our rule system� we need the rules �LangDec��� �DecClash�� �Join� and
�Empty�� Since we will show that the rule system is terminating� we can
replace �LangDec�� by a simpler version� namely

�LangDecdfun�
f���

�
�Lg � �

f�
�
�Pg � f�

�
�Sg � �

P �S � L� �P� S� � dfun�L�

L must contain a path w with jwj � ��

Here dfun � P�F�� 
 P�F�� � P�F�� is a decomposition function that
assigns to each regular language L a �nite set of decompositions� dfun is
called decomposition complete if for every regular language L and every
path w � w�w� � L there is a pair �P� S� in dfun�L� with w� � P and
w� � S� The complete set of rules is denoted RSolv

dfun�

After the explanation of the rule system we can commence the technical

part� Since we have added constraints of the form �
�
q� �� we have to extend

condition � in the de�nition of a solved clause as presented on page ��� We

require solved clauses not to contain constraints of the form �
�
q� ��

A clause � is called partitioned if the set of divergence constraints of � is

of the form
�
q �A�� � � � ��

�
q �Ak��

�
q ��Ak��� � � � ��

�
q ��An�� where the Ai

are disjoint�

Proposition ��� There exists a decomposition function dfun that is decom�
position complete�

Proof� See proof of lemma ��	 for the construction of such a function� �

Proposition ��� Let � be a pre�solved clause and let � be a ���RSolv
dfun��

derivative� Then � is partitioned� Furthermore� for every pair of variables

�� � such that � �� �� x�y � � and x�z � � we have � j� �
�
q ��

�	



Proposition ��� For every partitioned clause � the rule �Reduce�
� �Reduce�� $ �Reduce�� is VarsX ����sound and globally VarsX ����
preserving� The rule �Solv� is VX � VP�sound and VX � VP �preserving� If
dfun is decomposition complete� then 
LangDecdfun� is VX � VP�sound and
VX � VP�preserving�

Lemma ��� RSolv
dfun is terminating�

Proof� For �Solv�� �Join�� �LangDec�� �DecClash� and �Empty� it is trivial
to see that there are no in�nite derivations using only these rules� Fur�
thermore� there are no derivations which use �Reduce� in�nitely often� since
during every application of �Reduce� at least one divergence constraint is re�
moved �note that jA�j � � is an application condition of �Reduce���� Hence�
there are no in�nite RSolv

dfun�derivations� �

Lemma ��� Let � be a pre�solved clause� If dfun is decomposition complete�
then a ���RSolv

dfun��derivative is RSolv
dfun�irreducible if and only if it is solved�

Proof� Let � be a ���RSolv
dfun��derivative� We have to show that if � is not

solved� then one of the rules applies� We will check all conditions that are
stated in the de�nition on page ���

Condition � is satis�ed by every ���RSolv
dfun��derivative since � is pre�solved

and we do not add or change any sort restriction constraint� If one of the
conditions 	 or � is not satis�ed� then one of the rules �Join� or �Empty�
will apply� Condition � is satis�ed by every ���RSolv

dfun��derivative by propo�
sition ��	� Now let�s check the conditions � and ��

� contains a constraint ���
�
�L� �LangDecdfun� or �DecClash� is applica�

ble�

� contains a constraint �
�
q� �� Then � is of the form

�
q ��A� � � by

proposition ��	� which implies that �Solv� is applicable�

� contains a constraint �
�
q �� By proposition ��	 we know that in this

case � is of the form
�
q �A� � �� Given the above we can assume that

�Reduce� is applicable�

�

Lemma ��
 For every pre�solved clause � there is a �nite and e�ectively
computable set of solved clauses � such that for every I

�����IVarsX��� �


���

�����IVarsX����

��



Proof� Follows from propositions ���� ��	 and ��� and lemmas ��� and ����
�

Corollary ��� Satis�ability of pre�solved clauses is decidable�

Finally� we are able to combine both phases�

Theorem ��
 Satis�ability of prime clauses is decidable�

Proof� Follows from the corollaries ���� and ���� �


 Conclusion

We have shown that the pure existential fragment of feature logic extended
by regular path expressions is decidable� The main prerequisite for achieving
this result was to switch from the original� unsorted syntax to a two�sorted
syntax� For each clause in the original syntax we get an equivalent clause in
the new syntax by translating a regular path expression xLy into fx�y� �

�
�

Lg with � new�

The result of the translation constitutes a special class of clauses� the class
of prime clauses� The main restriction imposed on prime clauses is that
for each path variable � there is at most one constraint x�y contained in a
clause� For prime clauses we have presented an algorithm that transforms
a clause into an equivalent set of pre�solved clauses� In a second phase
pre�solved clauses are checked for satis�ability by transforming them into
an equivalent set of solved clauses� Since every solved clause is prime� the
result may be reused for later computation�

Our syntax is more expressive than the original one� Although restriction to
prime clauses was su�cient for our purposes� it may be interesting to exam�
ine whether decidability can be preserved in the absence of the restriction�
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