
Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Research
Report

RR-93-17

Regular Path Expressions
in Feature Logic

Rolf Backofen

May 1993

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
67608 Kaiserslautern, FRG
Tel.: + 49 (631) 205-3211
Fax: + 49 (631) 205-3210

Stuhlsatzenhausweg 3
66123 Saarbrücken, FRG
Tel.: + 49 (681) 302-5252
Fax: + 49 (681) 302-5341

Deutsches Forschungszentrum
für

Künstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszen-
trum für Künstliche Intelligenz, DFKI) with sites in Kaiserslautern and Saarbrücken
is a non-profit organization which was founded in 1988. The shareholder com-
panies are Atlas Elektronik, Daimler-Benz, Fraunhofer Gesellschaft, GMD, IBM,
Insiders, Mannesmann-Kienzle, Sema Group, Siemens and Siemens-Nixdorf. Re-
search projects conducted at the DFKI are funded by the German Ministry for
Research and Technology, by the shareholder companies, or by other industrial
contracts.

The DFKI conducts application-oriented basic research in the field of artificial
intelligence and other related subfields of computer science. The overall goal is
to construct systems with technical knowledge and common sense which - by
using AI methods - implement a problem solution for a selected application area.
Currently, there are the following research areas at the DFKI:

� Intelligent Engineering Systems
� Intelligent User Interfaces
� Computer Linguistics
� Programming Systems
� Deduction and Multiagent Systems
� Document Analysis and Office Automation.

The DFKI strives at making its research results available to the scientific com-
munity. There exist many contacts to domestic and foreign research institutions,
both in academy and industry. The DFKI hosts technology transfer workshops for
shareholders and other interested groups in order to inform about the current state
of research.

From its beginning, the DFKI has provided an attractive working environment for
AI researchers from Germany and from all over the world. The goal is to have a
staff of about 100 researchers at the end of the building-up phase.

Friedrich J. Wendl
Director

Regular Path Expressions in Feature Logic

Rolf Backofen

DFKI-RR-93-17

Parts of this report have been published in the Proceedings of the Fifth
International Conference on Rewriting Techniques and Applications,
and in the Proceedings of the ��st Annual Meeting of the Association
for Computational Linguistics

This work has been supported by a grant from The Federal Ministry
for Research and Technology (FKZ ITWM-9002 0).

c� Deutsches Forschungszentrum für Künstliche Intelligenz 1993

This work may not be copied or reproduced in whole of part for any commercial purpose.
Permission to copy in whole or part without payment of fee is granted for nonprofit edu-
cational and research purposes provided that all such whole or partial copies include the
following: a notice that such copying is by permission of the Deutsche Forschungszentrum
für Künstliche Intelligenz, Kaiserslautern, Federal Republic of Germany; an acknowledge-
ment of the authors and individual contributors to the work; all applicable portions of this
copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum für Künstliche Intelligenz.

Regular Path Expressions in Feature Logic

Rolf Backofen

Deutsches Forschungszentrum f�ur K�unstliche Intelligenz

Saarbr�ucken

backofen�dfki�uni�sb�de

Abstract

We examine the existential fragment of a feature logic� which is
extended by regular path expressions� A regular path expression
is a subterm relation� where the allowed paths for the subterms
are restricted to any given regular language� We will prove that
satis�ability is decidable� This is achieved by setting up a quasi�
terminating rule system�

Contents

� Introduction �

� The Method �

� Preliminaries �

� Feature Trees ��

� Prime� Pre	Solved and Solved Clauses ��

 The First Phase ��

��� A Set of Rules ��

��	 Some Properties of the Rule System � � � � � � � � � � � � � � �

��� Soundness and Completeness � � � � � � � � � � � � � � � � � � 		

��� Quasi�Termination � 	

� The Second Phase� Satis�ability of Pre	Solved Clauses ��

 Conclusion ��

	

� Introduction

Feature descriptions are used as the main data structure of so�called uni��
cation grammars� which are currently a popular family of declarative for�
malisms for processing natural language �Shi
��� More recently� feature de�
scriptions have been proposed as a constraint system for logic program�
ming �AKN
�� AKLN
�� AKP
�� AKPS
	b� ST
	�� They provide for a
partial description of abstract objects by means of functional attributes
called features� As an example consider the feature description �in matrix
notation��

x � �y

�
��������

woman

father �

�
engineer

age � y

�

husband �

�
painter

age � y

�

�
��������
�

which may be read as saying that x is a woman whose father is an engineer�
whose husband is a painter and whose father and husband are both of the
same age�

Feature description have been proposed in various forms with various for�
malizations �AK
�� KR
�� RK
�� Joh

� Smo
	� Joh
��� We will follow the
logical approach introduced by Smolka �Smo
	�� where feature descriptions
are standard �rst order formulae interpreted in �rst order structures� In
this formalization features are considered as functional relations� Atomic
formulae �which we will call atomic constraints� are of the form A�x� or
xfy� where x� y are �rst order variables� A is some sort predicate and f is a
feature �written in in�x notation�� Then we can express the above feature
description by the �admittedly less suggestive� formula

�y � x� � x� � woman�x� �

x father x� � engineer�x� � � x� age y� �

x husband x� � painter�x� � � x� age y ��

This feature logic has been investigated in detail� A complete axiomatization
of the standard model �so�called feature graphs� is given in �BS
��� There
it was shown that the standard model is elementarily equivalent to a tree
model� Additionally� a connection to �rst order constructor terms has been
examined �ST
	��

In this paper we will be concerned with an extension to feature descriptions
introduced as �functional uncertainty� by Kaplan and Zaenen �KZ

�� and
Kaplan and Maxwell �KM

�� This extension is made by adding a subterm

�

relation� where the allowed paths for the subterms are restricted to any giv�
en regular language� It was invented for handling so�called long�distance
dependencies in the grammar formalism LFG �KB
	�� For a detailed de�
scription the reader is referred to �KZ

�� Further applications can be found
in �Kel
���

To accomplish this extension we must �rst generalize the constraints of the
form xfy to constraints of the form xwy� where w � f� � � � fn is a string of
features �called a feature path�� Such feature paths are interpreted using
simple relational composition�

This generalization is just syntactic sugar �see Smolka �Smo

��� This is no
longer the case if we add functional uncertainty in form of constraints xLy�
where L is a regular expression denoting a regular language of feature paths�
A constraint xLy holds if there is a word w � L such that xwy holds� By this
existential interpretation a constraint xLy can be seen as the disjunction

xLy �
	
fxwy j w � Lg�

As this disjunction may be in�nite� functional uncertainty yields additional
expressivity� Note that the constraint xwy is a special case of a functional
uncertainty constraint�

Kaplan and Maxwell �KM

� have shown that the satis�ability problem
of the pure existential fragment �i�e� the satis�ability of formulae built with
A�x�� xLy and equations x

�
� y� is decidable� provided that a certain acyclic�

ity condition is met� Baader et al� �BBN�
�� have shown that satis�ability
is undecidable if we add unrestricted negation� It has� however� remained
an open problem whether satis�ability of the purely existential fragment is
decidable in the absence of additional conditions �such as acyclicity�� In this
paper we will show that it is indeed decidable�

� The Method

We will �rst sketch the method for testing satis�ability of the standard
feature descriptions� and then turn to the systems as extended by functional
uncertainty� To get a good intuition note that some sort of tree model is
canonical for satis�ability� a pure existential formula is satis�able if it is
satis�able in this tree model� Thus� the feature paths used in the language
can be compared directly with paths in trees�

Consider a clause � � xp�y��xp�y� �in the rest of the paper we will call pure
conjunctive formulae clauses�� Although only subterm relations for x� y� and
x� y� are contained in this clause� an additional subterm or equality relation

�

can be implied depending on the paths p� and p�� If p� equals p�� we
know that y� and y� must be equal� which implies that � is equivalent to
xp�y��y�

�
� y�� If p� is a pre�x of p� and hence p� � p�p

�� we can transform
� into the equivalent formula xp�y� � y�p

�y�� thus additionally stating that
y� is a subterm of y�� The reverse case is handled similarly� If neither pre�x
nor equality holds between the paths� there is nothing to do� By and large�
clauses where the last condition holds for every x and every pair of di�erent
constraints xp�y� � � and xp�y� � � are the solved forms of �Smo

�� which
are satis�able�

If we consider a clause of the form � � xL�y� � xL�y�� then we have again
to check the relation between y� and y�� But now there is in general no
unique relation determined by �� since this depends on which paths p� and
p� are used out of L� and L�� Hence� we have to select non�deterministically
a relation between p� and p� before we can calculate the relation between
y� and y�� In the following� we will often just say �guess� instead of �select
non�deterministically��

But there is a problem with the original syntax� namely that it does not allow
one to express any relation between the chosen paths�� Therefore� we ex�
tend the syntax by introducing so�called path variables �written �� �� ��� � � ���
which are interpreted as feature paths� If we use in addition the modi�ed
subterm relation x�y and a restriction constraint �

�
�L� a path expression

xLy can be expressed by the equivalent clause x�y � �
�
�L �� new��

Using this extended �two�sorted� syntax we are now able to reason about
the relations between di�erent path variables� To do this we introduce addi�

tional constraints �
�
� � �equality�� �

�
� � �pre�x� and �

�
q � �divergence��

Divergence holds if neither equality nor pre�x does� Now we can describe a
normal form equivalent to the solved clauses in Smolka�s work� which we will
call pre�solved clauses� A clause � is pre�solved if for each pair of di�erent

constraints x�y� and x�y� in � there is a constraint �
�
q � in �� Additional�

ly� we require pre�solved clauses to contain at most one constraint �
�
�L for

each path variable �� We call these clauses pre�solved� since these clauses
are not necessarily satis�able� it may happen that the divergence constraints
together with the restrictions of the form �

�
� L are inconsistent �think of

the clause �
�
� f� � �

�
� ff� � �

�
q �� e�g��� But pre�solved clauses have the

property that if we �nd a valuation for the path variables� then the clause
is satis�able�

Our algorithm �rst transforms a clause into a set of pre�solved clauses� which

�Maxwell and Kaplan solved this problem by using operations on regular languages

such as intersection and calculating pre�x languages directly� The use of this method

forced them to introduce a new variable each time a transformation rule was applied� For

a feature description that contains a cycle of the form xL�y� � � � � yn��Lnx this resulted

in the introduction of an in�nite number of variables�

�

is �when viewed as a disjunction� equivalent to the initial clause� In a second
phase the pre�solved clauses are checked for satis�ability with respect to
the path variables� In both phases we use a set of deterministic and non�
deterministic transformation rules�

Before starting with the technical part we will illustrate the �rst phase� since
it is the more di�cult� For the rest of the paper we will write clauses as sets
of atomic constraints� Consider the clause � � fx�y� ��

�
�L�� x�z� �

�
�L�g�

Initially� one guesses the relation between the path variables � and �� In our
example there are four di�erent possibilities� Therefore� � can be expressed
equivalently by the set of clauses

�� � f�
�
q �� x�y� �

�
�L�� x�z� �

�
�L�g

�� � f�
�
� �� x�y� �

�
�L�� x�z� �

�
�L�g

�� � f�
�
� �� x�y� �

�
�L�� x�z� �

�
�L�g

�� � f�
�
� �� x�y� �

�
�L�� x�z� �

�
�L�g�

The clause �� is pre�solved� For the others we must evaluate the relation
between � and � as follows� In �� we substitute � for � and y for z� which
yields

fy
�
� z� x�y� �

�
�L�� �

�
�L�g�

We keep only the equality constraint for the �rst order variables since we
are interested only in their valuation� Combining f�

�
� L�� �

�
� L�g into

f�
�
� �L� � L��g will then give us an equivalent pre�solved clause� For ��

we know that the variable � can be split up into two parts� one of them
covered by �� We can use concatenation of path variables to express this�
that means we can replace � by the term ���� with �� new� This would lead
to the clause

f�
�
� ����� x�y� �

�
�L�� x���

�z� ����
�
�L�g�

But this could easily be expressed more simply� First� the constraint �
�
�

���� is super�uous� Second� the constraint x����z in combination with x�y
can also be expressed by fx�y� y��zg� We now obtain the clause

��� � fx�y� �
�
�L�� y�

�z� ����
�
�L�g�

This shows that we do not need concatenation of path variables within
subterm agreements� and we will avoid them for simplicity�

The only thing that remains in order to achieve a pre�solved clause is to
resolve the constraint ����

�
�L�� To do this we have to guess a decomposition

P� S of L� with P �S � fps j p � P� s � Sg � L� such that �
�
�P and ��

�
�S

holds� In general� there can be an in�nite number of decompositions �think
of the possible decompositions of the language f�g�� But as we use regular

�

languages� there is a �nite set of regular decompositions which covers all
possibilities� Finally� reducing f�

�
�L�� �

�
�Pg to f�

�
��L� � P �g will yield a

pre�solved clause�

Note that the evaluation of the pre�x relation in �� has the additional e�ect
of introducing a new constraint y��z� In general this implies that after
the evaluation of pre�x constraints there may be some path variables whose
relation is unknown� Hence� after reducing the terms of form �

�
� � or �

�
� ��

we may have to repeat the non�deterministic choice of relation between path
variables� In the end� the only remaining constraints between path variables

are of form �
�
q ��

Now let�s turn to an additional point we have to consider� namely that the
rules we present will �naturally� loop in some cases� Roughly speaking� one
can say that this occurs if a cycle in the graph co�incides with a cycle in the
regular language� To see this let us vary the above example and let � be the
clause

fx�x� �
�
�f� x�z� �

�
�f�gg

Then a possibly looping derivation could be

f�
�
� �� x�x� �

�
�f� x�z� �

�
�f�gg adding relation �

�
� �

fx�x� �
�
�f� x��z� ����

�
�f�gg splitting � into ����

fx�x� �
�
�f� x��z� �

�
�f�� ��

�
�f�gg decomposing ����

�
�f�g

fx�x� �
�
�f� x�z� ��

�
�f�gg joining ��restrictions

But we will prove that we get a quasi�terminating rule system� which means
that the rule system may cycle� but produces only �nitely many di�erent
clauses �see �Der
���� This is achieved by the following measures� �rst� we
will guarantee that the rules do not introduce additional variables� second�
we restrict concatenation to length 	� and third� we will show that the rule
system produces only �nitely many regular languages� In order to show
that our rewrite system is complete� we must additionally show that every
solution can be found in a pre�solved clause�

� Preliminaries

Throughout this paper we assume a signature consisting of a set of sorts
S �A�B� � � ��� features F �f� g � � ��� �rst order variables X �x� y� � � �� and
path variables P ��� �� � � ��� We use a �nite set of features and in�nite sets
of variables and sorts� The sets S� F � X and P are pairwise disjoint�

�

A path is a �nite string of features� We say that a path u is a pre�x of a
path v �written u � v� if there is a non�empty path w such that v � uw�
Note that � is neither symmetric nor re�exive� We say that two paths u� v
diverge �written u q v� if there are features f� g with f �� g� and possibly
empty paths w�w�� w�� such that u � wfw� � v � wgw�� It is clear that q
is a symmetric relation�

Proposition ��� Given two paths u and v� then exactly one of the relations
u � v� u � v� u 	 v or uq v holds�

A path term �p� q� � � �� is either a path variable � or a concatenation of
path variables ���� We will allow complex path terms only in divergence
and restriction constraints� but not in pre�x or equality constraints� The
set of atomic constraints is given by

c
 Ax sort restriction

x
�
� y agreement

x f� � � � fn y subterm agreement �

x�y subterm agreement �
p
�
�L path restriction

p
�
q q divergence

�
�
� � pre�x

�
�
� � path equality

We exclude empty paths in subterm agreements� since x�y is equivalent to
x
�
� y� Therefore� we require f� � � �fn � F�� L is a regular expression denot�

ing a regular language L�L� � F�� In the following we will not di�erentiate
between the regular expression and the language it denotes� and we will feel
free to mix both�

A clause is either the special symbol � ��false�� or a �nite set of atomic
constraints denoting their conjunction� We will say that a path term ���
is contained �or used� in some clause � if � contains either a constraint

���
�
�L or a constraint ���

�
q q�� Constraints of the form p

�
�L� p

�
q q� �

�
� �

and �
�
� � will be called path constraints�

An interpretation I is a standard �rst order structure� where every feature
f � F is interpreted as a binary� functional relation F I � and where sort
symbols are interpreted as disjoint� unary predicates �hence AI � BI � �
for A �� B�� A valuation is a pair �VX � VP�� where VX is a standard �rst
order valuation of the variables in X and VP is a function VP � P
 F��
We de�ne VP����� to be VP���VP����

�We will not distinguish between p
�
q q and q

�
q p�

The validity of an atomic constraint in an interpretation I under a valuation
�VX � VP� is de�ned as follows�

�VX � VP� j�I Ax �
� VX �x� � AI

�VX � VP� j�I x
�
� y �
� VX �x� � VX �y�

�VX � VP� j�I x f� � � � fn y �
� VX �x� F I
� � � � � � F

I
n VX �y�

�VX � VP� j�I x�y �
� �VX � VP� j�I x VP��� y

�VX � VP� j�I p
�
�L �
� VP�p� � L

�VX � VP� j�I p
�
� q �
� VP�p� � VP�q� for � � fq����g

Note that subterm agreement 	 is the only constraint where an interaction
between VX and VP happens� The validity of sort restriction� agreement and
subterm agreement � depend only on VX and I� Hence� we will sometimes
omit the path valuation VP and write VX j�I � if � consists only of these
forms of constraint and � is valid under I and VX � Similar� validity of path
constraints depend only on the path valuation� We will write VP j� � if �
is a clause consisting of path constraints that are valid under VP �

For checking satis�ability of clauses we will use a set of deterministic and
non�deterministic transformation rules� Which set of rules is used will de�
pend on the initial clause� Let � be a clause and r be a rule instance� We
say that r is applicable on � if � matches the de�nition of r and the ap�
plication conditions noted in the de�nition of r are satis�ed� We will write
�
r � if r is applicable on � and the result of the application is �� For a
set of rules R we say �
R � if there is an r � R with �
r �� � is called
R	irreducible if no rule instance r � R applies to �� We will say that a
clause � is R�reducible if � is not R�irreducible� A sequence

��
r� �� � � ��i
ri �i�� � � �

is called a derivation� A clause � is called a ���R�	derivative if there is
a derivation from � to � that uses only rule instances of R�

Since we have a two�sorted logic� we have to rede�ne the notions of soundness
and preservingness� For a set � � X we de�ne �� to be the following relation
on �rst order valuation�

VX �� V
�
X i� for all x � � the equation VX �x� � V �

X �x� holds�

Similar we de�ne �� with 	 � P for path valuations� Let
 � X �P be a set
of variables� For a given interpretation I we say that a valuation �VX � VP�
is a
	solution of a clause � in I if there is a valuation �V �

X � V
�
P� in I such

that
VX �X�� V

�
X � VP �P�� V

�
P and �V �

X � V
�
P� j�I ��

The set of all
�solutions of � in I is denoted by �����I�� We call X �solutions
just solutions and write �����I instead of �����IX � A clause � is
	equivalent to
a clause � �resp� a set of clauses �� if for every interpretation I �����I � �����I�
�resp� �����I� �

S
��������

I
��� Again we use equivalent as short for VX �equivalent�

A rule R is
	sound if �
R � implies �����I� � �����I� for every interpretation
I� R is called
	preserving if �
R � implies �����I� � �����I� for every I�
And R is globally
	preserving if

�I � �����I� �

��R�

�����I��

� Feature Trees

In this section we will establish two di�erent interpretations� namely the
feature tree structure and the rational feature tree structure� These inter�
pretations are canonical for satis�ability� This means that if a clause is
satis�able� then it is also satis�able in these interpretations� These models
were introduced in �AKPS
	a�� �ST
	� and �BS
��� In �BS
�� a complete
axiomatization of the the full �rst order theory of these models with respect
to a restricted syntax has been set up� The restricted syntax uses only Ax�
xfy and x

�
� y as atomic constraints�

A tree domain is a nonempty set D � F� of paths that is pre�x	closed�
that is� if wu � D� then w � D� Note that every tree domain contains the
empty path�

A feature tree is a partial function ��F�
 S whose domain is a tree
domain� The paths in the domain of a feature tree represent the nodes
of the tree� the empty path represents its root� We use D� to denote the
domain of a feature tree �� A feature tree is called �nite �in�nite� if its
domain is �nite �in�nite�� The letters � and � will always denote feature
trees�

The subtree w��� of a feature tree � at a path w � D� is the feature tree
de�ned by �in relational notation�

w��� �� f�q� A� j �wu�A� � �g�

A feature tree � is called a subtree of a feature tree � if � is a subtree of �
at some path w � D	 � and a direct subtree if w � f for some feature f �

A feature tree � is called rational if ��� � has only �nitely many distinct
subtrees and �	� � is �nitely branching �i�e�� for every w � D�� the set
fwf � D� j f � Fg is �nite�� Note that for every rational feature tree �
there exist �nitely many features f�� � � � � fn such that D� � ff�� � � � � fng

��

��

The feature tree structure T is de�ned as follows�

� the universe of T is the set of all feature trees

� � � AT i� ��
� � A �i�e�� ��s root is labeled with A�

� ��� �� � fT i� f � D� and � � f��� �i�e�� � is the subtree of � at f��

The rational feature tree structureR is the substructure of T consisting
only of rational feature trees�

� Prime� Pre�Solved and Solved Clauses

In this section� we will de�ne the input and output clauses for both phases
of the algorithm�

Let � be some clause and x� y be di�erent variables� We say that � binds
y to x if x

�
� y � � and y occurs only once in �� Here it is important that

we consider equations as directed� that is� we assume that x
�
� y is di�erent

from y
�
� x� We say that � eliminates y if � binds y to some variable x� A

clause is called basic if it is either � or�

�� an equation x
�
� y appears in � if and only if � eliminates y� and

	� for every path variable � used in � there is at most one constraint
x�y � ��

A clause � is called prime if � is basic� � does not contain a path term of

the form ��� and � does not contain an atomic constraint of form p
�
q q�

�
�
� � or �

�
� ��

As mentioned� Kaplan and Maxwell stated the satis�ability problem for
functional uncertainty in an unsorted syntax� Essentially� this syntax con�
sists of the atomic constraints Ax� x f� � � �fn y and x

�
� y together with the

additional constraint xLy� This constraint is interpreted as

xLy �
	
fxwy j w � Lg�

It is easy to show that every clause in this syntax can be transformed into
an equivalent prime clause�

Proposition ��� Every clause � in the Kaplan�Maxwell syntax can be
translated into a prime clause � such that for every interpretation I and
for every �rst order valuation VX

VX j�I �
� there is a VP with �VX � VP� j�I ��

��

Proof� The translation can be de�ned by the two rewrite rules

�Rename�
fxLyg � �

fx�y� �
�
�Lg � �

� new

�Elim�
fx

�
� yg � �

fx
�
� yg � ��x�y�

x �� y� x � VarsX ���

It is easy to check that the system consisting of these two rules will always
terminate and that the result satis�es the required conditions� �

This implies that it su�ces to check satis�ability of prime clauses in order to
check satis�ability of clauses in the Kaplan�Maxwell syntax� Hence� prime
clauses are the input clauses for the �rst phase�

Now we turn to the output clauses of the �rst phase� A basic clause is said
to be pre	solved if it is either � or the following hold�

�� Ax � � and Bx � � implies A � B�

	� �
�
�L � � and �

�
�L� � � implies L � L��

�� �
�
�� is not in ��

�� � contains no terms of form ����

�� � contains no constraints of form �
�
� � or �

�
� ��

�� �
�
q � � � if and only if � �� �� x�y � � and x�z � ��

Lemma ��� Let � be a pre�solved clause di�erent from �� Then � is sat�
is�able i� there is a path valuation VP with VP j� �p� where �p is the set of
path constraints in ��

Proof� Without loss of generality we can assume that for every x �
VarsX ��� there is a sort restriction Ax � �� Let

� � fxVP���y j x�y � �g � fAx � �g�

Then for each interpretation I and each �rst order valuation VX we have
�VX � VP� j�I � i� VX j�I ��

Let T be the feature tree model as de�ned before� For a feature tree � and
each word w � F� we de�ne w� to be the feature tree

w� � f�wu�A� j �u�A� � �g�

�	

It is easy to check that w��w� � � holds� but not in general ww��� � ��

For every n � N we de�ne V n
X to be the following �rst order valuation on

VarsX ����

�� V �
X �x� � f��� A�g� where Ax � ��

	� V n��
X �x� � f��� A�g �

�
xwy��

wV n
X �y�� where Ax � ��

The union in the de�nition of V n��
X �x� is a disjoint union as w � F� and

�xwy� xuz � � � w �� u� w q u by the pre�solved conditions ���� Thus we
can prove by induction that for each n � �

�� xwy � � implies w��V n
X �x� � V n��

X �y��

	� V n
X �x� � V n��

X �x� and

�� V n
X �x� is a partial function F

�
 S�

Now we de�ne VX to be the valuation with

VX �x� �

n�N

V n
X �x�

By the above propositions for V n
X we know that w

��VX �x� � VX �y� holds for
each xwy � �� Although VX �x� is a partial function F

�
 S for every x� it
is not yet a valuation in T since the VX �x� are not necessarily pre�x�closed�
This can be overcome by de�ning V �

X to be the valuation

V �
X �x� � VX �x�� f �w�A� j �C � �w�C� �� VX �x�

� �u �� �� B � �wu�B� � VX �x� g�

where A is an arbitrary but �xed sort symbol� Then again w��VX �x� �
VX �y� holds for each xwy � �� This implies that V �

X �x�w
T V �

X �y� holds and
hence V �

X j�T �� But then we get �V �
X � VP� j�T �� Since the feature trees

V �
X �x� are even rational� we get also �VX � VP� j�R � �

Note that this implies that the structure T �resp� R� is canonical for pre�
solved clauses� that is� a normal form clause is satis�able if it is satis�able
in T �resp� R�� Since in the �rst phase we transform each prime clause into
an equivalent set of pre�solved clauses� we know that T is also canonical for
prime clauses�

In the second phase we will check satis�ability of a pre�solved clause by
transforming it into an equivalent set of solved clauses� A clause � is called
solved if it is either � or

��

�� Ax � � and Bx � � implies A � B�

	� �
�
�L � � and �

�
�L� � � implies L � L��

�� �
�
�� is not in ��

�� � contains no terms of form ����

�� � contains no constraints of form �
�
� �� �

�
� � or �

�
q ��

�� for every pair of variables �� � such that � �� �� x�y � � and x�z � �

we have � j� �
�
q ��

Here � j� � means that for every I and every �VX � VP� in I �VX � VP� j�I
� implies �VX � VP� j�I �� Note that the de�nition of pre�solvedness and
solvedness di�er in the last two conditions and that every solved clause is
also a prime clause�

Lemma ��� Every solved clause di�erent from � is satis�able�

Proof� For every solved clause � there is a VX �VP�equivalent clause � such
that � is pre�solved� Thus� a solved clause � is �by lemma ��	� satis�able if
there is a path valuation VP with VP j� �� But this is guaranteed by the
conditions 	�� in the de�nition of solvedness� �

	 The First Phase

��� A Set of Rules

The �rst rule is the non�deterministic addition of relational constraints be�
tween path variables� In one step we will add the relations between one
�xed variable � and all other path variables � which are used under the

same node x as �� We will consider only the constraints �
�
� �� �

�
q �

and �
�
� � but not �

�
	 �� Thus the rule can be described by the following

pseudo code�

Choose x � VarsX ��� �don�t care�
Choose x�y � � �don�t know�

For each x�z � � with � di�erent from � and �
�
q � �� �

add �
�
�
 � with

�
�
 � f

�
��

�
��

�
qg �don�t know�

Formally� this rule is written as

��

�PathRel�
fx�yg � �

f�
�
�
 � j x�z � � � � �� � � �

�
q � �� �g � fx�yg � �

where
�
�
 � f

�
��

�
��

�
qg�

This rule will only by applied if

� � contains no pre�x and path equality constraint�

� � contains no path concatenation�

� the rule adds at least one constraint�

Although we have restricted the relations
�
�
 to f

�
��

�
��

�
qg� this rule is global�

ly preserving since we have non�deterministically chosen x�y� To see this let
� be a clause� I be an interpretation and �VX � VP� be a valuation in I with
�VX � VP� j�I �� To �nd an instance of �PathRel� such that �VX � VP� j�I �

where � is the result of applying this instance� we choose x�y � � with
VP��� ��minimal in

fVP��� j x�z � �g�

Then for each x�z � � with � �� � and �
�
q � �� � we add �

�
�
 � where

VP��� �
 VP��� holds� Note that
�
�
 equals

�
	 will not occur since we

have chosen a path variable � the interpretation of which is ��minimal�

Therefore� the restriction
�
�
 � f

�
��

�
��

�
qg is satis�ed�

The de�nition of �PathRel� is more complex than the naive one in the intro�
duction� The reason for this is that only by using this special de�nition can
we maintain the condition that concatenation of path variables is restricted
to binary concatenation� To see this suppose that we had added both ��

�
� �

and �
�
� �� to a clause �� Then �rst splitting up the variable �� into �����

and then � into ����
� will result in a substitution of �� in � by ����

������ By
the de�nition of �PathRel� we have ensured that this does not happen�

The second non�deterministic rule is used in the decomposition of regular
languages� For decomposition we have the following rules�

�DecClash�
f���

�
�Lg � �

�
if fw � L j jwj � �g � �

�LangDec��
f���

�
�Lg � �

f�
�
�Pg � f�

�
�Sg � �

P �S � L

where L� P� S � F� and is a given �nite set of reg� lan�
guages with L� P� S � � L must contain a path w with
jwj � ��

��

The clash rule is needed since we require regular languages not to contain
the empty path�

We use in �LangDec�� as a global restriction� which means that for every
 we get a di�erent rule �LangDec�� �and hence a di�erent rule system
R��� This is done as the rule system is quasi�terminating� By restricting
�LangDec�� we can guarantee that only �nitely many regular languages are
produced�

For �LangDec�� to be globally preserving we need to �nd� for every possible
valuation of � and �� a suitable pair P� S in � Therefore� we require to
satisfy

�L � � �w�� w� �� � �
�w�w� � L� �P� S � � �P �S � L � w� � P � w� � S���

We will call closed under decomposition if it satis�es this condition�
Additionally� we have to ensure that L � for every L that is contained in
some clause �� We will call such a set �	closed�

The remaining rules are listed in �gure �� Note that we have not considered
clauses containing subterm agreement �� since these constraint are super�u�
ous for checking satis�ability� A constraint x f� � � � fn y can be expressed by
the equivalent clause fx�y� �

�
�f� � � � fng �� new��

The �Pre� rule needs some additional explanation� One might expect �Pre�
to be of the form

�Pre��
f�

�
� �g � fx�yg � fx�zg � �

fx�yg � fy��zg � ���������
�� new�

But as we have mentioned� we have to de�ne our rules in a way such that no
additional variables are introduced� This is not satis�ed by the rule �Pre���
For solving this problem note that � is not used in the result of applying
�Pre��� Hence� we can substitute �� by �� which has the e�ect that no new
variable is needed� This leads to the de�nition of �Pre� as presented in
�gure ��

The following proposition and lemma will show that the de�nition of
�LangDec�� is meaningful�

Proposition
�� If is ��closed and closed under intersection� then is
��closed for all ���R���derivatives ��

Proof� We will prove this lemma by induction over the length of derivations�
We use the term reg��� to denote the set of regular languages used in ��
Then R� is ��closed if reg��� � �

��

�Eq�
f�

�
� �� x�y� x�zg � �

fy
�
� z� x�yg � ������ z�y�

�Join�
f�

�
�L� �

�
�L�g � �

f�
�
��L � L��g � �

L �� L�

�Div��
f�

�
q ��g � f���

�
q ��g � �

f�
�
q ��g � �

�Div	�
f���

�
q ����g � �

f�
�
q ��g � �

�DClash��
f���

�
q �g � �
�

�DClash	�
f�

�
q �g � �
�

�Empty�
f�

�
��g � �

�
�SClash�

fAx� Bxg � �

�
A �� B

�Pre�
f�

�
� �� x�y� x�zg � �

fx�yg � fy�zg � ��������
� �� �

Figure �� Simpli�cation rules

��

Let � be some ���R��derivative� For the base step � � � the lemma
holds trivially� For the induction step let � satisfy the induction hypotheses
reg��� � and let r � R� be a rule such that �
r �

��

If r is some clash rule� then reg���� � ��

If r is not a clash rule and not in �LangDec�� or �Join�� then reg��
�� � reg���

and therefore reg���� � by induction hypotheses� If r � �LangDec��� then
r adds only regular languages P� S � �

Now let

r� �
f�

�
�L� �

�
�L�g � �

f�
�
��L � L��g � �

� �Join��

By induction hypotheses we know that L� L� � � But then �L � L�� �
since is closed under intersection� �

Lemma
�� For every prime clause � there is a �nite such that is
��closed� closed under intersection and decomposition�

Proof� We de�ne a deterministic automaton A over F to be a tuple
�QA� iA� �A� F inA�� where

�� QA is a �nite set of states�

	� iA � QA is the initial state�

�� �A � QA �F
 QA is a transition function�

�� and FinA � QA are the �nal states�

With ��A we mean the unique extension of �A to F�� The regular language
that is accepted by an automaton A is de�ned as

L�A� � fw j ��A�iA� w� � FinAg�

Let reg��� � fL�� � � � � Lng � P �F�� be the set of regular languages used
in � and let Ai � �QAi

� iAi
� �Ai

� F inAi
� be �nite� deterministic automatons

such that Ai accepts Li� For each Ai we de�ne dec�Ai� to be the set

dec�Ai� � fLq
p j p� q � QAi

g�

where Lq
p � fw � F� j ��Ai

�p� w� � qg�

Of course� each dec�Ai� is �nite and contains Li� Furthermore� it is al�
so closed under decomposition� The complete set of decompositions for a
language Lq

p � dec�Ai� consists of the languages

P � Ls
p and S � L

q
s for s � QAi

�

�

We de�ne � to be
Sn
i	� dec�Ai�� � contains each Li � reg��� and is closed

under decomposition� Now let

 � fi � ��

be the least set that contains � and is closed under intersection� Then
is �nite and ��closed� since it contains each Li � reg����

We will prove that is also closed under decomposition� Given some L �
and a path w � w�w� � L� we have to �nd an appropriate decomposition
P� S in � Since each L in can be written as a �nite intersection

L �
m�
k	�

Lk

with Lk in �� we know that w � w�w� is in Lk for ���m� As � is closed
under decomposition� there are languages Pk and Sk for k � ���m with
w� � Pk� w� � Sk and Pk�Sk � Lk� Let P �

Tm
k	� Pk and S �

Tm
k	� Sk�

Clearly� w� � P � w� � S and P �S � L� Furthermore� P� S � as is closed
under intersection� This implies that P� S is an appropriate decomposition
for w�w�� �

��� Some Properties of the Rule System

For the rest of the paper we will call clauses that are derivable from prime
clauses admissible�

Lemma
��

�� Every admissible clause is basic�

	� If �
�
� �� �

�
� � or �

�
q � is contained in some admissible clause ��

then there is a variable x such that x�y and x�z is in ��

Proof� The proof of the �rst claim is left to the reader� The second claim
will be proved by induction over the length of derivations� For prime clauses
the claim holds trivially� For the induction hypotheses assume that we have
proven the claim for every admissible clause � that is derivable from a prime
clause in n steps and let �
r �

�� If r is di�erent from �Pre�� �PathRel��
�Eq� or �Div	�� there is nothing to prove� Thus we have the following cases�

r � �PathRel�� the claim holds by de�nition of �PathRel��

�

r � �Eq�� the claim is invariant under substitution of one variable � by
another variable � if both x�y and x�z are contained in ��

r � �Pre�� then � � f�
�
� �� x�y� x�zg � � and �� � fx�y� y�zg � ����

����� The only subterm agreement constraint that is changed is x�z�
But as � is substituted by ���� �� does not contain any path equality
or pre�x constraints involving ��

r � �Div	�� then � � f���
�

q ����g�� and �� � f�
�
q ��g��� We will prove

below that if ��� is contained in some admissible clause �� then there
are variables x� y� z such that x�y and y�z are contained in �� This

will complete the proof� since then ���
�
q ���� in � implies that there

are variables x� y� z and x�� y�� z� with fx�y� y�z� x��y�� y���z�g � ��
But as � is admissible� it is also basic by the �rst claim� Hence� x
equals x� and y equals y�� Therefore� both y�z and y��z� are in � and
in ���

Thus it remains to show that if ��� is used in some admissible clause ��
then there are variables x� y� z such that x�y and y�z are in �� Let � be
an admissible clause for which this holds� and let �
r �

�� The only rules
we have to consider are �Eq� and �Pre�� For �Eq� note that the claim is
invariant under consistent variable renaming� If r � �Pre�� then we have to
check the path term ��� that is introduced by r� But by de�nition of �Pre�
the clause �� must contain both x�y and y�z� �

This lemma implies that �Eq� can always be applied if a constraint �
�
� �

is contained in some admissible clause� The next lemma will show that
di�erent applications of �Pre� or �Eq� will not interact� This means the
application of one of these rules to some pre�x or path equality constraint
will not change any other pre�x or path equality constraint contained in the
same clause�

Lemma
�� Given some prime clause � and a derivation

� � ��
r� �� � � ��n��
rn�� �n � �

that contains an application of �PathRel�� Then �
�
� � � �
resp� �

�
� � �

�� implies �
�
� � � �i
resp� �

�
� � � �i� for i � k� where k is the number

of the last application of �PathRel�� Furthermore� if ��� is contained in ��
then either ��� or �

�
� � is contained in �i for i � k�

Proof� We will use induction over length of derivations� Assume that we
have proven the lemma for admissible clauses � that are derivable in n steps

	�

and let �
r �
� with r �� �PathRel�� If r is di�erent from �Eq� or �Pre�� then

there is nothing to prove� If r � �Eq�� then a constraint �
�
� � or �

�
� � in

�� can be missing in � if and only if � contains a constraint �
�
� �� or �

�
� ��

�resp� ��
�
� � or ��

�
� �� and r is of the form

f�
�
���� � � �g � �

� � �
with �� �� � �resp�

f�
�
���� � � �g � �

� � �
with �� �� ���

Hence� � must contain at least two pre�x or path equality constraints� the
left sides of which are di�erent� By induction hypotheses these path equality
or pre�x constraints must have been introduced by the last application of
�PathRel�� But this contradicts to the de�nition of �PathRel�� A similar
argument can be given for the part of the lemma concerning path terms of
form ����

If r is in �Pre�� then we have to check only the second claim of the lemma�
namely that ��� contained in �� implies that either �

�
� � is in � or ��� is

used in �� For the all path terms in �� that are not introduced by this
application of �Pre� this holds trivially� For the path term ��� that is
introduced� this is guaranteed by the application condition of �Pre�� namely
that � must contain �

�
� �� �

We can derive from this lemma certain syntactic properties of admissible
clauses which are needed for proving completeness and quasi�termination�

Corollary
�� If �
�
� � is contained in an admissible clause �� then � is

di�erent from �� Furthermore� there is no other pre�x or equality constraint
in � involving � and neither ���� nor ���� is in ��

Note that by lemma ��� together with this corollary� the rule �Pre� is al�
ways applicable if a constraint �

�
� � is contained in an admissible clause�

Furthermore� an application of �Pre� causes no violation of the restrictions
that we have imposed on the syntax� This means that concatenation does
not occur in pre�x or path equality constraints� and concatenation of path
variables is restricted to binary concatenation�

Lemma
�
 If ���
�
q �� is contained in an admissible clause � with �

di�erent from ��� then � contains a constraint of form �
�
q ��� �

�
� �� or

�
�
� ���

Proof� We will prove a stronger result� namely that if f�
�
� �� �

�
q ��g � �

or f���
�
q ��g � �� then � contains a constraint of form �

�
q ��� �

�
� �� or

	�

�
�
� ��� We will prove this by induction over length of derivations� Assume

that we have proven the claim for every admissible clause � that is derivable
in n steps from a prime clause and let �
r �

�� Again we have to check only
the rules �Pre�� �PathRel�� �Eq� or �Div	��

r � �PathRel�� we have to check only constraints �
�
q �� that are already

in �� By lemma ��� we know that if �
�
q �� is in �� then there is a

variable x with both x�y and x��z in �� Hence� if �PathRel� adds the

constraint �
�
� �� it must by de�nition also add a constraint �

�
q ���

�
�
� �� or �

�
� ���

r � �Eq�� the claim is invariant under consistent variable renaming�

r � �Pre�� then � � f�
�
� �� x�y� x�zg � � and �� � fx�y� y�zg � ����

����� The only case that we have to check is that � contains a con�

straint �
�
q ��� Then �� contains ���

�
q ��� By induction hypotheses

� must contain a constraint c of form �
�
q ��� �

�
� �� or �

�
� ��� Since

�Pre� does not change c� this must holds also for ���

r � �Div	�� then � � f���
�

q ����g�� and �� � f�
�
q ��g��� The only new

divergence constraint that comes in is �
�
q ��� But as � contains both

��� and ����� it may not contain �
�
� � or �

�
� �� by corollary ����

Hence� �� does not contain such a constraint�

�

This lemma ensures that a constraint ���
�
q �� is always reducible� If ��

equals �� then we could apply �DClash��� If �
�
q �� is in �� we can apply

�Div��� If �
�
� �� is in � we can apply �Eq� followed by �DClash��� If � �

f�
�
� ��� ���

�
q ��g ��� then we can apply �Pre� yielding f���

�
q ����g ����

where we can apply �Div	��

��� Soundness and Completeness

Proposition
�� The rules �Eq�� �Div��	�� �SClash�� �Join�� �Empty� and
�DClash��	� are X � P�sound and X � P�preserving�

Proposition
�
 The rule �Pre� is X �sound and X �preserving�

For �Pre� we can even characterize pairs of path valuations which preserve
the X �solutions�

		

Proposition
�� Let � � f�
�
� �� x�y� x�zg � � and � be the result of

applying
Pre� to �� Given a pair of path valuations VP � V
�
P with

VP �P�f
g V
�
P and VP��� � VP���V

�
P��� � V �

P���V
�
P����

then for each interpretation I and for each �rst order valuation VX

�VX � VP� j�I �
� �VX � V
�
P� j�I ��

Proposition
��� If is closed under decomposition� then �LangDec��
is X � P�sound and globally X � P�preserving� Furthermore� �PathRel� is
X � P�sound and globally X � P�preserving�

Finally� we have to prove that the rules are complete� This means that given
an input clause �� for every solution VX of � in some interpretation I there
is a pre�solved clause � derivable from � such that VX is a solution of �� If
the rule system is terminating� then for completeness one has to prove that
the pre�solved clauses are just the irreducible clauses�

In our case this is not enough since the rule system can loop� Therefore� we
have to prove explicitly that each solution of a given prime clause � can be
found in some pre�solved ��derivative� We de�ne Irred���R�� to be the set
all ���R���derivatives which are R��irreducible� and Pre�Solved���R�� to
be the set of all pre�solved clauses which are derivable from �� A set of rules
R� is said to be �	complete w�r�t� to a set of variables
 if

�� Irred���R�� � Pre�Solved���R���

	� for every interpretation I

�����I� �

��Pre
Solved���R��

�����I��

We will show that for every prime clause � there is a set of regular languages
 such that R� is ��complete w�r�t the �rst order variables X �

Theorem
��� �Completeness I� Given a prime clause �� If is a set
of regular languages that is ��closed� closed under intersection and closed
under decomposition� then every ���R���derivative � that is not pre�solved
is R��reducible�

Proof� Let � be a ���R���derivative that is not pre�solved� We will check
all conditions that are stated in the de�nition on page �	�

If one of the conditions ��� is not satis�ed by �� then one of the rules
�SClash�� �Join� or �Empty� will apply�

Now let�s check the conditions � and ��

	�

� contains a constraint ���
�
�L� As is ��closed� we know that is al�

so ��closed by lemma ���� Therefore we can apply �LangDec�� or
�DecClash��

� contains a constraint ���
�
q ������ By lemma ��� we know that �

equals ��� Hence� we can apply �Div	��

� contains a constraint ���
�
q ��� If �� equals �� then we can directly

apply �DClash��� Otherwise� there is by lemma ��� a constraint �
�
�

��� �
�
� �� or �

�
q �� in �� If �

�
� �� is in �� we can apply �Eq�

by lemma ���� This will result in the substitution of �� by �� The

remaining constraint ���
�
q � can be reduced using �DClash��� If

�
�
� �� is in �� then we can apply �Pre� by lemma ��� and corollary ����

We will obtain the constraint ���
�
q ����� which can be reduced using

�Div	�� The last case is that �
�
q �� is in �� where we can apply �Div���

� contains a constraint �
�
� �� Then �Eq� is applicable by lemma ����

� contains a constraint �
�
� �� Then �Pre� is applicable by lemma ���

and corollary ����

The remaining case is that � does not satisfy the last condition of a pre�

solved clause� namely that �
�
q � with � �� � in � if and only if x�y and

x�y in �� Given the above� we can now assume that � does not contain a
path concatenation or a pre�x or path equality constraint�

There are three possibilities for � to violate the last condition� The �rst

is that � contains a constraint of the form �
�
q �� Then �DClash	� is

applicable� The second is that there is a constraint �
�
q � with x�y � � and

x��y� � � such that x is di�erent from x�� But this is excluded by lemma ����

The last case is that there are di�erent path variables � and � such that

x�y and x�z are in � but �
�
q � is not� As � contains no concatenation and

no path equality or pre�x constraints� the rule �PathRel� is applicable� �

Next we have to prove the second property for ��completeness� namely that
for every interpretation I and for every solution VX of � there is a pre�
solved ��derivative � with VX � �����I� This property is needed since our rule
system can loop� Let us recall an example of a looping derivation in order
to explain the main idea involved in the second part of the completeness
proof� In contrast to our �rst example of a looping derivation �see page ���
we will now omit the path restrictions� since they are not needed for what
we want to demonstrate� Let � be the clause

� � fx�x� x�yg�

	�

A looping derivation can consist of an application of �PathRel� yielding the
clause �� � f�

�
� �� x�x� x�yg� followed by an application of �Pre� on �

yielding �� � ��� As one can imagine� the reason for looping derivation is
the rule �Pre�� We will later prove that indeed every in�nite derivation must
use the �Pre� rule in�nitely often�

For proving the second completeness property we restrict the set of allowed
derivations depending on some arbitrary but �xed valuation �VX � VP� with
�VX � VP� j�I �� This control will guarantee that

�� VX is a solution of every clause in the derivation�

	� under this control� all derivations are �nite�

Will we additionally show that even under this control the irreducible clauses
are just the pre�solved clauses� Hence� this control will give us� for every
clause � and every initial solution VX � a pre�solved ��derivative that has VX
as an solution�

We will add this further control only on the non�deterministic rules
�PathRel� and �LangDec��� thus restricting the set of instances of these
rules that may be applied� We allow only those instances which preserve
the valuation �VX � VP�� Using our above example� if VP satis�es

VP��� � f and VP��� � g

we may apply only that instance of �PathRel� which transforms � into �� �

f�
�
q �� x�x� x�yg� Since the choice of the instances depends only on the

path valuation� we will call such restricted derivations VP�strict�

It is easy to see that the above restriction will always enforce �niteness of
derivations if the initial path valuation VP satis�es

VP��� �� VP��� where � �� � � x�y � � � x�z � ��

One could say that in this case VP is pre�x free with respect to ��

For the initial path valuations which are not pre�x free we must have a closer
look at the �Pre� rule� since this rule is the reason for looping derivations�
As �Pre� is a rule which is not P�preserving� the path valuation has to be
changed in a VP�strict derivation when �Pre� is applied� This implies that
we can yield �niteness of VP�strict derivations if we guarantee that after
a �nite number of �Pre� applications the initial path valuation has been
transformed into a pre�x free path valuation�

�The �rst example of a looping derivation on page � shows that the situation is no

di�erent if we add path restrictions�

	�

We will again turn to our example to clarify this� If the initial path valuation
VP for � is of the form

VP��� � f and VP��� � fffg�

the �rst rule in a VP�strict ��derivation could be an application of �PathRel�
transforming � � �� into �� � f�

�
� �� x�x� x�yg� Now we are able to apply

�Pre�� which implies that we have to change VP � Using proposition ��
 we
can use the following V �

P �

V �
P��� � f and V �

P��� � ffg�

Proposition ��
 guarantees that this can be done without loosing X �
preservingness� Note that we have shortened VP��� by f � Now we could
iterate this twice more before ending up with a pre�x free path valuation�

After these remarks we can turn to the technical part�

Theorem
��� �Completeness	II� Let � be a prime clause� let be a
set of regular languages which is ��closed� closed under intersection and
decomposition� Then R� is ��complete w�r�t� the �rst order variables X �

First we need an additional lemma�

Lemma
��� There are no in�nite derivations using only �nitely many
instances of �Pre��

Proof� Assume there is such a derivation� Then there exists an in�nite
sub�derivation not using any instance of �Pre�� Let � be the starting point
of such a derivation� Let � be some clause� Then we de�ne the following
functions on ��

!���� � number of concatenations in �

!���� � number of di�erent path variables in �

"���� � number of constraints �
�
� � with

�
� � f

�
��

�
��

�
qg�

�� � � VarsP��� and �
�
� � not in �

#��� � total number of constraints in �

We de�ne !��� to be the tuple h!�����!����i� Using the functions !� "
�

and # we can construct a partial order on clauses by de�ning � �� �
� i�

�!��� � !�����

	�

!� !� "� #

�PathRel� � � �

�Eq� � �

�LangDec�� � �
�Join� � � � �

�Div�� � �
�Div	� � �

Table �� Monotonicity of the rules w�r�t the measure functions�

or
�!��� � !����� � �"���� � "������

or
�!��� � !����� � �"���� � "������ � �#��� � #������

Here � is the lexicographic ordering on tuples for !��� and elsewhere the
usual numeric comparison� It is easy to check� that �� de�nes a well�
founded� partial ordering on clauses�

Let � be some derivation of �� Now VarsP��� � VarsP��� holds� which is
important for the value of "�� In table � we have summarized for every non�
clash rule other than �Pre� the variation of !���� "���� and #����� The
clash rules are not considered because they automaticly terminate every
derivation� The table shows that for every rule r �
r �

� implies �� �� ��
Because �� is a well�founded ordering and therefore cannot have in�nite
descending chains� this contradicts our assumption that there is a in�nite
derivation not using �Pre�� �

Corollary
��� There are no in�nite derivations using only �nitely many
instances of �PathRel��

Proof� By the above lemma we know that there are no in�nite derivations
without in�nite use of �Pre�� But �Pre� removes the constraints �

�
� ��

the existence of which is an application condition for �Pre�� But additional
constraints of form �

�
� � are only introduced by �PathRel�� �

Proof of theorem
��� �Completeness II�� The �rst condition for ��
completeness was proved in theorem ���� �Completeness I�� For the second�

�If a rule decreases the ��value� the clause resulting from applying this rule is smaller

than the input clause w�r�t �� independently of the e�ects of the rule on the 	��part�

Therefore� we omit the corresponding 	��entries in this case
 and similarly for the ��part�

	�

let I be some interpretation and �VX � VP� be a valuation with �VX � VP� j�I ��
We have to show that there is a ���R���derivative � which is pre�solved and
satis�es �V �

P � �VX � V
�
P� j�I �� This will be done by de�ning VP�strict

derivations� which will always end up in a pre�solved clause� As we have
mentioned� we have to rede�ne the path valuation every time �Pre� is ap�
plied� This leads to the following de�nition� a derivation

� � ��
r� �� � � ��n
rn �n�� � � �

is called VP�strict if there is a family of path valuations �V
i
P� such that

�� V �
P � VP �

	� for each i the proposition �VX � V
i
P� j�I �i holds� and

�� for each i

� ri �� �Pre� implies V i
P � V i��

P and

� ri �
f

�
�
� ��� g 	 �

��� � �Pre� implies

V i
P �P�f
g V i��

P and V i
P��� � V i��

P ���V i��
P ����

Now for every VP�strict ���R���derivation

� � ��
r� �� � � ��n��
rn�� �n

where �n is not pre�solved� there is a VP�strict continuation� as the following
argumentation shows� If �n is not pre�solved� then there is �by theorem �����
a rule which is applicable� We have to show that there is an applicable rule
instance such that a corresponding V n��

P can be found�

If the applicable rule is di�erent from �Pre�� then we know that there is an
appropriate path valuation V n��

P � as all rules di�erent from �Pre� are either
X � P�preserving or globally X � P�preserving� If �Pre� is applicable� then
proposition ��
 shows that we can �nd an appropriate V n��

P �

Next we must show that there is no in�nite VP�strict ���R���derivation�
which �nally proves the lemma� This is done by introducing a norm on path
valuations� For a path valuation VP we de�ne jVP j� to be�

jVPj� �
X

�VarsP���

jVP���j�

Now let
�i
ri �i��

	

be a step in some VP�strict ���R���derivation and let V
i
P � V

i��
P be the cor�

responding path valuations� If ri �� �Pre� we know that V i
P � V i��

P and
hence jV i

Pj� � jV i��
P j�� If ri � �Pre� we know by the third condition of

VP�strictness that there are � and � such that

V i
P �P�f
g V i��

P and V i
P��� � V i��

P ���V i��
P ����

As VarsP��i��� � VarsP��i� � VarsP��� this implies jV
i��
P j� � jV i

Pj��

As there are no in�nite derivations without in�nite use of �Pre� this proves
that there are no in�nite VP�strict derivations� �

��� Quasi�Termination

Lemma
��� Let � be a prime clause and be a �nite ��closed set of
regular languages� Then the set of all ���R���derivatives is �nite�

Proof� We will �rst consider the sets C which contains every atomic con�
straint that occur in at least one ���R���derivative� C could be seen as the
union of all ���R���derivatives� We will show that C is �nite� As every
���R���derivative is a subset of C this will prove the lemma�

First we know that no rule adds new variables� This implies that there
are at most n� � jVarsP���j$ jVarsP���j� many di�erent path terms� By
lemma ��� we know that is ��closed for every ���R���derivative� which
implies that at most j j di�erent regular languages are used in the ���R���
derivatives�

Therefore C contains at most jVarsX ���j� node agreements� jVarsX ���j �
jVarsP���j�jVarsX ���j subterm agreements� n�� path divergence constraints�
jVarsP���j� pre�x and equality constraints and n� � j j path restriction
constraints� Since no rule adds new sort symbols we know that C contains
at most n� � jVarsX ���j di�erent node restrictions� where n� is the number
of sort symbols in �� �

Theorem
��
 For every prime clause � there exists a set of regular lan�
guages such that R� is ��complete w�r�t� X and the set Pre�Solved���R��
is �nite and computable�

Proof� Let reg��� be the set of regular languages used in �� By lemma ��	
there must be a �nite such that is ��closed� closed under intersection
and decomposition� Then R� is ��complete w�r�t� X by theorem ���	� By
lemma ���� we know that Pre�Solved���R�� must be �nite� Hence� it su�ces
to prove that the set Pre�Solved���R�� is computable�

	

To do this we will consider loop�free derivations� A derivation is called
loop�free if it is not of the form

��
r� � � �
ri �i � � �
rk �k � � � �

where �i � �k� In order to generate the set of derivatives �or a subset of
them� it is enough to consider loop�free derivations� This is because for
every pair �� � � every ��derivation which yields �� and is not loop�free can
be replaced with a shorter derivation by removing some loop� Iterating this
step �nally yields a loop�free ��derivation for ���

Furthermore� the set of all loop�free ���R���derivations must be �nite since
R� can only generate �nitely many ���R���derivatives by lemma ����� and
there are only �nitely many rules ofR applicable on every ���R���derivative�
But as we have mentioned we need to consider only the loop�free derivations�
which shows that Pre�Solved���R�� is computable� �

Corollary
��� For every prime clause � there exists a �nite and com�
putable set of pre�solved clauses � such that � is equivalent to ��

Proof� Follows from the last theorem and the fact� that every rule is at
least VX �sound� �

 The Second Phase� Satis�ability of Pre�Solved

Clauses

In this section we will present a rule system that transforms each pre�solved
clause into an equivalent set of solved clauses� which are satis�able by lem�
ma ����

We will �rst make a minor rede�nition of divergence� We say that two paths
u� v are directly diverging �written uq� v� if there are features f �� g such
that u � fF� and v � gF�� Then u q v holds if there are a possible empty
pre�x w and paths u�� v� such that u � wu� and v � wv� and u�q� v

�� Using
this de�nition of divergence and the additional atomic constraint

�
�
q� � direct divergence�

we can �non�deterministically� transform a clause � � f��
�
q ��g � � into

either f��
�
q� ��g � � or f��

�
� ������ ��

�
� ������ �

�
�

�
q� ���g � ��
 By

�The �rst case is needed because we do not allow values of path variables to be empty

paths�

��

the de�nition of q� we can reduce �non�deterministically� the constraints of

form ��
�
q� �� into f��

�
�fF�� ��

�
�gF�g with f �� g� The aim is to process

all divergence constraints this way in order to achieve a solved clause�

But we have to reformulate the reduction of divergence constraints� The rea�
son is that we have to evaluate constraints of the form ��

�
� ������ This can

produce constraints of the forms ���
�
�L and ���

�
q ��� The second is prob�

lematic as we must guess the relation between � and ��� This complicates
the termination proof�

We will avoid this problem by using a special property of pre�solved clauses�

namely that �
�
q � is in a pre�solved clause � i� x�y and x�z are in ��

Hence� if �
�
q � and �

�
q � are in �� then �

�
q � is also in �� This implies

that we can write � as
�
q �A�� � � � ��

�
q �An� � �� where

�
q �A� is syntactic

sugar for

f�
�
q �� j � �� �� � �� �� � Ag�

A�� � � � � An are disjoint sets of path variables and � contains no divergence

constraints� Now given such a constraint
�
q�A�� suppose that a whole set of

path variables A� � A diverge with the same pre�x� Then we can replace
�
q �A�� �

�
q�A� by

A� � ��A�� �
�
q ��A

�
���

where � is new� A�� � f���� � � � � �
�
ng is a fresh copy of A� � f��� � � � � �ng

and A
�
� ��A�� abbreviates the clause f��

�
� ������ � � � � �n

�
� ����ng�

�
q ��A�

is de�ned similarly to
�
q �A�� Under the additional assumption that the

common pre�x � is maximal� it follows that �
�
q � holds for � � �A� A���

If we consider also the e�ects of A�
�
� ��A�

� on the subterm agreements in
�� then we get the following non�deterministic rule�

�Reduce��
xA�Y� �

�
q�A� � �

fx�zg � zA��Y� �
�
q��A

�
�� �

�
q �f�g�A�� � ��

where �� � ���� � ������ � � � � �n � ����n�� A� � A� � A�
jA�j � � and z� � new� A�� is a disjoint copy of A�� xA�Y� is
short for fx��y�� � � � � x�nyng� � may not contain constraints
of form ����

�
�L in ��

Note that we have avoided constraints of the form ���
�
q ��� Additionally�

we use the non�deterministic rules

��

�Reduce��

�
q�A�� �
�
q��A�� �

�Solv�

�
q��A�� �

f� � f
�F
� j � � Ag � �

f
 �� f
� for � �� ���

�Reduce�� is needed as path variables always denote non�empty paths� We
will see �Reduce�� and �Reduce�� as one single rule �Reduce�� To complete
our rule system� we need the rules �LangDec��� �DecClash�� �Join� and
�Empty�� Since we will show that the rule system is terminating� we can
replace �LangDec�� by a simpler version� namely

�LangDecdfun�
f���

�
�Lg � �

f�
�
�Pg � f�

�
�Sg � �

P �S � L� �P� S� � dfun�L�

L must contain a path w with jwj � ��

Here dfun � P�F��
 P�F�� � P�F�� is a decomposition function that
assigns to each regular language L a �nite set of decompositions� dfun is
called decomposition complete if for every regular language L and every
path w � w�w� � L there is a pair �P� S� in dfun�L� with w� � P and
w� � S� The complete set of rules is denoted RSolv

dfun�

After the explanation of the rule system we can commence the technical

part� Since we have added constraints of the form �
�
q� �� we have to extend

condition � in the de�nition of a solved clause as presented on page ��� We

require solved clauses not to contain constraints of the form �
�
q� ��

A clause � is called partitioned if the set of divergence constraints of � is

of the form
�
q �A�� � � � ��

�
q �Ak��

�
q ��Ak��� � � � ��

�
q ��An�� where the Ai

are disjoint�

Proposition ��� There exists a decomposition function dfun that is decom�
position complete�

Proof� See proof of lemma ��	 for the construction of such a function� �

Proposition ��� Let � be a pre�solved clause and let � be a ���RSolv
dfun��

derivative� Then � is partitioned� Furthermore� for every pair of variables

�� � such that � �� �� x�y � � and x�z � � we have � j� �
�
q ��

�	

Proposition ��� For every partitioned clause � the rule �Reduce�
� �Reduce�� $ �Reduce�� is VarsX ����sound and globally VarsX ����
preserving� The rule �Solv� is VX � VP�sound and VX � VP �preserving� If
dfun is decomposition complete� then
LangDecdfun� is VX � VP�sound and
VX � VP�preserving�

Lemma ��� RSolv
dfun is terminating�

Proof� For �Solv�� �Join�� �LangDec�� �DecClash� and �Empty� it is trivial
to see that there are no in�nite derivations using only these rules� Fur�
thermore� there are no derivations which use �Reduce� in�nitely often� since
during every application of �Reduce� at least one divergence constraint is re�
moved �note that jA�j � � is an application condition of �Reduce���� Hence�
there are no in�nite RSolv

dfun�derivations� �

Lemma ��� Let � be a pre�solved clause� If dfun is decomposition complete�
then a ���RSolv

dfun��derivative is RSolv
dfun�irreducible if and only if it is solved�

Proof� Let � be a ���RSolv
dfun��derivative� We have to show that if � is not

solved� then one of the rules applies� We will check all conditions that are
stated in the de�nition on page ���

Condition � is satis�ed by every ���RSolv
dfun��derivative since � is pre�solved

and we do not add or change any sort restriction constraint� If one of the
conditions 	 or � is not satis�ed� then one of the rules �Join� or �Empty�
will apply� Condition � is satis�ed by every ���RSolv

dfun��derivative by propo�
sition ��	� Now let�s check the conditions � and ��

� contains a constraint ���
�
�L� �LangDecdfun� or �DecClash� is applica�

ble�

� contains a constraint �
�
q� �� Then � is of the form

�
q ��A� � � by

proposition ��	� which implies that �Solv� is applicable�

� contains a constraint �
�
q �� By proposition ��	 we know that in this

case � is of the form
�
q �A� � �� Given the above we can assume that

�Reduce� is applicable�

�

Lemma ��
 For every pre�solved clause � there is a �nite and e�ectively
computable set of solved clauses � such that for every I

�����IVarsX��� �

���

�����IVarsX����

��

Proof� Follows from propositions ���� ��	 and ��� and lemmas ��� and ����
�

Corollary ��� Satis�ability of pre�solved clauses is decidable�

Finally� we are able to combine both phases�

Theorem ��
 Satis�ability of prime clauses is decidable�

Proof� Follows from the corollaries ���� and ���� �

 Conclusion

We have shown that the pure existential fragment of feature logic extended
by regular path expressions is decidable� The main prerequisite for achieving
this result was to switch from the original� unsorted syntax to a two�sorted
syntax� For each clause in the original syntax we get an equivalent clause in
the new syntax by translating a regular path expression xLy into fx�y� �

�
�

Lg with � new�

The result of the translation constitutes a special class of clauses� the class
of prime clauses� The main restriction imposed on prime clauses is that
for each path variable � there is at most one constraint x�y contained in a
clause� For prime clauses we have presented an algorithm that transforms
a clause into an equivalent set of pre�solved clauses� In a second phase
pre�solved clauses are checked for satis�ability by transforming them into
an equivalent set of solved clauses� Since every solved clause is prime� the
result may be reused for later computation�

Our syntax is more expressive than the original one� Although restriction to
prime clauses was su�cient for our purposes� it may be interesting to exam�
ine whether decidability can be preserved in the absence of the restriction�

Acknowledgements

I would like to thank Jochen D%orre� Joachim Niehren� Stephen Spackman
and Ralf Treinen for helpful discussions and reading draft versions of the
paper� In particular� I am grateful to Joachim Niehren for his comments on
an earlier draft�

The research reported in this paper has been supported by the Bundes�
ministerium f%ur Forschung und Technologie under contract ITW
��	 �
�DISCO��

��

References

�AK
�� Hassan A%&t�Kaci� An algebraic semantics approach to the e�ec�
tive resolution of type equations� Theoretical Computer Science�
���	
������ �

��

�AKLN
�� Hassan A%&t�Kaci� Patrick Lincoln� and Roger Nasr� Le Fun�
Logic� equations� and functions� In Proceedings of the ��
�
Symposium on Logic Programming� pages ���	�� IEEE Com�
puter Society� �

��

�AKN
�� Hassan A%&t�Kaci and Roger Nasr� Login� A logic programming
language with built�in inheritance� The Journal of Logic Pro�
gramming� ���
��	��� �

��

�AKP
�� Hassan A%&t�Kaci and Andreas Podelski� Towards a meaning of
LIFE� In Proc� of the PLILP���� Springer LNCS vol� �	
� pages
	���	��� Springer�Verlag� �

��

�AKPS
	a� H� A%&t�Kaci� A� Podelski� and G� Smolka� A feature�based
constraint system for logic programming with entailment� In
Fifth Generation Computer Systems ���	� pages ���	���	��
Tokyo� Japan� June �

	� Institute for New Generation Com�
puter Technology�

�AKPS
	b� Hassan A%&t�Kaci� Andreas Podelski� and Gert Smolka� A
feature�based constraint system for logic programming with en�
tailment� In Fifth Generation Computer Systems ���	� pages
���	���	�� Tokyo� Japan� June �

	� Institute for New Gener�
ation Computer Technology�

�BBN�
�� Franz Baader� Hans�J%urgen B%urckert� Berhard Nebel� Werner
Nutt� and Gert Smolka� On the expressivity of feature log�
ics with negation� functional uncertainity� and sort equations�
Research Report RR�
����� DFKI� Postfach 	�
�� ���� Kaisers�
lautern� Germany� �

��

�BS
�� Rolf Backofen and Gert Smolka� A complete and recursive fea�
ture theory� In Proc� of the �� th ACL� Columbus� Ohio� �

��
To appear� Full version has appeared as Research Report RR�

	���� DFKI� Stuhlsatzenhausweg �� ���� Saarbr%ucken ��� Ger�
many�

�Der
�� Nachum Dershowitz� Termination of rewriting� Journal of Sym�
bolic Computation� ���
����� �

��

��

�Joh

� Mark Johnson� Attribute�Value Logic and the Theory of Gram�
mar� volume �� of CSLI Lecture Notes� CSLI� �

�

�Joh
�� M� Johnson� Logic and feature structures� In Proceedings of
IJCAI���� Sydney� Australia� �

��

�KB
	� Ronald M� Kaplan and Joan Bresnan� Lexical�Functional Gram�
mar� A formal system for grammatical representation� In
J� Bresnan� editor� The Mental Representation of Grammatical
Relations� pages �����
�� MIT Press� Cambridge �MA�� �

	�

�Kel
�� Bill Keller� Feature logics� in�nitary descriptions and the logi�
cal treatment of grammar� Cognitive Science Research Report
	��� Univerity of Sussex� School of Cognitive and Computing
Sciences� �

��

�KM

� R� M� Kaplan and J� T� Maxwell III� An algorithm for function�
al uncertainty� In Proceedings of the �	th International Confer�
ence on Computational Linguistics� pages 	
����	� Budapest�
Hungary� �

�

�KR
�� Robert T� Kasper and William C� Rounds� A logical seman�
tics for feature structures� In Proceedings of the 	�th Annual
Meeting of the ACL� Columbia University� pages 	���	��� New
York� N�Y�� �

��

�KZ

� Ronald M� Kaplan and Annie Zaenen� Long�distance depen�
dencies� constituent structure� and functional uncertainty� In
M� Baltin and A� Kroch� editors� Alternative Conceptions of
Phrase Structure� University of Chicago Press� Chicago� �

�

�RK
�� William C� Rounds and Robert Kasper� A complete logical
calculus for record structures representing linguistic informa�
tion� In Proc� of the Symposium on Logic in Computer Sciences�
pages �
���� Cambridge �MA�� �

�� IEEE Computer Society�

�Shi
�� Stuart M� Shieber� An Introduction to Uni�cation�Based Ap�
proaches to Grammar� volume � of CSLI Lecture Notes� Stan�
ford University� Stanford �CA�� �

��

�Smo

� Gert Smolka� A feature logic with subsorts� LILOG�Report ���
IWBS� IBM Deutschland� Stuttgart� May �

�

�Smo
	� Gert Smolka� Feature constraint logics for uni�cation gram�
mars� Journal of Logic Programming� �	����
�� �

	�

��

�ST
	� Gert Smolka and Ralf Treinen� Records for logic programming�
In Krzysztof Apt� editor� Proceedings of the Joint Internation�
al Conference and Symposium on Logic Programming� pages
	���	��� Washington� USA� �

	� The MIT Press� Full version
has appeared as Research Report RR�
	�	�� DFKI� Stuhlsatzen�
hausweg �� ���� Saarbr%ucken ��� Germany�

��

