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ABSTRACT 

A new approach to structure-driven generation 
is presented that is based on a separate seman-
tics as input structure. For the first time, a GPSG-
based formalism is complemented with a system of 
pattern-action rules that relate the parts of a se-
mantics to appropriate syntactic rules. This way a 
front end generator can be adapted to some ap-
plication system (such as a machine translation 
system) more easily than would be possible with 
many previous generators based on modern gram-
mar formalisms.1 

 INTRODUCTION 

In the field of unification-based computational 
linguistics, current research on tactical natural lan-
guage (NL) generation concentrates on the follo-
wing problem: 

• Given a semantic representation (which is of-
ten called logical form (LF)) and a grammar 
that includes a lexicon, what are the surface 
strings corresponding to the semantic repre-
sentation? 

A variety of approaches to solving this problem in 
an efficient way has been put forward on the basis 
of unification-based grammar formalisms with a 
context-free backbone and complex categories (for 
some discussion see e.g. [Shieber et al. 1990]). Most 
of this work shares a Montagovian view of seman-
tics by assuming that LF be integrated into the 
grammar rules, thus assigning to each syntactic ca-
tegory its semantic representation. 

Within this integrated-semantics approach the 
generation task mainly consists of reconstructing a 

1 This work was partially funded by the German Mini-
ter for Research and Technology (BMFT) under contract 
ITW 9O02. Most of the research underlying this article was 
accomplished within the EUROTRA-D accompanying re-
search project KIT-FAST at the Technical University of Ber-
lin and funded by the BMFT under contract 1013211. 

I wish to thank Christa Hauenschild, John Nerbonne, and 
Hans Uszkoreit for commenting on earlier versions of this 
paper. 

given LF, thereby ensuring that the result is com-
plete (all parts of the input structure are recon-
structed) and coherent (no additional structure is 
built up). Thus, the surface strings then come out 
as a side effect. 

This paper describes a different use of seman-
tics for generation. Here the semantics is not part 
of the grammar, but rather expressed within a se-
parate semantic representation language (abbrev.: 
SRL). This approach, in which the grammar only 
covers the syntax part, is called the separate se-
mantics approach. It has a long tradition in AI NL 
systems, but was rarely used for unification-based 
syntax and semantics. It will be argued that it can 
still be useful for interfacing a syntactic generator 
to some application system. 

The main goal of this paper is to describe a ge-
nerator using a separate semantics and to suggest a 
structure-driven strategy that is based on a system 
of pattern-action (PA) rules, as they are known 
from AI production systems (for an overview see 
[Davis/King 1977]). The purpose of these rules is 
to explicitly relate the semantic (sub)structures to 
possible syntactic counterparts. The mapping pro-
cess is driven by the semantic input structure that 
is traversed step by step. At each step FA rules are 
applied, which contribute to successively producing 
an overall syntactic structure from which the ter-
minal string can easily be produced. This new ap-
proach allows for a carefully directed and nearly 
deterministic choice of grammar rules. 

KEEPING SEMANTICS SEPARATE     
FROM SYNTAX 

The integrated-semantics approach is often illu-
strated in a Prolog-like notation using DCG rules. 
The infix function symbol '/' is used in each ca-
tegory to separate the syntactic from the semantic 
part. Rule (1) introduces complements in an 
HPSG-style manner by "removing" the 
complement from the VP's subcategorization list 
(cf. [Pollard/Sag 1987]). The relation between the 
semantics S and the semantics of Compl is 
established in the lexical entry for the verb (2). 
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Recent work on semantic-head-driven generation 
[Shieber et al. 1990, Calder et al 1989, Noord 1990, 
Russell et al. 1990] provides a very promising step 
towards efficient, goal-directed reconstruction of 
LF that is espescially suited for lexicon-centered 
grammar formalisms such as HPSG or UCG. It was 
observed that top-down generation may not 
terminate. This is illustrated in (1). If the vp 
node is used for top-down expansion, there is 
nothing to prevent the subcategorization list from 
growing infinitely. If the Comp node is used, the 
constituent to be generated must completely be 
guessed due to the uninstantiated semantics. 
Since the grammar will contain recursive rules 
(e.g. for relative clauses), the guessing procedure 
will not terminate either. In view of this problem a 
bottom-up approach was suggested that is guided 
by semantic information in a top-down fashion. 

The benefits of integrated semantics are mani-
fold. Elegant analyses of linguistic phenomena are 
possible that relate syntactic and semantic pro-
perties to each other (cf. the treatment of e.g. 
'raising' and 'equi' constructions in [Pollard/Sag 
1987]). LF is defined on purely linguistic grounds 
and as such, it is well-suited to the computational 
linguist's work. 

However, if a generator based on an integrated 
semantics is to be used for conveying the results of 
some application system into NL, expressions of 
the application system's SRL have to be adapted to 
LF. Given that the grammar should not be 
rewritten, this amounts to an additional step of 
processing. This step may turn out to be costly 
since the SRL will typically contain application-
dependent information that must be considered. 
Take, for instance, a transfer-based machine 
translation (MT) system (such as EUROTRA 
[Arnold/des Tombe 1986]). The results of the 
transfer (say, from German to English) are 
encoded in a semantic representation that is given 
to the system's generation component to produce 
the English target sentence. In a system capable of 
translating between a variety of languages, 
representations of this kind may themselves be 
subject to transfer and will therefore contain infor-
mation relevant for translation.2 

2 An exception is the MiMo2 system [Noord et al. 1990]. 
The price to pay for allowing transfer at the level of LF was 
to accept an "extremely poor" view of translation by just 
preserving the logical meaning and—as far as possible—the 
way in which meaning is built compositionally (quotation 
from [Noord et al. 1990]). 

The effort of introducing an additional step of 
processing can be saved to a large extent by ad-
opting a separate-semantics approach. The SRL of 
some application system may directly serve as an 
interface to the generator.3 In the case at hand, two 
additional components must be introduced into the 
generation scenario: the definition of SRL and PA 
rules. Instead of mapping SRL onto LF, SRL is di-
rectly related to syntax by virtue of the PA rules. 

A STRUCTURE-DRIVEN GENERATOR 

The generator to be described in this section 
is a module of the Berlin MT system [Hauen-
schild/Busemann 1988], which translates sentences 
taken from administrative texts in an EC corpus 
from German into English and vice versa.4 The 
syntax formalism used is a constructive version of 
GPSG [Gazdar et al. 1985] as described in [Buse-
mann/Hauenschild 1988]. The semantic representa-
tion language FAS (Functor-Argument Stuctures) 
[Mahr/Umbach 1990] is employed as an interface 
between three different processes: it is the target of 
GPSG-based analysis, for sentence-semantic trans-
fer, and as the source for GPSG-based generation. 

FAS is defined by context-free rule schemata with 
complex categories consisting of a main category 
(e.g. 'clause' in Figure la), which is associated with 
a fixed list of feature specifications.5 The categories 
are in canonical order with the functor preceding all 
of its arguments. In contrast to syntactic structures 
where agreement relations are established by virtue 
of feature propagation, FAS categories contain al-
most no redundant information. For instance, num-
ber information is only located at the 'det' category. 
The use of semantic relations (encoded by the 'role' 
feature), role configurations ('conf') and semantic 
features allows us to discriminate between different 
readings of words that result in different transla-
tional equivalents. Moreover, part of the thematic 
structure of the source language sentence is preser-
ved during transfer and encoded by virtue of the 
feature 'them' with the numerical values indicating 
which portion should preferrably be presented first, 
second, third etc. The definitions of FAS for the 
German and English fragments mainly differ with 
regard to their terminal symbols. 

3This interface does not correspond to the common sepa-
ration between making decisions about what to say and how 
to say it (cf. [McKeown/Swartout 1988]). Rather the inter-
face in question must be situated somewhere in the 'how to 
say it' component because it presupposes many decisions ab-
out sentence formulation (e.g. regarding pronominalization, 
or voice). 

4The underlying view of MT is described in [Hauenschild 
1988]. 

5In the present versions there are up to seven features in a 
FAS category. For sake of simplicity many details irrelevant 
to the present discussion are omitted in the examples. 

- 114 - 



 

Figure 1: Sample FAS Expression (a) and Corresponding GPSG Structure (b). 

The GPSG formalism used includes the ID/LP 
format, feature co-occurrence restrictions (FCRs) 
and universal principles of feature instantiation 
(FIPs). The ID rules are interpreted by the gene-
rator as providing the basic information for a local 
tree. The categories of each generated local tree are 
further instantiated by the FIPs and FCRs. Finally, 
the branches are ordered by virtue of the LP state-
ments. 
Strategies for structure building and feature 
instantiation. The task of constructing an admis-
sible GPSG syntactic structure can be divided up 
into the following subtasks that can be performed 
independently of each other, and each according to 
its own processing strategy: 

• Structure   building   (by   virtue  of  PA   rules, 
which in turn use ID rules) 

• Feature instantiaton and ordering of the bran 
ches (by virtue of FIPs, FCRs and LP state 
ments) 

The question arises which strategies are best sui-
ted to efficient generation. For each subtask both 
a top-down and a bottom-up strategy have been 
investigated. As a result it turned out that struc-
ture building should occur top-down whereas fea-
ture instantiation should be performed in a bottom-
up manner. 

Before justifying the result let us have a closer 
look at the structure-building algorithm. The over- 

all syntactic structure (OSS) is successively con-
strued in a top-down manner. At each level there is 
a set of nonterminal leaf nodes available serving 
as attachment points for further expansion steps 
(initially the empty category is the only attachment 
point). An expansion step consists of 

1. generating a local tree t by virtue of an ID rule, 

2. unifying  its   mother   node   with   one  of the 
attachment points, 

3. removing the attachment point from the cur 
rent set, 

4. defining the daughters of t as the new current 
set of attachment points. 

Since lexical entries terminate a branch of the OSS, 
the fourth of the above points is dropped during 
expansion of lexical categories: processing continues 
with the reduced set of attachment points. 

Feature instantiation and the ordering of bran-
ches take place in a bottom-up manner after a lo-
cal tree has no further attachment points associated 
with it (i.e. all of its daughters have been expan-
ded). Then processing returns to the next higher 
level of the OSS examining the set of attachment 
points. Depending on whether or not it is empty, 
the next step is either feature instantiation or struc-
ture building. Given this interlinking of the two 
subtasks, an OSS is admitted by the grammar if 
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its top-most local tree has passed feature instantiation. 
The effects of feature instantiation with respect to the 

German example in Figure lb6 can be better understood with 
the help of the S-expansion rules used; cf. (3)-(5).7 Rule (3) 
causes topicalization, (4) introduces a perfect auxiliary, and 
(5) requires a transitive verb whose object is topicalized. 

 

(3) S X[+top],S[fin]/X[+top] 

(4) S V,S[psp) 
(5)     S / NP[+top, acc] — > NP[norn], V[trans] 

The solution will now be justified. First of all, note that the top-
most part of an FAS expression is related to the top-most part 
of the GPSG structure, and that the leaves of a FAS expression 
usually correspond to GPSG lexicon entries. As a consequence, 
the order the FAS expression is traversed determines the order 
in which the structure-building sub-task is performed. Why 
should then, in the case of FAS, the traversal occur top-down? 

The answer is motivated by the distribution of information in 
FAS expressions. In order to apply a certain ID rule 
deterministically, information from distant portions of the FAS 
expression may be needed. For instance, the FAS specification 
(them : 1), which is part of one of the daughters of clause 
in Figure la, is interpreted as requiring topicaliza-tion of a 
syntactic constituent under the condition that a declarative 
sentence is being generated. This latter information is, 
however, only available at the [illoc [assertion]]8 
part of the FAS expression (cf. Figure la). 

Two possible methods for collecting this information present 
themselves. First, the pattern including (them : 1) could be 
required to cover as much of the FAS expression as would be 
needed to include illoc. In that case, all the information needed 
is present, and the traversal of the FAS expression could occur 
bottom-up as well as top-down. Unfortunately the required 
size of the pattern is not always known in advance because the 
FAS syntax might allow an arbitrary number of recursively 
defined local trees to intervene. 

The second method — which was eventually adopted — 
requires the patterns to cover not more than one local FAS tree. 
In order to gather information that is locally missing, an 
auxiliary storage is needed. If, for instance, the illocution is 
matched, information about whether or not a declarative 
sentence is being generated is stored. Later on, (them : 1} is 
encountered. Now, the ID rule for to- 

6These are not shown for the constituents of NPs. 7Note the different 
use of the symbol '/': here it denotes the category-valued feature 'slash'. 

8Square brackets are used here to indicate tree structure. 

picalization (3) is triggered iff 'declarative' can be 
retrieved from the storage. 

If the necessary information is not available yet, 
one must accept either a delay of a mapping or 
backtracking. With a top-down traversal of FAS 
expressions, however, such cases are sufficiently re-
stricted to ensure efficiency. Note that a bottom-up 
traversal or a mixed strategy could be more efficient 
if the distribution of information in the SRL were 
different. 

The problems observed with top-down genera-
tors using an integrated semantics cannot occur 
in the separate-semantics approach. Expansion of 
grammar rules can be controlled by the semantic 
representation if each rule application is explicitly 
triggered. Situations causing an infinite expansion 
due to an uninstantiated semantics (as with top-
down expansion using the rule (2)) cannot arise at 
all since the separate semantics is fully specified. 

Let us now discuss why feature instantiation 
should be a bottom-up process. The FIPs apply 
to the mother and/or a subset of daughters in a 
local tree. In general, the more these categories 
are instantiated the less likely the FIPs will have 
to choose between alternative instantiations, which 
would be a source for backtracking. A top-down 
strategy would meet a more completely instan-
tiated mother, but still underspecified daughters. 
With a bottom-up strategy, however, only the mo-
ther would be underspecified. For instance, consi-
der the GPSG account of parasitic gaps, which are 
handled by the Foot Feature Principle. The 'slash' 
feature may occur at more than one daughter and 
then require all occurrences of it to unify with the 
mother (cf. [Gazdar et al. 1985, p. 162ff]). While 
this is easy to handle for a bottom-up process, a top-
down strategy would have to guess at which 
daughters to instantiate a slash value. 

Pattern-action rules. A PA rule is a production 
rule with a pattern for local FAS trees as its 
left-hand side and two sets of actions as its 
right-hand side. The information-gathering actions 
(JGAs) maintain the auxiliary storage. The 
structure-building actions (SBAs) generate GPSG 
trees. Either one of these sets may be empty. 

In order to minimize the power of PA rules, the 
inventory of IGAs and SBAs is restricted. There are 
only three IGAs for storing information into and 
removing from the auxiliary storage. The auxiliary 
storage is a two-dimensional array of a fixed size. It 
may contain atomic values for a set of features pre-
determined by the PA rule writer as well as a single 
GPSG category. There are only five SBAs for diffe-
rent kinds of mapping, three of which are explained 
below; cf. [Busemann 1990] for a comprehensive dis-
cussion. Any SBA will remove the stored category 
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Figure 2: Two Pattern-Action Rules for NP-Topicalization. 

from the storage and unify it with the "mother of 
the local tree it is about to generate. 

To illustrate this let us return to the topica-
lization example. The responsible PA rules are 
shown in Figure 2. The pattern of the first one 
matches any local FAS tree whose mother is a 
term(them: 1).The IGAs work as follows: If a 
specification (sent : decl) can be removed from the 
storage, the GPSG feature specification [+top] will 
be added to the stored category (by virtue of the 
IGA set_gpsg_features). The SBA set is empty. 
The second PA rule matches any local FAS tree 
whose first daughter is a definite determiner with 
plural number followed by zero or more daughters. 
Note that both patterns match the same local tree 
of the FAS expression in Figure la. There is only 
one IGA, which adds the number information to the 
stored GPSG category. The single SBA, 
call_id, states that a local GPSG tree is 
generated by virtue of the ID rule indicated and 
added to the OSS. Since the mother of the local tree 
(NP) now contains the specification [+top], it can 
only unify with the 'slash' value introduced by the 
mother of rule (5). Fronting of the NP is achieved 
in accordance with the FIPs and LP statements. 

Three kinds of PA rules should be distinguished 
according to the effects of their SBAs. Figure 2 
shows two of them; the first one doesn't create 
structure at all while the second one transduces 
a (FAS) local tree into a (GPSG) local tree. A 
third type of rules generates GPSG structure out of 
FAS feature specifications. Figure 1 shows its use 
to generate the non-local subtree including the per-
fect auxiliary [s[v[hab],s(psp)]] from 
the local FAS tree dominated by 
clause(perl:+). Note that this PA rule must 
be applied before an attempt is started to attach 
the subtree [s/np(acc) [np(nom), v(trans)]]. This 
latter subtree is generated by a PA rule whose 
pattern matches the same FAS tree as the 
previous one. We shall return to this problem in 
the following section. 

Controlling the mapping procedure. First of 
all note that PA rules can communicate with each 

other only indirectly, i.e. by modifying the content 
of the auxiliary storage or by successfully apply-
ing an SBA, thereby creating a situation in which 
another rule becomes applicable (or cannot be ap-
plied anymore). PA rules do not contain any control 
knowledge. 

A local FAS tree is completely verbalized iff 
a maximum number n > 1 of applicable PA rules 
are successful. A PA rule is applicable to a 
local FAS tree t iff its pattern unifies with t. An 
applicable PA rule is successful iff all elements 
of IGA can be executed and an SBA—if present—is 
successful. An SBA is successful iff a syntactic 
subtree can be attached to the OSS as described 
above. 

Since the set of PA rules is not commutative, the 
order of application is crucial in order to ensure that 
n is maximal. Due to the restricted power of the PA 
rules possible conflicts can be detected and resolved 
a priori, A conflict arises if more than one pattern 
matches a given FAS tree. All FAS trees matched 
by more than one pattern can be identified with 
help of the FAS grammar. The respective PA rules 
are members of the same conflict set. The elements 
of a conflict set can be partially ordered by virtue 
of precedence rules operating on pairs of PA rules. 

For instance, the conflict regarding the perfect 
auxiliary is resolved by making a precedence rule 
check the ID rules that would be invoked by the re-
spective SBAs. If the mother of the second one can 
be unified with a daughter of the first one and not 
vice versa, then the first PA rule must be applied 
before the second one. Thus a PA rule with an SBA 
invoking ID rule (4) will apply before another one 
with an SBA invoking ID rule (5). 

Note that, in this example, the number of suc-
cessful PA rules would not be maximal if the order 
of application was the other way around since the 
SBA invoking ID rule (4) would not succeed any-
more. 

The control regime described above guarantees 
termination, completeness and coherence in the fol-
lowing way: The traversal of a FAS expression ter-
minates since there is only a finite number of local 
trees to be investigated, and for each of them a 
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FAS pattern:         term (them: 1) FAS pattern: 

det (def:+, num:plur) 

IGA: [remove_store(sent, decl), 
set_gpsg_features(top: +)] 

IGA: (set_gpsg_features(plu:+)] 

SBA: [call_id( NP --> Det. N1 )] SBA: [ ] 

 



finite number of PA rules is applicable. The OSS generated 
is complete because all local FAS trees are processed and 
for each a maximum number of PA rules is successful. It is 
coherent because (1) no PA rule may be applied whose 
pattern is not matched by the FAS expression and (2) all 
attachment points must be expanded. 

CONCLUSION 

The adaptation of a GPSG-based generator to an MT 
system using FAS as its SRL was described as an instance 
of the separate-semantics approach to surface generation. 
In this instance, the OSS is most efficiently built top-down 
whereas feature instantiation is performed bottom-up. 

The mapping based on PA rules has proved to be 
efficient in practice. There are only a few cases where 
backtracking is required; most often the local FAS tree being 
verbalized allows together with the contents of the auxiliary 
storage and the current set of attachment points for a 
deterministic choice of grammar rules. 

The generator has been fully implemented and tested with 
middle-sized fragments of English and German. It is part of 
the Berlin MT system and runs on both an IBM 4381 under 
VM/SP in Waterloo Core Prolog and a PC XT/AT in Arity 
Prolog. 

Compared to algorithms based on an integrated semantics 
the separate-semantics approach pursued here is promising 
if the generator has to be adapted to the SRL of some 
application system. Adaptation then consists in modifying 
the set of PA rules rather than in rewriting the grammar. 
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