
Using Pattern-Action Rules for the Generation of GPSG Structures
 From MT-Oriented Semantics

Stephan Busemann
Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI) GmbH*

Stuhlsatzenhausweg 3, D-6600 Saarbrücken 11, Germany
e-mail: busemann@dfki.uni-sb.de

Abstract
In many tactical NL generators the semantic
input structure is taken for granted. In this
paper, a new approach to multilingual, tac-
tical generation is presented that keeps the
syntax separate from the semantics. This al-
lows for the system to be directly adapted to
application-dependent representations. In the
case at hand, the semantics is specifically de-
signed for sentence-semantic transfer in a ma-
chine translation system.
The syntax formalism used is Generalized
Phrase Structure Grammar (GPSG). The map-
ping from semantic onto syntactic structures is
performed by a set of pattern-action (PA) rules.
Each rule matches a piece of the input struc-
ture and guides the GPSG structure-building
process by telling it which syntax rule(s) to ap-
ply. The scope of each PA rule is strictly local,
the actions are primitive, and rules can not call
each other. These restrictions render the pro-
duction system approach both highly modular
and transparent.

1 Introduction

In most tactical unification-based approaches, the mea-
ning representation a generator starts from is taken as a
given. A Montague style semantics is often used where
each lexicon entry and each syntax rule is assigned a se-
mantics in the grammar (e.g. [Dymetman and Isabelle,
1988, Shieber et al., 1990]). The semantic constructions
are usually motivated by linguistic considerations alone;
more precisely, by the interaction of syntactic and se-
mantic constraints.

Such a system is capable of computing a terminal
string for a given logical form. If it were to be used
as a front-end component of some application system,

*This work was partially funded by the German Mini-
ster for Research and Technology (BMFT) under contract
ITW 9002. Most of the research was accomplished at the
Technical University of Berlin in the project KIT-FAST,
which was funded by the BMFT under contract 1013211. I
would like to thank Christa Hauenschild for numerous valua-
ble discussions.

the semantics would have to be adapted to the appli-
cation system's semantic representation language, which
may depend on the system's purpose. To generate an
utterance, a semantic representation would first have to
be translated into an equivalent logical form, to which
the grammar can eventually assign a syntactic structure
containing the output string.

In order to avoid this adaptation, this paper suggests
to directly relate a semantics that depends on a particular
application to syntax. A new approach to the syntax-
semantics interface is presented that uses a set of pattern-
action (PA) rules similar to those known from production
systems. The grammar only covers syntax; the semantics
is completely left to the respective application system.

The application at hand is the Berlin machine trans-
lation (MT) system which is the first one to use an ope-
rational version of Generalized Phrase Structure Gram-
mars (GPSG) [Gazdar et al., 1985] for both multilingual
parsing and generation. The Berlin MT system transla-
tes sentences taken from a corpus of EC administrative
texts from English to German and vice versa. It is ba-
sed on a model of translation that includes several levels
of transfer, the one closest to surface form of which has
been implemented and tested.

The generator takes as input a semantic representation
specifically designed for transfer. PA rules are used for
extracting from it the information relevant to generation
and stepwise constructing a GPSG syntactic structure.
In this generator, a modern syntax formalism is for the
first time coupled with Al production system techniques.

Section 2 motivates and describes the underlying se-
mantic representation language. Section 3 sketches the
GPSG grammar formalism used and describes how it
supports generation. The paper focusses, in Section 4,
on the definition of PA rules and their use in the given
framework of generation.

2 Transfer results as input structures for
the generator

The Berlin MT system is based on a general multi-level
transfer framework of MT that has been mainly devel-
oped by Hauenschild [Hauenschild, 1986, Hauenschild
and Busemann, 1988]. This framework assumes several
succeeding levels of representation for both the source
language as well as the target language text, among them

Busemann 1003

Figure 1: The Architecture of the Berlin MT System.

a level of syntax, of sentence semantics, and of concep-
tual text representation. Between some of these levels
transfer is assumed. Thus the complexity of the transfer
step, which is viewed as the place where the divergencies
between source and target language have to be bridged,
is distributed between different components, and transfer
will thus become more tractable than at a single level.
Within such a model, the input structures for the ge-
nerator are motivated by MT considerations rather than
by linguistic ones alone. The Berlin MT system, as de-
veloped and implemented so far, covers the sentence-
semantic and the syntactic level with transfer being pos-
sible only at the former (cf. Figure 1). The sentence-
semantic representation language family FAS (Functor-
Argument Stuctures) [Hauenschild and Umbach, 1988]
has been designed to interface three different proces-
ses: GPSG-based analysis, sentence-semantic transfer of
a source language FAS expression into a target language
one, and GPSG-based generation.1
FAS is defined by context-free rule schemata with com-
plex categories consisting of a main category that is as-
sociated with a fixed list of feature specifications (see
Figure 2a for an example).2 The categories are in canoni-
cal order with the functor preceding all of its arguments.
FAS expressions contain almost no redundant informa-

1 Given that GPSG is chosen as the syntax formalism, one
might wonder why the intensional logic (IL) proposed by
GKPS was not adopted. On the one hand, there are intrinsic
problems with the mapping scheme of GPSG structures onto
IL expressions [Umbach, 1987]; on the other hand, MT-related
information cannot be straightforwardly made explicit in IL
expressions [Hauenschild and Busemann, 1988].
2In the present versions there are up to seven features in a
FAS category. Details irrelevant to the present discussion are
omitted in the figure.

tion. For instance, number information is only located at
the 'det' category. The use of semantic relations (enco-
ded by the 'role' feature), role configurations ('conf')
and semantic features ('sem') allows us to discriminate
between different readings of words that result in
different translational equivalents.3 For instance,
German verab-schieden translates to say good-bye if the
'affected' role is a person (as in He says good-bye to his
friend), but to adopt if the 'affected' role is a plan (as in
The Council adopts the proposal). This is encoded by
the feature 'sem' at the category 'n_pred'.
For the kind of text envisaged, it was considered im-
portant to preserve the thematic structure of the source
language sentence as far as possible during transfer. It is
encoded at the level of the 'clause' daughters by
virtue of the feature 'them' with the numerical values
indicating which portion should preferrably be
presented first, second, third etc. For instance, the
English translation given for the German sentence in
Figure 2b is passivized to reflect the source language
order of the arguments.
From the point of view of generation, all decisions
about style, voice, tense, or word choice are assumed to
have been reached to during transfer. Thus a FAS ex-
pression reflects sufficient linguistic information for a
sentence to be unambiguously assigned to it. For
instance, it is possible to compute for every role an NP's
surface case with help of the features 'voice' and
'conf, and of the verb itself. With verabschieden [to
adopt], active voice and the role configuration 'ag-af,
which says that the verb has exactly two roles named
'agent' and 'affected' respectively, the 'agent' constituent
is assigned nominative case whereas the 'affected' one
yields accusative.

3The system of semantic roles is based on [Steiner et a/.,
1988].

1004 Natural Language

 SL = Source Language TL = Target Language

Figure 2: A Sample FAS Expression and a Corresponding GPSG Structure.

3 GPSG-based generation

The constructive GPSG formalism used is described in
detail in [Busemann, 1990, Hauenschild and Busemann,
1988]. A major feature of the formalism is a strict appli-
cation order of its components that allows the efficient
implementation of different processing strategies for the
construction of an admissible GPSG syntactic structure.
This is different to the axiomatic formalism of [Gazdar
et al, 1985], which assumes a simultaneous application
of all components to exclude ill-formed structures.

For the present purpose, only three components will
be sketched here. First of all, the concept of complex ca-
tegories must be mentioned. Roughly, a complex GPSG
category is a set of feature-value pairs with the values
being allowed to be complex categories themselves.4 Se-
cond, there is the separation between immediate do-
minance (ID) and linear precedence (LP). An ID rule
D —> A,B,C says that in every local tree (i.e. a tree
of depth one), categories A, B, and C are immediately
dominated by category D. An LP statement B -< C says
that in every local tree with categories B and C, B must
precede C. Third, three feature instantiation principles
(FIPs) require part of the features to be cospecified in
some or all categories of a local tree.

The lexicon is a set of unary local trees consisting of

4 Additional restrictions ensure that categories are finite,
thus preserving context-freeness of GPSG.- Strings such as
S, NP[nom], VP[inf], denote complex categories and are used
for abbreviatory purposes only.

a word stem dominated by a terminal GPSG category.
Fully inflected word forms are provided by a separate in-
flection component that operates on stems and a set of
morpho-syntactic features taken from the terminal cate-
gories of the GPSG structure.5

The construction of an admissible GPSG syntactic
structure (cf. e.g. Figure 2b) consists of two subtasks
that can be performed independently of each other, and
each according to its own processing strategy:
Structure building: An ID rule (or a lexicon entry)

licenses a local tree that contains the same amount
of information. Local trees are combined with each
other to form a skeletal syntactic structure (SSS).

Feature instantiaton and ordering of the branches:
To a (typically) strongly underspecified category,
further information is successively added through
the application of the FIPs and other components
in a local tree. Finally, the LP statements can
cause the branches to be reordered.

Structure is built in a top-down fashion during gene-
ration (cf. Section 4.1) whereas feature instantiation is
more efficiently performed bottom-up.6

5Using a root form lexicon is not just useful to keep the
lexicon small, but even necessary for efficiency reasons (cf.
the arguments in e.g. [Shieber et al., 1990]).

6Top-down feature instantiation may become indetermini-
stic due to the definition of GPSG's FOOT feature principle,
which can require several daughters to cospecify with respect
to certain features [Hauenschild and Busemann, 1988].

 Busemann 1005

Figure 3: Introducing an S-Extension Into the SSS.

Structure building consists of a stepwise expansion of an
SSS. There are non-terminal leaf categories in the SSS
that are called attachment points. These are the nodes
that may be expanded by additional structure. Let us
call such a structure s-extension (for structural extension).
An s-extension is introduced into the SSS by unifying its
root category with an attachment point, which must then be
removed from the current set. The SSS now contains
additional leaves, the categories—but not the word stems—
of which become the set of current attachment points for
following expansions. Let us call such an expansion step
structure-building action (SBA) (cf. Figure 3). Structure
building starts with an SSS consisting of a single attachment
point labelled by an empty GPSG category.

Structure building alternates with feature instantiation
in the following way: Top-down structure building ceases if
some subtree contains no more nonterminal leaf; i.e. all of its
leaves are word stems. Then bottom-up feature
instantiation takes place at local trees licensed by ID
rules (lexical trees are admissible by definition) until a
nonterminal leaf category is encountered. The updated set of
attachment points that was valid at that level becomes the
current one again. The whole process terminates with a
GPSG syntactic structure of some sentence as its result
after the top-most local tree has passed feature
instantiation.

Nothing has been said so far about how the next ID
rule (or lexicon entry) is triggered at a given stage of
structure building. This is the topic of the following sec
tion.

4 Mapping FAS expressions onto GPSG
structures

Structure building is triggered by traversing the input
FAS expression and applying PA rules. Each PA rule is
sensible to the particular piece of a FAS expression matched
by the pattern. We shall start our discussion with the
question of how much of a FAS expression should a pattern
comprise. We shall then describe the PA rules and
discuss their properties.

4.1 Traversing the FAS expression

In FAS, the information needed to apply some particular
ID rule is not always accessible at a single FAS category
or within some restricted local environment of it. Rather,
information from distant portions of the FAS expression
may be needed. For instance, in order to apply the ID
rule for topicalization, S —> X[+top], S[fin] / X[+top]7,
two distantly located specifications have to be collected
(cf. Figure 2a): the FAS specification (them : 1), which
is part of one of the daughter categories of 'clause', is
interpreted as requiring topicalization of a syntactic con-
stituent under the condition that a declarative sentence
is being generated. This latter information is, however,
available at the 'illoc' category of the FAS expression.

Two possible methods to collect the information
present themselves. First, the pattern including (them :
1) could be required to cover as much of the FAS expres-
sion as would be needed to include 'illoc'. Unfortunately,
the required size of the pattern is not always known in
advance because the FAS syntax might allow an arbitrary
number of recursively defined local trees to intervene.

The second method—which was eventually adopted—
requires the patterns to cover not more than one local
FAS tree. In order to gather information that is locally
missing, an intermediate storage is used. If, for instance,
the illocution is matched, information about whether or
not a declarative sentence is being generated is stored.
Later on, (them : 1) is encountered. If 'declarative' can be
retrieved from the storage, the ID rule for topicalization
can safely be triggered.

It is thus possible to guide the whole generation pro-
cess by a single traversal of the FAS expression. The
topicalization example above already suggests that the
traversal should occur top-down rather than bottom-up:
if it were bottom-up, the specification (them : 1) would
have to be stored and the syntactic structuring at the
sentence could only be determined when 'illoc' is mat-
ched. This delay would involve storing much additional
information concerning e.g. auxiliary verbs that is not
necessary otherwise.

The decision for a top-down traversal leads to the con-
sequence that structure-building also occurs top-down:
Because of a similar distribution of information in FAS
expressions and in GPSG structures—for instance, le-
xical information is located at the terminal categories
whereas much of the sentential information is found at
the upper part of the structures—the strategy for tra-
versing the FAS expression is the most efficient one for
GPSG structure building.

In order to adequately restrict the power of the inter-
mediate storage, it is defined as a two-dimensional array
of order [n, 2] consisting of n pairs of the form (key,
entry). Keys and entries are atomic symbols except for
the entry to the key cat, which is a GPSG category. All
keys but cat are defined by the PA rule writer. For in-
stance, the information that a sentence is a 'declarative'
is represented as (s-type : decl).

7Note that, in this ID rule, the X[+top] daughter is co-
specified with the slash value of its sister, which eventually
becomes more specific by virtue of the FIPs.

1006 Natural Language

The storage is maintained by three kinds of
information-gathering actions (IGAs) that write entries
onto the storage or remove them from it: put_store ope-
rates on a key and some information I. It writes I as the
entry of key. set_gpsg_features operates on a sequence
of GPSG feature names and a sequence of GPSG feature
values. It produces a GPSG category from them and uni-
fies it with the entry of cat. remove_store operates on a
key. It returns the entry by removing it from the storage
(if the key is cat, it leaves an empty GPSG category).
Note that no reading of information is possible without
erasing it from the storage.

The GPSG category stored under cat serves to in-
troduce the information collected into the syntactic
structure. Translating FAS feature specifications such
as (them : 1) into GPSG feature specifications such as
[top: +] is a task performed by the PA rules.

4.2 Pattern-Action rules

PA rules consist of a left-hand side (the pattern) and a
right-hand side (the actions). For a pattern to match local
FAS trees, simple term unification suffices because FAS
constituents as well as features are in canonical order.
Patterns are implemented as two-element Prolog lists
with the first element matching the root and the second
one the list of daughters of a local FAS tree.

The actions of the right-hand side divide up into two
kinds, namely a list of IGAs for maintaining the inter-
mediate storage and a list of SBAs for the generation of
GPSG local trees. At most one of the lists may be empty.
The actions are encoded as Prolog predicates.

Two sample PA rules are shown in (1) and (2). They
encode the actions required for the example involving
locally unaccessible information. In (1), the IGA stores
the fact that a declarative is being generated. The SBA
call_id expands the SSS by an s-extension according to
the topicalization ID rule. The second PA rule matches
a term specified by (them : 1) (which eventually will be
realized as e.g. an NP). Here two IGAs must be executed.
The first one attempts to remove (s-type : decl) from
the storage. If this succeeds, a GPSG category [+top] is
generated and stored by the second IGA.

How is the stored information introduced into the SSS?
Clearly this should be done by SBAs. However, rule (2)
has no SBAs, i.e. the NP structure is built by virtue of
another PA rule whose pattern matches the same local
FAS tree. The definition of SBAs given in Section 3 is
extended to include the unification of the category stored
with some attachment point and the root of the sextension
(cf. Section 4.3 for a detailed example).

(1) pa_rule([fas(), [illoc(sem:ass) I]] ,
[put_store(s-type,decl)],
[call_id("S --> X[+top], S / X[+top]")]).

(2) pa_rule([term(them:l),_] ,
[remove_store(s-type,decl),

set_gpsg_features([top] , [+])] , []) .

Let us now turn to the control of the PA rules that must,
intuitively speaking, guarantee that all relevant rules are
applied in such a way that the intended effects are achie-

Input: a FAS expression;
a set of current attachment points

For each local tree in the FAS expression
• determine the list of applicable PA rules.
• For each applicable PA rule

1. execute the IGAs.
In case of failure, the PA rule fails.

2. if there are SBAs, execute the next SBA
by
a) generating an s-extension,
b) unifying its root category with

the category in the intermediate
storage,

c) unifying its root category with an
attachment point,

d) removing the root category from the
set of current attachment points,

e) making the leaf categories of the
s-extension the set of current
attachment points.

In case of failure try next SBA;
if there is none, the PA rule fails.

• If there were PA rules applicable, but all
failed, then backtrack.

• Apply FIPs and LP statements to every GPSG
local tree.

Output: a GPSG syntactic structure

Figure 4: The Generation Algorithm.

ved. This we call complete verbalization of a local FAS
tree.

A local FAS tree is completely
verbalized iff a maximum number n
> 1 of applicable PA rules are

successful. A PA rule is applicable to a local FAS tree t
iff its pattern unifies with t. An applicable PA rule is
successful iff all elements of IGA can be executed
without failure and at least one SBA — if present — is
successful. An SBA is successful iff its s-extension as
well as the stored category can be introduced into the
SSS.

The question of how the number of successful PA
rules is guaranteed to be maximal is a matter of
control and will be answered in Section 4.4.

What does it mean for an action to be not success-
ful? Failure of IGAs is straightforward. For instance, if
the intermediate storage does not contain an
appropriate entry for 's-type', the first IGA of the PA
rule (2) fails, and so does the rule itself. An SBA fails
if either a stored category or the root of the extensor
does not unify with an attachment point. If all SBAs
fail, the PA rule does as well. If all PA rules applicable
to a local FAS tree fail, chronological backtracking is
invoked that leads to a rebuilding of the SSS.

The algorithm described so far is summarized in Fi
gure 4. A more detailed discussion can be found in [Bu
semann, 1990].

4.3 An example
This section demonstrates some of the essential
points of the mapping from the FAS expression in
Figure 2a onto the GPSG structure in Figure 2b,
which involves the topicalization of the direct object.

The first step is taken by applying the PA rule
(1)

 Busemann 1007

above. The daughters of the topicalization ID rule are the
current attachment points. At the 'clause' level, two PA
rules are applicable. (3) matches a (perf : +) specification
at the 'clause' category and introduces a perfect auxiliary
by its SBA. Note that by call_id_lex, a different kind
of SBA is used here that provides, in addition to the
task of call_id, for the auxiliary's expansion into the
lexicon. This is necessary since FAS does not represent
perfect auxiliaries but by a feature, whereas on the
GPSG side, a terminal local tree must be generated.

The root of the s-expansion generated by call_id_lex
unifies with S/X[+top], which is then removed from the
set of attachment points. The only current attachment
point is S[psp].The SSS built so far is illustrated in Fi-
gure 3.

(3) pa_rule([clause(perf:+),],

[call_id_lex("S —> V[+aux] , S[psp]")]).

The second rule applicable at the 'clause' level is (4). It
offers several possibilities to introduce an s-extension, gi-
ven that the first daughter of the FAS tree is a 'v_pred'
with active voice and role configuration 'ag-af. Since
this meets the case at hand, the first SBA is success-
fully executed though this will eventually turn out to be
wrong. The current set of attachment points consists of
the daughters of the ID rule.

(4) pa_rule([_, [v_pred(conf: ag-af,
voice: active) I _], D,

[call_id("S —> NP[nom,-top],
NP[acc,-top], V[trans,-top]"),

call_id("S/NP[nom,+top] —>
NP[ace,-top], V[trans,-top]"),

call_id("S/NP[acc,+top] -->
NP[nom,-top], V[trans,-top]")]).

Note that applying the two rules the other way round
would have prevented the auxiliary from being introdu-
ced into the SSS due to lack of a suitable attachment
point. In that case, the number of successful PA rules
would not have been maximal.

In a next step, the verb is generated from 'v_pred' using
PA rule (5). The assignment of surface case to roles is
stored, and a GPSG lexicon entry is called. After the
insertion into the SSS, the current attachment points are
NP[nom, -top] and NP[acc, -top].

(5) pa_rule([v_pred(conf:ag-af,voice:active),
[verabschieden]],

[put_store(agent,nom),
put_store(affected,acc)],

[call_lex("V[trans] --> verabschied")]).

The next local FAS tree to be verbalized is rooted by
a 'term' with (role : agent). Note that it is specified by
(them : 3} which causes rule (6) to store a GPSG category
[-top], saying that the NP must not be topicalized.

Another PA rule is applicable that is similar to rule
(7) but handles singular number. Its first IGA removes
(agent : nom) from the storage. The second one stores
a GPSG category containing the case information just
retrieved as well as number information taken from the
pattern. The s-extension is successfully introduced into

the SSS using the attachment point NP[-top, nom].
Note again, that an application of the two rules in
different order would cause the [-top] specification to be
introduced into the SSS by an SBA that verbalizes a
different part of the FAS expression.

(6) pa_rule([term(them:3),_] ,
[set,gpsg_features ([top] ,[-])], []) .

(7) pa_rule([term(role:Role),
[det(del : + ,num:plur) _]] ,

[remove-store(Role, Case),
set_gpsg_features([plu,cas] , [+,Case])] ,
[call_id("NP —> Det, N1")]).

Let us skip the straightforward verbalization of the
term's descendants and turn to the second 'term' with
(role : affected). The only remaining attachment
point is NP[acc, -top]. Applying the PA rule (2) here
causes a GPSG category [+top] to be stored.
Furthermore, PA rule (7) adds accusative case and
plural number to it and attempts to introduce another
NP s-extension into the SSS. This, however, fails
because of the incompatible 'top' specifications.

Backtracking leads to a new choice of the S expan-
sion in PA rule (4) by using the second SBA. With
the new s-extension introduced into the SSS, however,
the NP[nom] cannot be introduced anymore, again be-
cause of incompatible 'top' specifications (values of the
GPSG slash feature also count as attachment points).
Thus a second revision of the S expansion becomes ne-
cessary, and the third SBA in rule (4) is used (cf. the s-
extension in Figure 3). This time, both the verb and
the NP[nom] previously generated can be attached, and
the remaining attachment point NP[acc, +top] unifies
with NP[+top, +plu, acc]. After the generation of the
NP, which we also skip, all current attachment points
are expanded.

This is the moment for the FIPs to operate on the
local tree under consideration (i.e. the lowest one with
mother S in Figure 2b). At the next higher level in the
SSS, the same situation arises: no more current attach-
ment points. The FIPs cause, among other things, the
S categories to share their slash values. As a
consequence, the only remaining attachment point at
the top level of the SSS, X[+top], is further instantiated
by the NP[acc] structure and erased from the set
(remember that it is cospecified with the slash value of
its sister). Thus generation terminates successfully.

Finally the terminal local trees of the admissible
GPSG structure are fed to the morphological inflection
component in order to eventually produce the output
string.

4.4 On the interaction of PA rules
There are some important properties of PA rules known
from production systems that must hold for the modu-
lar encoding of the mapping to pay off [Davis and King,
1977]. Though the generation system presented uses pro-
ductions, it is not a production system: There is no
common database to be modified by the productions
and consequently, known conflict resolution strategies
such as the RETE algorithm [Forgy, 1979] do not
apply.

1006 Natural Language

Conflicts arise in the present system only if more than
one rule matches a given local FAS tree. As the mat-
ching is free of side-effects and the actions are primitive
(i.e. no calls to other actions are allowed), the PA rules
can communicate with each other only indirectly, i.e. by
modifying the content of the intermediate storage or by
successfully applying an SBA, thereby creating a situation
in which another PA rule becomes applicable (or cannot
be applied anymore).

As should be evident from the example, conflicting rules
must be applied in a certain order to guarantee that a
maximal number of them will be successful. This re-
quirement is formalized as follows: Due to the restricted
power of the PA rules, possible conflicts are detected and
resolved a priori. All PA rules matching the same local
FAS tree are identified with help of the FAS rule sche-
mata. These PA rules are members of the local FAS tree's
conflict set. The elements of every such conflict set are
partially ordered according to precedence rules that de-
termine for each pair of PA rules whether or not the first
one must be applied before the second one.

For instance, the conflict that arose with the NP s-
extension is resolved by requiring that PA rules without
an SBA are applied first. The conflict regarding the per-
fect auxiliary is resolved with help of a precedence rule
that checks the ID rules that would be invoked by the
respective SBAs. If the mother of the second ID rule can
be unified with a daughter of the first one, but not vice
versa, then the first PA rule must be applied before the
second one. Thus a PA rule with an SBA invoking the ID
rule S —> V,S[psp] will apply before another one whose
SBA involes the ID rule S/NP[acc] —> V, NP[nom].

5 Conclusion

A new approach to multilingual, tactical generation has
been presented that allows for the direct mapping of an
application-dependent semantic representation—the re-
sult of sentence-semantic transfer during MT—onto a
GPSG syntactic structure. To build the syntactic struc-
ture, a set of pattern-action rules is used that forms a
separate component of the generation system. Since it is
part of the language-specific knowledge, it can be exchan-
ged together with the grammar and the semantic repre-
sentation in order to generate strings of a different lan-
guage.

The PA rules allow a grammar writer to express all
possible syntactic realizations of a local semantic sub-
structure. It remains open to further research how easily
linguistic generalizations can be expressed by PA rules.
Another research goal is to formalize conditions for a bi-
directional use of PA rules, which clearly involves major
modifications of the concepts presented here. The present
approach opens up a new way for a linguistically justi-
fied grammar formalism to be incorporated in different
generation systems.

The generator is implemented in Waterloo Core Prolog
on an IBM 4381 under VM/SP; a transported version
runs as part of the Berlin MT system in Arity Prolog on
an AT. The fragments of German and English covered
are medium-sized (50 to 70 ID and PA rules). For the
ordering of PA rules, four precedence rules sufficed. Run

time for the generation of the sentence in Figure 2
is about 4.7 sec. on the AT.

References

[Busemann, 1990] Stephan Busemann. Generierung
natürlicher Sprache mit Generalisierten Phrasenstruk-
turgrammatiken. PhD thesis, Univ. des Saarlandes,
Comp. Sc. Dept., Saarbrücken, 1990. Also: Techn.
Univ. Berlin, Comp. Sc. Dept., KIT report 87.

[Davis and King, 1977] Randall Davis and Jonathan
King. An overview of production systems. In E. W.
Elcock and D. Michie, editors, Machine Intelligence 8,
pages 300-332. Ellis Horwood, Chichester, 1977.

[Dymetman and Isabelle, 1988] Marc Dymetman and
Pierre Isabelle. Reversible logic grammars for
machine translation. In Proc. 2nd Int. Conf. on
Theoretical and Methodological Issues in Machine
Translation of Natural Languages, Pittsburgh, PA,
1988.

[Forgy, 1979] C. Forgy. On the Efficient
Implementation of Production Systems. PhD thesis,
Carnegie Mellon Univ., Pittsburgh, PA., 1979.

[Gazdar et al, 1985] Gerald Gazdar, Ewan Klein,
Geoffrey Pullum, and Ivan Sag. Generalized Phrase
Structure Grammar. Basil Blackwell, London, 1985.

[Hauenschild and Busemann, 1988] Christa Hauen-
schild and Stephan Busemann. A constructive ver-
sion of GPSG for machine translation. In E.
Steiner, P. Schmidt, and C. Zelinsky-Wibbelt,
editors, From Syntax to Semantics—Insights From
Machine Translation, pages 216-238. Frances Pinter,
London, 1988.

[Hauenschild and Umbach, 1988] Christa Hauenschild
and Carla Umbach. Funktor-Argument-Struktur. Die
satzsemantische Repräsentations- und
Transferebene im Projekt KIT-FAST. In J. Schütz,
editor, Workshop "Semantik und Transfer", IAI
working papers no. 6, pages 16-35, Saarbrücken,
1988.

[Hauenschild, 1986] Christa Hauenschild. KIT/NASEV
oder die Problematik des Transfers bei der maschi-
nellen Übersetzung. In I. Bátori and H.-J. Weber, edi-
tors, Neue Ansätze in maschineller Sprachübersetzung:
Wissensrepräsentation und Textbezug, pages 167-196.
Niemeyer, Tübingen, 1986.

[Shieber et al., 1990] Stuart M. Shieber, Gertjan van
Noord, Robert C. Moore, and Fernando C. N. Pe-
reira. A semantic-head-driven generation algorithm
for unification-based formalisms. Computational Lin-
guistics, 16(l):30-42, 1990.

[Steiner et al., 1988] Erich Steiner, Ursula Eckert, Bir-
git Roth, and Jutta Winter-Thielen. The
development of the Eurotra-D system of semantic
relations. In E. Steiner, P. Schmidt, and C. Zelinsky-
Wibbelt, editors, From Syntax to Semantics—Insights
From Machine Translation, pages 40-104. Frances
Pinter, London, 1988.

[Umbach, 1987] Carla Umbach. Zur semantischen In-
terpretation in der Theorie der GPSG. Techn. Univ.
Berlin, Comp. Sc. Dept., KIT working paper 19,
1987.

Busemann 1009

