Linear Precedence Constraints in "Lean Formalisms"
Part II

Hans Uszkoreit
Gregor Erbach
Wojciech Skut
Universitdt des Saarlandes, Computational Linguistics, and
Deutsches Forschungszentrum fiir Kiinstliche Intelligenz
D-66041 Saarbriicken, Germany
uszkoreit@coli.uni-sb.de

February 28, 1994

1. Introduction

In this report, we demonstrate the practical application of the methods outlined in Part I by
the implementation of a grammar that covers the ordering of adjuncts and complements in
the German Mittelfeld.

Originally, we had envisaged to allow the statement of sets of LP rules and their automatic
compilation into the rules of an ALEP grammar in the form of a level 2 extension. The
methods for such a compilation step have already been described in the paper by
Engelkamp et al. (1992). An automatic compilation would work well for cases where all LP
rules apply simultaneously, as in GPSG, but not for the complex kinds of LP rules needed
for languages like German.

The additional complexity needed to handle German word order phenomena comes from the
need to account for

» conflicting LP rules, and
* interactions between LP rules.

Conflicts arise in cases where only some of the LP rules can be satisfied. For example, if we
have the LP-rules

Definite < Indefinite
OBJ2 <OBJ
and the indirect object (OBJ2) is indefinite, and the direct object (OBJ) is definite, there is

no linearisation which does not violate one of the rules. This is a problem for parsing, but
especially for generation, as there would be no way to generate such a sentence.

The need for weighted LP constraints to deal with these situations has been noted in the
linguistic literature (e.g. Uszkoreit 1987), but has not found its way into computational
implementations of grammars.

In the grammar described in this report, conflicts are handled by using several rules, each of
which enforces only a subset of the ordering constraints. The subsets are chosen in such a
way that the "weaker" rules are only applied if the stronger rules do not apply.

Interactions between LP constraints arise with the following set of LP rules:
Pronoun < Non-Pronoun
OBJ2 < OBJ

In fact, these rules are too simple, as the ordering between OBJ2 and OBJ is reversed in
case both are pronominal. Such interactions are explicitly covered in the grammar we
provide.

The grammar we provide has been developed with both linguistic adequacy and efficient
processing in mind. We are not aware of any other implemented grammar for German that
provides an equally detailed coverage of word order regularities. Underspecification is used
as much as possible to avoid the creation of a large search space. The multiplication of rules
does also improve the efficiency of the grammar as the specialized rules can help to rule out
failing branches of the search space as early as possible.

In the following sections, we describe the coverage and implementation of the grammar, and
discuss the runtime efficiency of the grammar.

2. Preliminaries

In order to provide an adequate description for linear precedence constraints, two facts
should be taken into consideration. Firstly, there are several factors that may influence the
ordering of constituents, e.g.

- syntactic category

- grammatical relations/functions (SUBJ < OBJ2 < OBJ < POBJ)
- case (nominative < dative < accusative)

- thematic role (source < goal)

- pronominal vs. non-pronominal forms (pronoun < non-pronoun)
- discourse function (topic < focus)

- definitness (definite NP < indefinite NP)

Secondly, since all these factors work simultaneously and cumulatively, their interaction
should be described, as well. It has been observed that some ordering criteria carry more
weight then others, as the following examples show:

(1)der Mann zeigte ihn der Frau
the[nom] man showed him[acc] the[dative] woman
the man showed him to the woman

VS.
(2) *der Mann zeigte der Frau ihn

Here the pronominal accusative NP precedes the dative NP though the general rule for the
ordering of objects states that the accusative (direct) object should follow the dative
(indirect) object. Therefore, the particular word order factors must be assigned different
priorities, which would allow to overwrite the weaker constraint obj2 < obj, violated in (1).

3. Encoding of Relevant Information in Feature Structures

Many of the abovementioned criteria overlap as nominal phrases in topic are usually
definite, dative NPs perform the grammatical function of the indirect object, syntactic
subjects represent semantic agents etc. Thus, we take only four factors into account which
we regard as very important and relatively independent of each other, namely grammatical
function, syntactic category, pronominality and discourse structure. In addition, a
morphonological criterion can be useful to express the constraint that the enclitic accusative
pronoun 'es' cannot be stressed, which is also of importance for the constituent ordering,
because only focussed and stressed accusative pronouns can follow pronominal dative NPs.

In order to encode it in feature structures, we define the Ip_relevant typel :

type(lp_relevant type:
focus => boolean([{plus,minus,nil}]),
pro => boolean([{plus,minus,nil}]),
clitic => boolean([{plus,minus,nil}])).

One of the criteria to be taken into account, namely the grammatical relations, need not be
introduced explicitly on this level because our grammar is based on the notion of
grammatical functions, i.e. all arguments are treated separately depending on their syntactic
function, such as subject, object, object2 etc. Each complement is then associated with a
structure of the Ip relevant type:

type(comp_type:
val => type(sign_or nil type: { }),
bound off => boolean([{plus,minus}]),

1 All attributes ofthe Ip_relevant_type are three-valued. The third value, nil, is used to
express the absence of tlmrresponding constituentThis facilitates an efficientencoding
of ordering rules (see also below).

Ip relevant => type(lp relevant type: {})).

where the value of val must unify with the corresponding complement itself. The feature
bound_off indicates whether the complement has already been found.

In general, we distinguish four types of complements: subject, direct object (obj), indirect
object (obj2) and prepositional object (pobj). The data structure we employ for valence is
then a conjunction of four attributes:

type(subcat_type:
subj => type(comp_type: { }),
obj => type(comp_type: { }),
obj2 => type(comp_type: { }),
)

pobj => type(comp_type: { })).

4. Integration of LP Constraints into Grammar Rules

Another piece of the word order relevant information missing here, namely the syntactic
category, is contained in the grammar rules in form of categorial annotations. Thus, the
grammar consists of rules partially instantiated with categorial symbols. The grammatical
function performed by the non-head daughter is also specified.

The mechanism we employ for handling linear precedence constraints resembles the method
proposed in Engelkamp et al. (1992). Binary branching syntactic structures are licensed by
rules that perform an additional function: they not only describe local trees but also
incrementally collect the word order relevant information and check the possibility of the
current constituent ordering within a head domain.

Therefore, whenever a head combines with one of its complements the Ip_relevant
attribute that is associated with the complement becomes instantiated (as long as the
complement has not combined with the head the attributes focus, pro, clitic have the value
nil). For the sake of simplicity, we treat the information about the word order relevant
properties of the argument as a head feature, which we label as Ip _head. The information
about the other complements is inherited without change:

sign_type:
{syn => syn_type:
{head => HEAD,
subcat => subcat _type:
{subj => comp _type:
{val=>SUBJ_VAL,
bound off => yes,
lIp_relevant => LPR_COMP },
obj => OBJ,

obj2 => OBJ2,
pobj => POBJ }
<
[@SUBJ_VAL sign_type:
{syn => syn_type:
{head => nom_head type:
{Ip_head => @LPR_COMP Ip relevant type: { }}}},
sign_type:
{syn => syn_type:
{head => @HEAD verbal head type: { },
subcat => subcat _type:
{subj => comp _type:
{val=>SUBJ_VAL,
bound off => no,
Ip_relevant => Ip relevant_type:
{focus => nil,
pro => nil,
clitic =>nil },
obj => OBJ,
obj2 => OBJ2,
pobj =>POBJ }].

Here a phrase final verbal head combines with its subject (index variable SUBJ_VAL). The
value of the path syn:subcat:subj:bound_off on the head daughter is no, which means that
the subject has not been bound off yet. The same path on the mother node becomes
instantiated with yes in order to ensure the coherence of the maximal verbal projection. The
information about the word order relevant properties of the subject, contained in the value
of the path syn:head:lp _head on the complement daughter, is percolated to the mother and
then to the top node of the whole head domain (index variable LPR_COMP). The
corresponding features of the other complements (the variables OBJ, OBJ2, POBJ) are
inherited without change so that for each complement COMP all head nodes below the one
where COMP is bound off satisfy the equations

syn:subcat: COMP :lp relevant:focus => nil,
syn:subcat: COMP :lp_relevant:pro => nil,
syn:subcat: COMP :lp relevant:clitic => nil,

and all head nodes above it bear the word order relevant information introduced by COMP.

The second aspect of the proposed mechanism, i.e. the imposing of linear precedence
constraints, can now be easily integrated into the grammar because each local tree contains
the information about the word order relevant properties of both the complement and the
part of the head domain dominated by the head daughter. It suffices to instantiate the
Ip_relevant features of the subj, obj, obj2 and pobj attributes on the head daughter as well

as the value of the Ip_head attribute on the complement2 . A disallowed combination will
then result in unification failure. For instance, in order to rule out the ungrammatical
ordering

* der Frau[obj2, non-pro] < ihn[obj, pro]

we instantiate the Ip_relevant and Ip head attributes in the (head-final) head-object2 rule
as follows:

sign_type: { }
<
[@OBJ2 sign_type:
{syn => syn_type:
{head => nom_head type:
{lp_head => lp_relevant_type:
{focus =>
pro => minus,
clitic=>_ }}}},
sign_type:
{syn => syn_type:
{head => verbal head type: { },
subcat => subcat_type:
{obj => comp _type:
{lp_relevant => Ip relevant type:
{focus => _,
pro => ~plus,
clitic=>_}},
obj2 => comp _type:
{val => @OBJ2,
Ip_relevant => Ip relevant_type:
{focus => nil,
pro => nil,
clitic=>nil}}}}} .
The path equation syn:subcat:obj:lp_relevant:pro => ~plus is satisfied, only if the value
of this path is nil (no direct object is present within the head phrase) or minus (the direct
object is non-pronominal). This formulation therefore prevents a non-pronominal indirect
object from combining with a (verb-final) verbal projection containing a pronominal direct
object.

2, Unlike in Engelkamp etal. (1992), the grammatical representation of linguisticsigns

does not bear anynformation about right and left context restrictions. Linear precedence
constraints are directly expressed irthe rules so thatlinguistic objects serves only as a
source of word order relevant data such as pronominality, discourse function,

morphophonological properties, etc.

On the other hand, there are orderings acceptable only in some (pragmatic) contexts. For
instance, the "neutral" ordering

NP(dat, non-pro) < NP(acc, non-pro)

may be reversed when the dative object is focussed and the accusative NP remains in the
topic, cf.

(3) daB der Mann das Buch dem Kind gibt
that the[nom] man the[acc] book the[dat] child gives
that the man gives the book to the child

To license this structure, we introduce the following instance of the right branching head-
object rule:

sign_type: { }
<
[@OBJ sign_type:
{syn => syn_type:
{head => nom_head _type:
{lp_head => lp_relevant_type:
{focus => minus,
pro => minus,
clitic=>minus }}}},
sign_type:
{syn => syn_type:
{head => verbal head type: { },
subcat => subcat_type:
{obj => comp _type:
{val => @OBJ,
Ip relevant => Ip relevant type:
{focus => nil,
pro => nil,
clitic => nil} },
obj2 => comp _type:
{lp_relevant => Ip relevant type:
{focus => plus,
pro => no,
clitic=> minus}}}}} .

With this rule, a non-pronominal dative NP will be marked as focus + when it is preceded
by a direct non-prominal object, whose grammatical representation in turn becomes
instantiated with focus -.

5. Descriptive Power

A consequence of this approach is the fact that each rule must be split into several cases
depending on the syntactic category of the daughter nodes and on those of their properties
which are important for the ordering of constituents. Such an instance of a general syntactic
structure describes the interaction of some Ip-relevant factors in a particular case so that
assigning priorities to linear precedence generalizations is not difficult, anymore: when a
grammar rule is instantiated with a stronger constraint the weaker ones can be omitted.
Moreover, our approach works even if a word order criterion turns into its inversion under
the influence of another factor. In German, the constraints for grammatical function (or case)
and pronominality behave in this manner, cf.

(4) daB er der Frau den Mann zeigt - dat<acc
that he[nom] the[dat] woman the[acc] man shows
that he shows the man to the woman
but
(5) daB er ihn ihr zeigt - acc < dat
that he[nom] him[acc] her[dat] shows
that he shows him to her

Structures like (5) can be described by the following rule instance:

sign_type: { }
<
[@OBJ sign_type:
{syn => syn_type:
{head => nom_head _type:
{lp_head => lp_relevant_type:
{focus => _,
pro => plus,
clitic=>_ }}}},
sign_type:
{syn => syn_type:
{head => verbal head type: { },
subcat => subcat _type:
{obj => comp type:
{val => @OBJ,
Ip_relevant => Ip relevant_type:
{focus => nil,
pro => nil,
clitic => nil} },
obj2 => comp _type:
{lp_relevant => Ip_relevant type:
{focus => _,
pro => plus,

clitic=>_}}}}} 1.

In addition, we analyse the German verb initial and verb-final sentences as resp. left and
right branching structures3 . This make us distinguish between two types of grammar rules
for verbal projections since a head final rule contains only the information about the
constituents following the complement daughter and since there is no such information in a
head initial structure. Thus, a left branching rule should check whether the complement
may be preceded and a right branching one if it may be followed by the elements of the head
domain.

Furthermore, the particular instances of general syntactic rules should be disjoint.
Otherwise, the parser would provide multiple analyses for unambiguous structures or
instantiate attributes that can remain underspecified.

So, the three general types of the head-complement structure, i.e. head-subject, -object and -
object2 rules, has been splitted into 18 cases: 8 for verb final and 10 for verb initial phrases.
This rule corpus covers a majority of the possible complement orderings in the
"Mittelfeld". In particular, our grammar allows among other things

- for the "neutral" ordering subj < obj2 < obj,

- for the reversed ordering of pronominal objects,

- for a focussed subject to follow non-focussed objects,

- for pronominal objects to precede the subject,

- for a pronominal direct object to precede the non-pronominal indirect object,
- for a focussed indirect object to follow the non-focussed direct ~ object.

Unacceptable orderings like

- a non-pronominal indirect object in topic following the non-
pronominal focussed direct object,

- non-pronominal objects preceding a pronominal subject, or

- the enclitic accusative pronoun "es" following a dative pronoun

are ruled out.

What should be done in addition in order to complete this approach, is a refinement of our
simplified treatment of topic constituents, as their ordering seems sensitive to some
discourse relations that are much more complex than the simple topic/focus dichotomy.
However, such an extension would presumably require the introduction of an enlarged
representation level for semantics and pragmatics. In fact, no satisfactory formalization of
discourse semantics has been proposed yet, so that we are forced to take account of only
one pragmatic factor.

6. Efficiency

3. The verb-second sentencesare analysed asverb initial clauses with a topicalized
"Vorfeld"-constituent.

The relatively large number of rules thus created does not necessarily lead to a proportional
deterioration in the computational complexity of the syntactic analysis. In the bottom-up
processing, each grammar rule is applied to syntactic structures that have already been
instantiated with lexical information. Hence, most of inadequate rule applications would
immediately result in a unification failure without causing much harm to the efficiency of
parsing. Instantiated rule schemata prove disadvantageous only in one case, namely when
ambiguous structures are to be dealt with. Among the five factors that we regard as most
relevant for the constituent ordering, solely two may happen to be insufficiently
instantiated with lexical information, namely grammatical function/case and topic/focus?.
However, the latter can be handled quite efficiently by our grammar since there is no need
for immediate desambiguation - except in the case of some marked orderings, cf. (3) - and
the feature focus can generally remain underspecified.

On the other hand, the complements that are ambiguous with regard to the grammatic
function they perform cause much more problems for syntactic processing. Since ALEP
does not support set operations, only lists or finite conjunctions of attributes can be used
to describe valence frames of linguistic objects. An underspecified description of these data
structures - e.g. regular path expressions - is not possible, either. Therefore, the formalism
provides no means for expressing generalizations of grammar rules, as the rules usually
access the subcategorization structure. Now, when a complement is ambiguous with regard
to its grammatical function - for instance the German NP "die Frau", which can be either
nominative (subject) or accusative (direct object) - the ambiguity must be resolved as soon
as the complement and the head are matched with a grammar rule. The result of such a
desambiguation is then a kind of disjunctive normal form®, and all disjuncts must be
processed separately, which is usually very inefficient.

Hence, dealing with case/grammatical function ambiguities is a general problem for parsing
and not only one for expressing linear precedence constraints. Moreover, as the other word
order factors do not cause such difficulties, the grammar augmented with context restrictions
has proved to be faster then the unrestricted version allowing all permutations of nominal
complements in the "Mittelfeld": the parse time wasted for search in a larger corpus of rules
has become compensated by a better filtering of ungrammatical substructures. The exact
results of the comparison are listed below:

Input Parse Time with the|Parse Time with the
Restricted Grammar Unrestricted Grammar
gibt er es ihr 0.733 sec. 1.234 sec.
daB es der Mann sieht 4.100 sec. 6.917 sec.
daB er es ihr gibt 1.917 sec. 3.583 sec.
gibt ihm der Mann das Buch 6.750 sec. 38.433 sec.
*gibt er es ihr (ill-formed) 0.734 sec. 1.217 sec.

4 . Of course, words ambiguouwith regard tothe other factors can befound, too, but such
ambiguities are less frequent then the two ones mentioned above.
S . ALEP does not allow for another treatment of disjunctions.

10

As the Ip-unrestricted grammar covers only a subset of all the phenomena that the
restricted one does (e.g. topicalization or adjunction are not dealt with), the real
improvement in efficiency is larger than the direct comparison suggests.

7. Ordering of Adjuncts

A similar mechanism can be employed for treating the ordering of adjuncts. Until now, we
have implemented rules applying linear precedence constraints to source and goal modifiers.
The corresponding representation level is of the type adjuncts_type:

type(adjuncts_type:

source => type(adj_type: { }),
goal => type(adj_type: { })).

with:

type(adj_type:
adj_focus => boolean([{plus/minus/nil}]).

Since pronominality and cliticization are irrelevant for modifier ordering, we regard the
discourse function focus as the only factor that should be taken into consideration. The
word order constraint for the two grammatical functions is quite simple: a goal adjunct may
precede a source adjunct only if the latter is focussed and the first remains in the topic, cf.

(6) Peter fachrt von Saarbruecken nach Berlin
Peter goes from Saarbruecken to Berlin
VS.
(7) Peter fachrt nach Berlin von Saarbruecken

Both orderings are licensed by instances of the general head-adjunct structure, instantiated
with the adjunct type information (source/goal adjunct). The constraint stated above is
encoded in the rule in the same way as the left and right context restrictions for
complements are.

As the next step, we intend to augment the rules with annotations that would permit to
treat linear precedence constraints for complements and adjuncts at once. The general

mechanism presented in our paper can be adopted for this purpose by instantiating the
complement information in adjunct rules and vice versa.

8. Conclusion

11

By adapting the method described in Part I of the report, we have developed a grammar
which handles most of the ordering phenomena among complements and adjuncts in the
German Mittelfeld.

We have successfully dealt with conflicts and interactions of different LP rules, which have
been noted in the linguistic literature, but have not been treated appropriately in
computational grammars.

With respect to efficiency, it turns out that our grammar with LP constraints has a better
runtime behaviour than a grammar which allows all orderings, because our grammar leads to
a reduction of the search space, unlike previous implementations which check LP
constraints only after parsing or generation.

By implementation of a grammar for German Mittelfeld ordering phenomena, we have
shown that a formalism like ALEP that is based on phrase structure rules, can well be used
for the treatment of languages which allow for partially free word order.

We know of no other implemented grammar that provides an equally detailed coverage of
the complex word order regularities of German or similar languages. Thus, our
implementation serves as an example for how a "lean" formalism like ALEP can be utilized
for the description of complex grammatical phenomena.

12

REFERENCES

Engelkamp et al. (1992)

J. Engelkamp, G. Erbach, H. Uszkoreit. Handling Linear Precedence Constraints by
Unification. Proceedings 30th Annual Meeting of the Association for Computational
Linguistics, Newark, Delaware.

Uszkoreit, H. (1987).

Word Order and Constituent Structure in German. Stanford, CA, Center for the Study of
Language and Information.

13

APPENDIX A

Macros

define AGR(CASE, GEND, PER, NUM ,DECL)
infl_type:{ case => CASE,
gend => GEND,
per => PER,
num => NUM,
decl => DECL }

define MIN(FC,DET)
minor_type: {fc => FC, det => DET}

define INFL_HEAD(MAJ,INFL,MOD,LPH)
infl_head_type: {infl => INFL,
maj => MAJ,
mod => MOD,
Ip_head =>LPH }

define V_HEAD(INIT,INFL, VFORM ,LPH)
verbal_head_type: {infl => INFL,
initial => INIT,

maj => verb,

mod => mod_type: {val =>nil_type,
function => nil },

vform => VFORM,

Ip_head =>LPH }

#define MOD(FUN,VAL)
mod_type: {val => VAL,
function => FUN }
#define NO_MOD()
mod_type: {val =>nil_type,
function => nil }

define P_HEAD(PFORM,MOD,LPH)
prep_head_type: {pform => PFORM,
mod => MOD ,
Ip_head => LPH }

define COMP_HEAD(MOD,LPH)

complementizer_head_type: { mod => MOD ,
Ip_head =>LPH}

14

define HEAD(MAJ,MOD,LPH)
head_type: {maj => MAJ,
mod => MOD,
Ip_head => LPH }

define SIGN(STRUCT, ORDER, SYN , NONLOC, SEM)
sign_type: {order => ORDER,
syn => SYN,
nonloc => NONLOC,
sem => SEM,
structure => STRUCT }

define ORDER(STRING, REST)
order_type: {graph => graph_type: {string => STRING,
rest => REST}}

define SYN(HEAD,MIN,ADJS,SUBCAT)
syn_type: {head => HEAD,
min => MIN,
adjuncts => ADJS,
subcat => SUBCAT}

define NO_SUBCAT()
subcat_type: {subj => NO_COMP(),
obj =>NO_COMP(),
obj2 => NO_COMP(),
pobj =>NO_COMP() }

define SUBCAT(SUBJ,0BJ,0BJ2,POBJ)
subcat_type: {subj => SUBJ,
obj =>0OBJ,
obj2 => OBJ2,
pobj => POBJ }
#define ADJUNCTS(SOURCE,GOAL,INSTR)
adjuncts_type: {source => SOURCE,
goal => GOAL,
instr => INSTR }

#define ADJ(FOCUS)
adj_type: {focus => FOCUS}

#define NO_ADJS()
ADJUNCTS(ADJ(nil),ADJI(nil),ADJI(nil))

define EMPTY_SUBCAT()
SUBCAT(COMP(_,plus,),COMP(_,plus,_),COMP(_,plus,_),COMP(_,plus

define NO_COMP()
comp_type: {bound_off => plus,
val => nil_type,
Ip_relevant => LP(nil,nil,nil) }

15

define COMP(VAL,BO,LPR)
comp_type: { bound_off => BO,
val => VAL,
Ip_relevant => LPR}

define LP(FOCUS,PRO,CLITIC)
Ip_relevant_type: {pro => PRO,
focus => FOCUS,
clitic => CLITIC}

define NOUN(STRUCT,ORDER,INFL,FC,DET,LPH,SUBCAT,SEM)
SIGN(STRUCT,ORDER,SYN(INFL_HEAD(noun,INFL,NO_MOD(),LPH),MIN(FC,
DET), ,SUBCAT),[],SEM)

define
LEX_NOUN(STRING,CASE,GEND,NUM,FC,FOCUS,PRO,ES,SUBCAT,SEM)
NOUN(lex,ORDER([STRING|REST],REST),AGR(CASE,GEND,third,NUM,),F
C,minus,LP(_,PRO,ES),SUBCAT,SEM)

define COMMON_NOUN(STRING,CASE,GEND,NUM,SEM)
LEX_NOUN(STRING,CASE,GEND,NUM,minus, _,minus,minus,NO_SUBCAT(),
SEM)

define PROPER_NOUN(STRING,CASE,GEND,NUM,SEM)
LEX_NOUN(STRING,CASE,GEND,NUM,plus, _,minus,minus,NO_SUBCATY(),
SEM)

define NP(INFL,SEM)
NOUN(_,_,INFL,plus,_,_, ,SEM)

define PERSPRO(STRING,CASE,GEND,PER,NUM,ES,SEM)
NOUN(lex, ORDER([STRING|REST],REST),AGR(CASE,GEND,PER,NUM,),
plus,minus,LP(_,plus,ES),NO_SUBCAT(),SEM)

define DET(STRING,CASE,GEND,NUM,DECL,FOCUS,SEM)
SIGN(lex, ORDER([STRING|REST],REST),SYN(INFL_HEAD(adj, @AGRF
AGR(CASE,GEND, third, NUM,DECL), MOD(spec,NOUN(_, _, AGRF, _,
minus,_, ,ARG SEM)) LP(_ minus,minus)),MIN(plus,plus), NO ADJS()
NO_SUBCAT()),[, TERM(SEM,L_FIRST(ARG_SEM,EOL())))

define ADJECTIVE(STRING,CASE,GEND,NUM,DECL,SEM)

SIGN(lex, ORDER([STRING|REST], REST) SYN(INFL HEAD(adj, @AGRF
AGR(CASE,GEND,third, NUM,DECL),MOD(prenom,NOUN(_, ,AGRF,FC,minus
,LPH, ,ARG SEM)) LPH) MIN(FC,minus), ,NO_SUBCAT()),[l, TERM(
SEM,L_FIRST(ARG_SEM,EOL())))

define PREP_NMOD(STRING,PFORM,PCASE,FUN,SEM)
SIGN(lex,ORDER([STRING|REST], REST) SYN(P HEAD(PFORM,MOD(FUN,
NOUN(_,_, , ,minus,_, ,M_SEM)),),MIN(plus,nil),NO_ADJS(),
SUBCAT(NO_COMP(),COMP(NP(AGR(PCASE, , , ,),C_SEM),minus,),
NO_COMP(),NO_COMP())).[]l, TERM(SEM,L_FIRST(M_SEM,L_NEXT(C_SEM,

EOL()))

16

define PREP(STRING,PFORM,PCASE,FUN,SEM)
SIGN(lex, ORDER([STRING|REST],REST),SYN(P_HEAD(PFORM,MOD(FUN,
VERB(_,_fin,_,_._, ,[,M_SEM)),_),MIN(plus,nil),NO_ADJS(),

SUBCAT(NO_COMP(),COMP(NP(AGR(PCASE, , .,),C_SEM),minus,),

NO_COMP(),NO_COMP())),[, TERM(SEM,L_FIRST(C_SEM,L_NEXT(M_SEM,
EOL()))))

define VERB(PER,NUM,VFORM, INIT,FC,ADJS,SC,NONLOC,SEM)
SIGN(_,_,SYN(V_HEAD(INIT,AGR(nil,nil,PER,NUM,nil),VFORM,_),MIN(
FC,nil),ADJS,SC),NONLOC,SEM)

define LEX_VERB(STRING,PER,NUM,VFORM,SC,NONLOC,SEM)
SIGN(lex, ORDER([STRING|REST],REST),SYN(V_HEAD(INIT,AGR(nil,nil,
PER,NUM,nil), VFORM,_),MIN(INIT nil),NO_ADJS(),SC),NONLOC,SEM)

define |_VERB(STRING,PER,NUM,VFORM,SEM)

LEX_VERB(STRING,PER, NUM VFORM , SUBCAT(COMP(NP(AGR(nom, ,PER,NUM,
_),SUBJ_SEM),minus LP(n|I nil n|I)) NO_COMP(),NO_COMP(),

NO_COMP()),[l, TERM(SEM L_FIRST(SUBJ_SEM,EOL())))

define T_VERB(STRING,PER,NUM,VFORM,SEM)
LEX_VERB(STRING,PER,NUM,VFORM,SUBCAT(COMP(NP(AGR(nom,_,PER,NUM,
_),SUBJ_SEM),minus LP(n|I nil,nil)) ,

COMP(NP(AGR(acc, _,_,__) DOBJ_SEM),minus,LP(nil,nil,nil)),

NO_COMP(),NO_COMP(),[, TERM(SEM,L_FIRST(SUBJ SEM,L_NEXT(
DOBJ_SEM, EOL()))))

define DIT_VERB(STRING,PER,NUM,VFORM,SEM)
LEX_VERB(STRING,PER,NUM, VFORM , SUBCAT(COMP(NP(AGR(nom, ,PER,NUM,
_),SUBJ_SEM),minus LP(n|I nil n|I))
COMP(NP(AGR(acc,_,_,_,),DOBJ_SEM),minus,LP(nil,nil,nil)),COMP(
NP(AGR(dat,_, , ,), TOBJ | SEM),minus,LP(nil,nil,nil)),NO_COMP())

, [, TERM(SEM,L_FIRST(SUBJ_SEM,L_NEXT(IOBJ_SEM,L_NEXT(DOBJ_SEM,

EOL()))))

define COMPLEMENTIZER(STRING)
SIGN(lex,ORDER([STRING|REST],REST),SYN(COMP_HEAD(MOD(spec,
VERB(_,_,fin,minus,minus, ,EMPTY_SUBCAT(),[], SEM)),_),MIN(plus,
nil),NO ADJS() NO_SUBCAT()).[J,SEM)

define LIST(ELEMENTS)
[ELEMENTS]

define L_FIRST(EL,REST)
EL REST

define L_NEXT(EL,REST)
,EL REST

define EOL()

define L_TAIL(REST)
| REST

17

define TERM(FUNCTOR,ARGUMENTYS)
FUNCTOR(ARGUMENTS)
APPENDIX B

Lexicon

#include "macros"

lexicon:[cat,analysis].

dass~
COMPLEMENTIZER(dass).

.e-r~ PERSPRO(er,nom,mas,third,sg,minus,pro(sg())).
?hm~ PERSPRO(ihm,dat,(mas;ntr),third,sg,minus,pro(sg())).
- PERSPRO(ihn,acc,mas,third,sg,minus,pro(sg())).
e_s~ PERSPRO(es,(nom;acc),ntr,third,sg,plus,pro(sg())).
_S:~ PERSPRO(sie,(nom;acc),fem,third,sg,minus,pro(sg())).
ihr~

PERSPRO(ihr,dat,fem,third,sg,minus,pro(sg())).
mann~
COMMON_NOUN(mann, ~gen, mas, sg, mann(sg())).
mannes~
COMMON_NOUN(mannes, gen, mas, sg, mann(sg())).
maenner~
COMMON_NOUN(maenner, ~dat, mas, pl , mann(pl())).
maennern~
COMMON_NOUN(maennern, dat, mas, pl, mann(pl())).
buch~
COMMON_NOUN(buch, ~gen, ntr, sg , buch(sg())).
buches~
COMMON_NOUN(buches, gen, ntr, sg , buch(sg())).
buecher~
COMMON_NOUN(buecher, ~dat, ntr, pl , buch(pl())).
buechern~
COMMON_NOUN(buechern, dat, ntr, pl , buch(pl())).
peter~
PROPER_NOUN(peter, ~gen, mas, sg , peter(sg())).
berlin~
PROPER_NOUN(berlin, ~gen, ntr, sg , berlin(sg())).
muenchen~
PROPER_NOUN(muenchen, ~gen, ntr, sg , muenchen(sg())).
mit~
PREP(mit,mit,dat,instr,mit).
von~
PREP(von,von,dat,source,von).
nach~

18

PREP(nach,nach,dat,goal,nach).
schlaeft~
|_VERB(schlaeft,third,sg,fin,schlafen).

faehrt~

|_VERB(faehrt,third,sg,fin,fahren).
sieht~

T_VERB(sieht,third,sg,fin,sehen).
gibt~

DIT_VERB(gibt,third,sg,fin,geben).

derl~

DET(der, nom, mas, sg, weak, plus, the).
der2~

DET(der, (gen;dat), fem, sg, weak, plus, the).
der3~

DET(der, gen, (mas;fem;ntr), pl , weak, plus, the).
dasl~

DET(das, (nom;acc), ntr, sg, weak, plus, the).
diel~

DET(die, (nom;acc), fem, sg, weak, plus, the).
die2~

DET(die, (hom;acc), (mas;fem;ntr), pl , weak, plus, the).
desl~

DET(des, gen, (mas;ntr), sg, weak, plus, the).
deml~

DET(dem, dat, (mas;ntr), sg, weak, plus, the).
denl~

DET(den, acc, mas, sg, weak, plus, the).
den2~

DET(den, dat,(mas;fem;ntr), pl, weak, plus, the).
einl~

DET(ein, nom, mas, sg, strong, minus, exists).
ein2~

DET(ein, (hom;acc), ntr, sg, strong, minus, exists).
einer2~

DET(einer, (gen;dat), fem, sg, weak, minus, exists).
einel~

DET(eine, (nom;acc), fem, sg, weak, minus, exists).
einesl~

DET(eines, gen, (mas;ntr), sg, weak, minus, exists).
eineml~

DET(einem, dat, (mas;ntr), sg, weak, minus, exists).
einenl~

DET(einen, acc, mas, sg, weak, minus, exists).
schoenel~

ADJECTIVE(schoene,nom,mas,sg,weak, schoen).
schoene2~

ADJECTIVE(schoene,(nom;acc),ntr,sg,weak, schoen).
schoene3~

ADJECTIVE(schoene,(nom;acc),fem,sg,(weak;strong), schoen).
schoenenl~

ADJECTIVE(schoenen,(gen;dat),(mas;fem;ntr),sg,weak,
schoen).

19

schoenen2~

ADJECTIVE(schoenen,acc,mas,sg,(weak;strong), schoen).
schoenen3~

ADJECTIVE(schoenen,gen,(mas;ntr),sg,strong, schoen).
schoenen4~

ADJECTIVE(schoenen,(nom;gen;dat;acc),(mas;fem;ntr),pl,weak
, schoen).
schoenen5~

ADJECTIVE(schoenen,dat,(mas;fem;ntr),pl,strong, schoen).
schoeneml1~

ADJECTIVE(schoenem,dat,(mas;ntr),sg,strong, schoen).
schoenerl~

ADJECTIVE(schoener,nom,mas,sg,strong, schoen).
schoener2~

ADJECTIVE(schoener,(gen;dat),fem,sg,strong, schoen).
schoener3~

ADJECTIVE(schoener,gen,(mas;fem;ntr),pl,strong, schoen).
schoenes~

ADJECTIVE(schoenes,nom,mas,sg,strong, schoen).
gutel~

ADJECTIVE(gute,nom,mas,sg,weak, gut).
gute2~

ADJECTIVE(gute,(nom;acc),ntr,sg,weak, gut).
gute3~

ADJECTIVE(gute,(nom;acc),fem,sg,(weak;strong), gut).
gutenl~

ADJECTIVE(guten,(gen;dat),(mas;fem;ntr),sg,weak, gut).
guten2~

ADJECTIVE(guten,acc,mas,sg,(weak;strong), gut).
guten3~

ADJECTIVE(guten,gen,(mas;ntr),sg,strong, gut).
guten4~

ADJECTIVE(guten,(nom;gen;dat;acc),(mas;fem;ntr),pl,weak,
gut).
guten5~

ADJECTIVE(guten,dat,(mas;fem;ntr),pl,strong, gut).
gutem-~

ADJECTIVE(gutem,dat,(mas;ntr),sg,strong, gut).
guterl~

ADJECTIVE(guter,nom,mas,sg,strong, gut).
guter2~

ADJECTIVE(guter,(gen;dat),fem,sg,strong, gut).
guter3~

ADJECTIVE(guter,gen,(mas;fem;ntr),pl,strong, gut).
gutes~

ADJECTIVE(gutes,nom,mas,sg,strong, gut).

20

APPENDIX C

Rules

include "macros"
grammar:[cat,analysis].
filler_head_rule =

SIGN(filler_head,
ORDER(S0,S2),
SYN(HEAD_FEAT,
MINOR,
ADJS,
SUBCAT(C1,C2,C3,C4)),

[,
SEM)

[

@FILLER SIGN(
ORDER(S0,S1),
SYN(HEAD(,_,),_,_,),

2,

->

SIGN(_,

ORDER(S1,S2),

SYN(@HEAD_FEAT V_HEAD(plus,_,_,),

MINOR,

ADJS,

SUBCAT(@C1 COMP(_,plus,_),
@C2 COMP(_,plus,),
@C3 COMP(_,plus,),
@C4 COMP(_,plus,_))),

[FILLER],

SEM)] head 2.

subj_trace_rule =

SIGN(trace,
ORDER(S0,S1),
SYN(HEAD_FEAT,
MINOR,
ADJS,
SUBCAT(COMP(VAL,
plus,
LPR),

21

C2,

C3,
C4)),
[VAL],
SEM) >
[
SIGN(_,
ORDER(S0,S1),
SYN(@HEAD_FEAT V_HEAD(_, ,_,),
MINOR,
ADJS,
SUBCAT(COMP(VAL,
minus,
LPR),
@C2 COMP(_,plus,),
@C3 COMP(_,plus,),
] @C4 COMP(_,plus,))),
SEM)
] head 1.
obj_trace_rule =
SIGN(trace,
ORDER(S0,S1),
SYN(HEAD_FEAT,
MINOR,
ADJS,
SUBCAT(C1,
COMP(VAL,plus, LPR),
C3,
C4)),
[VAL],
SEM)
->
[SIGN(_,
ORDER(S0,S1),
SYN(@HEAD_FEAT V_HEAD(_, ,_,),
MINOR,
ADJS,
SUBCAT(@C1 COMP(_,plus,),
COMP(VAL,
minus,
LPR),
@C3 COMP(_,plus,),
] @C4 COMP(_,plus,))),
SEM)
] head 1.

22

obj2_trace_rule =

SIGN(trace,
ORDER(S0,S1),
SYN(HEAD_FEAT,
MINOR,
ADJS,
SUBCAT(C1,
C2,
COMP(VAL,plus, LPR),

C4)),
[VAL],
SEM) ->

[SIGN(_,

ORDER(S0,S1),

SYN(@HEAD_FEAT V_HEAD(_,_, ,),

MINOR,

ADJS,

SUBCAT(@C1 COMP(_,plus,),
@C2 COMP(_,plus,),
COMP(VAL,

minus,
LPR),
@C4 COMP(_,plus,))),

[,
SEM)] head 1.
head_subj_rulel =

SIGN(head_comp,
ORDER(S0,S2),
SYN(HEAD_FEAT,
MINOR,
ADJS,
SUBCAT(COMP(VAL,plus,LPR),
Cc2

C3,
C4)),
NONLOC,
SEM)
->

[SIGN(_,
ORDER(S0,S1),
SYN(@HEAD_FEAT V_HEAD(plus,_, ,),
MINOR,
ADJS,
SUBCAT(COMP(VAL,minus,_),

23

@C2 COMP(_,_,LP(nil,nil,nil)),
@C3COMP(_, _LP(nil,nil,nil)),
C4)),

NONLOC,

SEM),

@VAL SIGN(_,ORDER(S1,S2),
SYN(HEAD(_,

@LPR LP(_,plus,))

] head 1.

head_subj_rule2

SIGN(head_comp,
ORDER(S0,S2),
SYN(HEAD_FEAT,
MINOR,
ADJS,
SUBCAT(COMP(VAL,plus,LPR),
Cc2

C3,
C4)),
NONLOC,
SEM)
->

[SIGN(_,
ORDER(S0,S1),
SYN(@HEAD_FEAT V_HEAD(plus,_, ,),
MINOR,
ADJS,
SUBCAT(COMP(VAL,minus,),
@C2 COMP(_, ,LP(minus,minus,_)),
@C3 COMP(_, ,LP(minus,minus,_)),
C4)),
NONLOC,
SEM),

@VAL SIGN(_,
ORDER(S1,S2),
SYN(HEAD(_,

@LPR LP(plus,minus,))

1_’_)
] head 1.

24

head_subj_rule3

SIGN(head_comp,
ORDER(S0,S2),
SYN(HEAD_FEAT,
MINOR,
ADJS,
SUBCAT(COMP(VAL,plus,LPR),C2,C3,C4)),
NONLOC,
SEM)
->

[SIGN(_,
ORDER(S0,S1),
SYN(@HEAD_FEAT V_HEAD(plus,_, ,),
MINOR,
ADJS,
SUBCAT(COMP(VAL,minus,),
@C2 COMP(_, ,LP(minus,minus,_)),
@C3 COMP(_, ,LP(_,~minus,)),
C4)),
NONLOC,
SEM),

@VAL SIGN(_,
ORDER(S1,S2),
SYN(HEAD(_, ,@LPR LP(plus,minus,_))

.,)] head 1.

head_subj_rule4

SIGN(head_comp,

ORDER(S0,S2),

SYN(HEAD_FEAT,
MINOR,
ADJS,
SUBCAT(COMP(VAL,plus,LPR),C2,C3,C4)),

NONLOC,

SEM) ->

[SIGN(_,
ORDER(S0,S1),
SYN(@HEAD_FEAT V_HEAD(plus,_, ,),
MINOR,
ADJS,
SUBCAT(COMP(VAL,minus,),
@C2 COMP(_, ,LP(_,~minus,)),

25

@C3 COMP(_, ,LP(minus,minus,_)),
C4)),

NONLOC,

SEM),

@VAL SIGN(_,
ORDER(S1,S2),
SYN(HEAD(_, ,@LPR LP(plus,minus,_))

_.) ~"Thead 1.

head_subj_rule5

SIGN(head_comp,

ORDER(S0,S2),

SYN(HEAD_FEAT,
MINOR,
ADJS,
SUBCAT(COMP(VAL,plus,LPR),C2,C3,C4)),

NONLOC,

SEM) ->

[SIGN(_,
ORDER(S0,S1),
SYN(@HEAD_FEAT V_HEAD(plus,_, ,),
MINOR,
ADJS,
SUBCAT(COMP(VAL,minus,),
@C2 COMP(_, ,LP(_,~minus,)),
@C3 COMP(_, ,LP(_,~minus,)),
C4)),
NONLOC,
SEM),

@VAL SIGN(_,ORDER(S1,52),SYN(HEAD(, ,@LPR
LP(,minus,).,)r)] head 1.

subj_head_rule =

SIGN(head_comp,
ORDER(S0,S2),
SYN(HEAD_FEAT,
MINOR,
ADJS,
SUBCAT(COMP(VAL,plus, LPR),C2,C3,C4)),NONLOC,SEM) ->

[@VAL SIGN(
ORDER(S0,S1),
SYN(HEAD(, ,LPR), , .,)

SIGN(,
ORDER(S1,52),
SYN(@HEAD_FEAT V_HEAD(minus,_,_,),

26

MINOR,
ADJS,
SUBCAT(COMP(VAL,minus,_),C2,C3,C4)),
NONLOC,
SEM)]head 2.
head_source_adj rulel =

SIGN(head_adj,
ORDER(S0,S2),
SYN(HEAD_FEAT,MINOR,ADJUNCTS(ADJ(),ADJ(nil),ADJ(INSTR)),
SC),

SEM)
>

[@ HEAD_DTR SIGN(filler_head,

ORDER(S0,S1),
SYN(@HEAD_FEAT V_HEAD(plus,_,_,),
MINOR,
ADJUNCTS(ADJ(),
ADJ(nil),
ADJ(INSTR)),
SC),
B}
SIGN(
ORDER(S1,S2),

SYN(HEAD(_,MOD(source,HEAD_DTR),)._,_.,.),
SEM)]head 2.
head_source_adj rule2 =

SIGN(head_adj,
ORDER(S0,S2),
SYN(HEAD_FEAT,MINOR,ADJUNCTS(ADJ(plus),ADJ(INSTR)),SC),

[,
SEM)
>

[@ HEAD_DTR SIGN(~filler_head,
ORDER(S0,S1),
SYN(@HEAD_FEAT V_HEAD(plus, ,_,),
MINOR,
ADJUNCTS(ADJ(),
ADJ(plus),
ADJ(INSTR)),
SC),

[,
B}
SIGN(

27

ORDER(S1,S2),
SYN(HEAD(_,MOD(source,HEAD DTR),), , .),

SEM)]head 2.
source_adj_head_rule =

SIGN(head_adj,
ORDER(S0,S2),
SYN(HEAD_FEAT,
MINOR,
ADJUNCTS(ADJ(~nil),ADJ(GOAL),ADJ(INSTR)),
S

I

SEM) >

[SIGN(,
ORDER(S0,S1),
SYN(HEAD(_,MOD(source,HEAD_DTR),),_,_._),

SEM),

@ HEAD_DTR SIGN(~filler_head,

ORDER(S1,S2),
SYN(HEAD_FEAT,
MINOR,
ADJUNCTS(ADJ(),
ADJ(GOAL),
ADJ(INSTR)),
SC),
[],_)] head 1.

head_goal_adj_rulel =

SIGN(head_adj,

ORDER(S0,S2),
SYN(HEAD_FEAT,
MINOR,
ADJUNCTS(ADJ(SOURCE),ADJ(_),ADJ(INSTR)),SC),
It
SEM) ->
[@ HEAD_DTR SIGN(~filler_head,
ORDER(S0,31),
SYN(@HEAD_FEAT V_HEAD(plus,_,_,),
MINOR,
ADJUNCTS(ADJ(SOURCE),
ADJ(),
ADJ(INSTRY)),
SC),
I}
2

28

SIGN(
ORDER(S1,S2),
SYN(HEAD(_,MOD(goal,HEAD _DTR),), ,_..)

SEM)]head 2.
goal_adj _head_rulel =

SIGN(head_adj,

ORDER(S0,S2),
SYN(HEAD_FEAT,
MINOR,
ADJUNCTS(ADJ(nil),ADJ(_),ADJ(INSTR)),
SC),
[,
SEM) ->
[SIGN(_,
ORDER(S0,S1),
SYN(HEAD(_,MOD(goal,HEAD_DTR),), , ..)
SEM),
@ HEAD_DTR SIGN(~filler_head,
ORDER(S1,S2),
SYN(HEAD_FEAT,
MINOR,
ADJUNCTS(ADJ(nil),
ADJ(),
ADJ(INSTR)),
SC),
I
)]headl.
goal_adj_head_rule2 =
SIGN(head_adj,
ORDER(S0,S2),
SYN(HEAD_FEAT,
MINOR,
ADJUNCTS(ADJ(plus),ADJ(minus),ADJ(INSTR)),
SC),
[,
SEM) ->
[SIGN(_,
ORDER(S0,S1),
SYN(HEAD(_,MOD(goal,HEAD_DTR),),_, .,.)
SEM),
@ HEAD_DTR SIGN(~filler_head,
ORDER(S1,52),
SYN(HEAD_FEAT,
MINOR,

29

ADJUNCTS(ADJ(plus),
ADJ(),
ADJ(INSTR)),
SC),
[],_)] head 1.
spec_head_rule =

SIGN(head_spec,

ORDER(S0,S2),
SYN(HEAD_FEAT,MINOR, ,SC),
NONLOC,
SEM) ->
[SIGN(_,
ORDER(S0,S1),
SYN(HEAD(_,MOD(spec,HEAD_DTR),),MINOR,_,)
SEM),
@ HEAD_DTR SIGN(_,
ORDER(S1,S2),
SYN(HEAD_FEAT, , ,SC),
NONLOC,
)]headl.
head_obj_rulel =
SIGN(head_comp,
ORDER(S0,S2),
SYN(HEAD_FEAT,
MINOR,
ADJS,
SUBCAT(C1,COMP(VAL,plus,LPR),C3,C4)),
NONLOC,
SEM) ->
[SIGN(_,
ORDER(S0,S1),
SYN(@HEAD_FEAT V_HEAD(plus,_,_,),
MINOR,
ADJS,
SUBCAT(@C1 COMP(_, ,LP(_,_,),
COMP(VAL,minus,),
@C3 COMP(_,_,LP(nil,nil,nil)),
C4)),
NONLOC,
SEM),
@VAL SIGN(_,
ORDER(S1,S2),
SYN(HEAD(_, ,@LPR LP(_,plus,)), . ,)

._,_)] head 1.

30

head_obj_rule2

SIGN(head_comp,

ORDER(S0,S2),

SYN(HEAD_FEAT,
MINOR,
ADJS,
SUBCAT(C1,COMP(VAL,plus,LPR),C3,C4)),
NONLOC,
SEM) ->

[SIGN(_,
ORDER(S0,S1),
SYN(@HEAD_FEAT V_HEAD(plus,_, ,),
MINOR,
ADJS,
SUBCAT(@C1 COMP(_, ,LP(_,_,)),
COMP(VAL,minus,),
@C3 COMP(_, ,LP(minus,plus,_)),
C4)),
NONLOC,
SEM),

@VAL SIGN(_,
ORDER(S1,S2),
SYN(HEAD(_,_,@LPR LP(plus,plus,minus))

1_!_1_)
._,_)] head 1.
head_obj_rule3 =

SIGN(head_comp,

ORDER(S0,S2),

SYN(HEAD_FEAT,
MINOR,
ADJS,
SUBCAT(C1,COMP(VAL,plus,LPR),C3,C4)),
NONLOC,
SEM)

->

[SIGN(,
ORDER(S0,S1),
SYN(@HEAD_FEAT V_HEAD(plus,_, ,),
MINOR,
ADJS,
SUBCAT(@C1 COMP(_, ,LP(_,_,)),
COMP(VAL,minus,),
@C3 COMP(_, ,LP(,_,)),

31

C4)),
NONLOC,
SEM),

@VAL SIGN(
ORDER(S1,S2),
SYN(HEAD(,_,@LPR LP(_,minus,))

.,)] head 1.

obj_head_rulel =

SIGN(head_comp,

ORDER(S0,S2),

SYN(HEAD_FEAT,
MINOR,
ADJS,
SUBCAT(C1,COMP(VAL,plus,LPR),C3,C4)),

NONLOC,

SEM)

>

[@VAL SIGN(_,
ORDER(S0,S1),
SYN(HEAD(_,_,@LPR LP(_,plus,)), . ..)

SIGN(,
ORDER(S1,S2),
SYN(@HEAD_FEAT V_HEAD(minus,_,_,),
MINOR,
ADJS,
SUBCAT(@C1 COMP(_, ,LP(_,~plus,)),
COMP(VAL,minus,_),
@C3 COMP(_, ,LP(,_,)),

C4)),
NONLOC,
SEM)]head 2.

obj_head_rule2 =

SIGN(head_comp,
ORDER(S0,S2),
SYN(HEAD_FEAT,
MINOR,
ADJS,
SUBCAT(C1,COMP(VAL,plus,LPR),C3,C4)),
NONLOC,

32

SEM)

->

[@VAL SIGN(_,
ORDER(S0,S1),
SYN(HEAD(_, ,@LPR LP(minus,minus,_))

SIGN(_,
ORDER(S1,S2),
SYN(@HEAD_FEAT V_HEAD(minus,_,_,),
MINOR,
ADJS,
SUBCAT(@C1 COMP(_, ,LP(~minus,~plus,_)),
COMP(VAL,minus,),
@C3 COMP(_, ,LP(plus,minus,_)),
C4)),
NONLOC,
SEM)]head 2.
obj_head_rule3 =
SIGN(head_comp,
ORDER(S0,S2),
SYN(HEAD_FEAT,
MINOR,
ADJS,
SUBCAT(C1,COMP(VAL,plus,LPR),C3,C4)),
NONLOC,
SEM)
->
[@VAL SIGN(_,
ORDER(S0,S1),

SYN(HEAD(_,_,@LPR LP(_,minus,))

SIGN(_,
ORDER(S1,S2),
SYN(@HEAD_FEAT V_HEAD(minus, , ,),
MINOR,
ADJS,
SUBCAT(@C1 COMP(_,_,LP(nil,nil,nil)),
COMP(VAL,minus,_),
@C3 COMP(_,_,LP(nil,nil,nil)),
C4)),

33

NONLOC,

SEM)]head 2.
head_obj2_rulel =
SIGN(head_comp,
ORDER(S0,S2),
SYN(HEAD_FEAT,
MINOR,
ADJS,
SUBCAT(C1,C2,COMP(VAL,plus,LPR),C4)),
NONLOC,
SEM)
->
[SIGN(_,
ORDER(S0,S1),
SYN(@HEAD_FEAT V_HEAD(plus,_, ,),
MINOR,
ADJS,
SUBCAT(@C1 COMP(_, ,LP(,),
@C2 COMP(_, ,LP(_, ~minus,)),
COMP(VAL,minus,_),
C4)),
NONLOC,
SEM),
@VAL SIGN(_,
ORDER(S1,S2),
SYN(HEAD(, ,@LPRLP(, ,)., .)..)
] head 1.

head_obj2_rule2 =

SIGN(head_comp,

ORDER(S0,S2),

SYN(HEAD_FEAT,
MINOR,
ADJS,
SUBCAT(C1,C2,COMP(VAL,plus,LPR),C4)),

NONLOC,

SEM)

>

[SIGN(,
ORDER(S0,S1),
SYN(@HEAD_FEAT V_HEAD(plus,_,_,),
MINOR,
ADJS,
SUBCAT(@C1 COMP(_,_,LP(_,_,.)),

34

@C2 COMP(_, ,LP(minus,minus,_)),

COMP(VAL,minus,_),
C4)),
NONLOC,
SEM),
@VAL SIGN(_,
ORDER(S1,S2),
SYN(HEAD(_, ,@LPR LP(plus,minus,_))
._,_)] head 1.
obj2_head_rulel =
SIGN(head_comp,
ORDER(S0,S2),
SYN(HEAD_FEAT,
MINOR,
ADJS,
SUBCAT(C1,C2,COMP(VAL,plus,LPR),C4)),
NONLOC,
SEM) ->
[@VAL SIGN(_,
ORDER(S0,S1),

SYN(HEAD(_, ,@LPR LP(minus,plus,_))

SIGN(_,
ORDER(S1,S2),
SYN(@HEAD_FEAT V_HEAD(minus,_,),
MINOR,
ADJS,
SUBCAT(@C1 COMP(_, ,LP(_,~plus,))),
@C2 COMP(_,_,LP(plus,plus,)),
COMP(VAL,minus,),
C4)),
NONLOC,
SEM)]head 2.
obj2_head_rule2 =
SIGN(head_comp,
ORDER(S0,S2),
SYN(HEAD_FEAT,
MINOR,
ADJS,
SUBCAT(C1,C2,COMP(VAL,plus,LPR),C4)),
NONLOC,
SEM) ->

35

[@VALSIGN(,
ORDER(S0,S1),
SYN(HEAD(_,_,@LPR LP(_,plus,))

SIGN(,
ORDER(S1,S2),
SYN(@HEAD_FEAT V_HEAD(minus,_,_,),
MINOR,
ADJS,
SUBCAT(@C1 COMP(_, ,LP(_,~plus,)),
@C2 COMP(_,_,LP(_,~plus,)),
COMP(VAL,minus,),

C4)),
NONLOC,
SEM)] head 2.
obj2_head_rule3 =
SIGN(head_comp,
ORDER(S0,S2),
SYN(HEAD_FEAT,
MINOR,
ADJS,
SUBCAT(C1,C2,COMP(VAL,plus,LPR),C4)),
NONLOC,
SEM)
->
[@VAL SIGN(_,
ORDER(S0,S1),

SYN(HEAD(_,_,@LPR LP(_,minus,))

SIGN(_,
ORDER(S1,S2),
SYN(@HEAD_FEAT V_HEAD(minus,_,_,),
MINOR,
ADJS,
SUBCAT(@C1 COMP(_,_,LP(nil,nil,nil)),
@C2 COMP(_,_,LP(_,~plus,)),
COMP(VAL,minus,_),
C4)),
NONLOC,
SEM)]head 2.

obj2_head_rule4 =

SIGN(head_comp,
ORDER(S0,S2),
SYN(HEAD_FEAT,

MINOR,

36

ADJS,
SUBCAT(C1,C2,COMP(VAL,plus,LPR),C4)),
NONLOC,
SEM)
->

[@VAL SIGN(_,
ORDER(S0,S1),
SYN(HEAD(_, ,@LPR LP(minus,minus,_))

SIGN(_,
ORDER(S1,S2),
SYN(@HEAD_FEAT V_HEAD(minus,_,_,),
MINOR,
ADJS,
SUBCAT(@C1 COMP(_, ,LP(plus,minus,_)),
@C2 COMP(_,_,LP(_,~plus,)),
COMP(VAL,minus,),

C4)),
NONLOC,
SEM)] head 2.
prep_noun_rule =
SIGN(head_comp,
ORDER(S0,S2),
SYN(HEAD_FEAT,
MINOR,
ADJS,
SUBCAT(C1,COMP(VAL,plus,LPR),C3,C4)),
NONLOC,
SEM)
->
[SIGN(_,
ORDER(S0,S1),
SYN(@HEAD_FEAT P_HEAD(, ,),
MINOR,
ADJS,
SUBCAT(C1,COMP(VAL,minus,),C3,C4)),
NONLOC,
SEM),
@VAL SIGN(_,
ORDER(S1,S2),

SYN(HEAD(_, ,LPR), , ,), ,)]head1l.

37

Index

L. INEEOAUCTION. ...ttt ettt et ettt e st ebeeneeeaeenes 1
2. PrElIMINATICS. ..cuveeieeieiieieeiteteete ettt ettt sttt et et 2
3. Encoding of Relevant Information in Feature Structures.............ccccceeneev. 3

4. Integration of LP Constraints into Grammar Rules............ccccoeeevieniennnnenne 4

5. DESCIIPIIVE POWET......eiiiiiiiieiie ettt ettt et et 8

T B 5163 153110 USSR 10
7. Ordering Of AdJUNCES....cc.eiiiieiieciieiieeie ettt ettt e et e b e saeeeebeenes 11

8. CONCIUSION. ...ttt ettt ettt st be et e e b enee 12
RETEIONCES. ...ttt et ettt sttt e e s 13
APPENAIX. ...eeitiiiiieieeeie ettt e et e et e et e et eebeeetbe e bt e e taeebeeetbeebeearbeetaeeabeebaeenbe e saeenbeeraen aes 14
AL IMIACTOS ...ttt ettt b e st ae e e e 14
Bl LeXICOM. .ttt ettt et et h ettt esn e et e et e e teesateeens 18
G RULES. ..ttt ettt ettt et a et ettt et nee e ene e 21

38

