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Abstract

It is an interesting fact that most of the stochastic models used by lin-
guists can be interpreted as probabilistic context-free grammars (Prescher
2001). In this paper, this result will be accompanied by the formal proof
that the inside-outside algorithm, the standard training method for proba-
bilistic context-free grammars, can be regarded as a dynamic-programming
variant of the EM algorithm. Even if this result is considered in isola-
tion this means that most of the probabilistic models used by linguists are
trained by a version of the EM algorithm. However, this result is even more
interesting when considered in a theoretical context because the well-known
convergence behavior of the inside-outside algorithm has been confirmed
by many experiments but it seems that it never has been formally proved.
Furthermore, being a version of the EM algorithm, the inside-outside al-
gorithm also inherits the good convergence behavior of EM. We therefore
contend that the as yet imperfect line of argumentation can be transformed
into a coherent proof.

1 Introduction

The inside-outside algorithm is the standard training method for probabilistic
context-free grammars and can effecteviley be applied to many NLP tasks. Car-
roll and Rooth (1998) present head-lexicalized probabilistic context-free grammar
formalisms for English, as well as Beil et al. (1999) for German. Recently, Miiller
(2001) uses probabilistic context-free grammars for syllabification and grapheme-
to-phoneme conversion. Prescher (2001) shows that many of the stochastic models
used by linguists can be interpreted as probabilistic context-free grammars.

In literature it is often alleged that Baker (1979) or Lari and Young (1990) proved
that probabilistic grammars when trained by the inside-outside algorithm are
characterized by monotonously increasing log-likelihood values (corpus probabil-
ities respectively) which converge towards a local maximum of the log-likelihood
function. However, Baker has only intuitively generalized the forward-backward
algorithm (Baum 1972), whereas Baum explicitly stated the forward-backward
algorithm for hidden Markov models. Furthermore, Baker unfortunately studied



merely training corpora consisting of one single sentence. Lari and Young (1991)
eliminated this weak point and generalized the inside-outside algorithm in order
to apply it to any training corpus. However, this study also lacks a formal proof
of monotonicity and convergence. It is worth noting that Lari and Young pointed
out that certain counts of grammar rules used as in the inside-outside algorithm
can be interpreted as expected frequencies. Unfortunately, the mathematical prin-
ciples of EM theory (Dempster et al. 1977) were not applied to formally proof this
intuitively conceived observation. To the best of our knowledge, this is the first
time that the common wisdom saying the inside-outside algorithm is a dynamic-
programming variant of the EM algorithm, is being formally proved. Moreover,
being a dynamic-programming variant of the EM algorithm, the inside-outside
algorithm inherits its good convergence behavior.

The paper is organized as follows. In Section 2 and 3 we briefly review the inside-
outside and the EM algorithm, whereas in Section 4, inside-outside meets EM.
In Section 5, we conclude.

2 Inside-Outside Estimation

The modern inside-outside algorithm was introduced by Lari and Young (1990)
who reviewed an algorithm proposed by Baker (1979) and extended it to an
iterative training method for probabilistic context-free grammars enabling the
use of unrestricted free text. The re-estimation formulas proposed by Lari and
Young are the core of many statistical parsers and are build upon so-called inside
and outside probabilities. In contrast to widely used tree-bank training (Charniak
1996) or to partially-bracketed corpora training (Pereira and Schabes 1992), pure
inside-outside estimation does not rely on manually annotated (thus relatively
small) corpora.

Inside and outside probabilities

Following the lines of Lari and Young (1990), we define the inside probability
e(s,t, A) as the probability of the non-terminal symbol A generating the observa-
tion wyq . .. wy (see left-hand side of Figure 1), i.e. e(s,t, A) := p(A =" ws ... wy) .
In determining a recursive procedure for calculating e, two cases must be consid-
ered for a grammar in Chomsky normal form:

e (s =t): Only one observation is emitted and therefore a rule of the form
p(A— ws) if (A—w,) €G

A — w applies: e(s,s, A) = { 0 else

e s < t: In this case we know that rules of the form A — BC must apply
since more than one observation is involved. Refering to the right-hand side
of Figure 1, it is clear that e(s,t, A) can be expressed as follows:

t—1
e(s, t,A) = > Y. p(A—BC) - e(s,r,B) - e(r+1,t,C).
(ABC)eG =5
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Figure 1: Definition of inside and outside probs (left), and calculation of inside
probs (right)
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Figure 2: Calculation of outside probabilities

The quantity e can therefore be computed recursively by determining e for all se-
quences of length 1, then all sequences of length 2, and so on. Next, we define the
outside probabilities as follows: f(s,t,A) = p(S =* wy ... ws 1AW 1 ... Wwy).
The quantity f(s,t, A) may be thought of as the probability that A is generated
in the re-write process and that the strings not dominated by it are w; ... w; 1 to
the left and w1 ... w, to the right (see left-hand side of Figure 1). In this case,
the non-terminal A could be one of two possible settings C' = B AorC — A B
as shown in Figure 2, hence:

FetA) = % (sz_:f(r,t,C)-p(C—)BA)-e(r,s—l,B)

B, CeG \ r=1

+ zn: f(s,r,C)-p(C — AB) -e(t + 1,7‘,3))

r=t+1
1 ifA=2S5 . R
and f(s,t,A) = . After the inside probabilities have been com-
0 else

puted bottom-up, the outside probabilities can therefore be computed top-down.
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The inside-outside algorithm as introduced by Baker (1979)

It is well-known that Baker (1979) introduced the first training procedure for
probabilistic context-free grammars, whereas it is less noticed that Baker pre-
sented his re-estimation formulas for a special case (of no relevance from the
modern point of view), namely for a training corpus consisting of one single
sentence. Bakers goal was to obtain a procedure for automatically training a
stochastic grammar allowing an arbitrary degree of ambiguity. The procedure
for estimating the parameters for a finite-state, hidden Markov process was well-
established (Baum 1972) and Baker obtained the new re-estimation formulas as a
result of an intuitive generalization process taking Baums formulas as a starting
point. The forward-backward algorithm formalizes stochastic training of hidden
Markov processes and uses particulary a training corpus of words. A simple gen-
eralization of this algorithm, not changing the training corpus itself, obviously
yields re-estimation formulas which again rely on a sequence of words:

% Zlgtgn, wi=a e(ta t, A) : f(ta L A)

A 0) = T S (s, A) S (5,6, A)

and

1 n—1 n t—1
. DD D —sP(A — BC)e(s,r,B)e(r +1,t,C) f(s,t, A
P Zs:l Zt:s 6(85 t: A)f(S, ta A)

The sentence probability P := p(S =* w;...w,) and the inside and outside
probabilities can be computed in a pre-processing procedure using the current
rule probabilities. It is interesting that Baker did not state any convergence
behaviour of the sequence of re-estimated grammars. Presumably, Baker expected
(correctly) that his generalization of the re-estimation formulas for hidden Markov
models transferred the convergence properties of these models to probabilistic
context-free grammars. However, Baker, as well as other researchers incorrectly
assumed that there is no need to formally prove this result. First, training corpora
usually consist of several thousand sentences not just of one single sentence.
Therefore the common wisdom that the log-likelihood of probabilistic context-
free grammars increases while training with inside-outside estimation on large
corpora can not have its basis on Bakers work. Second, the formal proof of the
convergence behaviour we will give in Section 4 is relatively complex and premises
a good knowledge about both EM and dynamic programming methods. Thus,
this proof is not so easy to be taken for granted.

The inside-outside algorithm as introduced by Lari and Young (1990)

The inside-outside algorithm as introduced by Baker (1979) was extended by
Lari and Young (1990) to a training method on multiple observations, because in
practice, a single observation is insufficient to accurately estimate the parameters
of a probabilistic context-free grammar. The key step is the introduction of so-
called rule and category counts. Using

n n

Culd) = 53D elst,4) - fs,1,4),



and

1

Co(A—a) = = > elt,t,A) f(t,1,A)
P 1<t<n, wir=a

as well as

Cu(A — BC) = %nf S S p(4 = BO)e(s, r, B)e(r + 1,4, C) f(s, 1, 4)

s=1t=s+17r=s
the re-estimation formulas of Baker have the following simple form:

Cw(A = a)
Cu(4) 7

Cw(A — BC)

p(A—a) = Cold)

p(A— BC) =

The idea of Lari and Young (1990), how to extend these formulas, is simple:
compute the rule and category counts for each sentence of the given training
corpus, sum and normalize them to get rule probabilties:

U Cw(A = a) wey, Cuw(A — BC)
A = a) = == , and p(A — BC) := s
ey, Cu(A) ey, Cu(A)

Here, y; ...yn are the sentences of the training corpus and Cy,(A — a), Cy,(A —
BC), C,(A) are computed for each sentence w with the current rule probabilities.
Given these non-trivial re-estimation formulas which are applicable to training
corpora of arbitrary size, it is astonishing that Lari and Young (1990) gave no
formal convergence proofs at all. Possibly, experimental results made them very
sure that the new re-estimation formulas increase the log-likelihood.

3 EM for Probabilistic Context-Free Grammars

In this Section, we present a brief review of both the EM algorithm and proba-
bilistic context-free grammars, followed by the application of EM to probabilistic
context-free grammars. This will yield the well-known result that a re-estimated
rule probability can be computed by normalizing the expected rule frequency
with the expected frequency of its mother category, where the expectations have
to be computed on the current corpus of complete data types.

A Brief Review of the EM algorithm

Figure 3 displays the EM algorithm (implemented in pseudo code). The input

consists of the empirical distribution' p(y) := )
Yey fW)

data types y € ). Obviously, this definition relies on the frequencies f(y) gath-
ered from a given training corpus of incomplete data types. Here, the term
“incomplete” refers to a given symbolic analysis component which maps each in-
complete data type y to a subset X (y) C X of so-called complete data types, i.e.
the analyses of y, such that the space of all complete data types equals the disjoint

of so-called incomplete

!Throughout this paper, the term “distribution” refers to a discrete probability distribution,
i.e. a non-negative function summing up to 1.



1. for each ©y € Qy do \* Version with explicit variation of starting points
*\

2. for each 7 := 1, ..., numberOflterations do

3. d:=0,_q;

4. (E-step) compute Qs(0) = L ,cy B(Y) Laoex(y) Po(2]y) -log pe();

5. (M-step) compute © = argmaxe., Qa(0);

6. 0, :=06;

7.  print O, O, Oy, O3, ...;

Figure 3: EM algorithm

union of all analyses, i.e. X =3, .y X(y) . Further, so-called parameterized dis-
tributions pe(x) of complete data types z € X induce parameterized distributions
po(y) := Xsex(y) Po(z) of incomplete data types y € Y (using the properties of
the symbolic analysis component), as well as parameterized conditional distribu-

tions of analyses pe(z|y) = 2‘;83 =3 E’;i(?i)@(w) (given z € X(y), po(y) # 0).
z€X(y

Further, a finite set Qy C Q of starting points (out of the set Q of all possible
parameters), and a fixed number of iterations numberOfiterations > 1 belong to
the input. The EM algorithm was designed to maximize the log likelihood

L(©) := > py) -logpe(y) = D by) -log > pe(x)

yey yey z€X(y)

of the training data and EM tries to do this job by performing an iterative
sequence of E and M steps. The E step computes the current auxiliary function
(given the parameter )

Qa(0) = > p(y) D pa(zly)-log pe(),

yeY T€X(y)

whereas the M step tries to maximize this function: © = argmaxgco Qo(0©) . It
is an interesting question, whether EM really does its job. Dempster et al. (1977)
introduced the EM algorithm and showed that the log likelihood increases mono-
tonically. Thus, the output of the EM algorithm is a sequence of re-estimated
parameters: O, Oy, O3, ... € (), such that the associated sequence of log like-
lihood values of the training corpus is bounded, and monotonically increasing:
L(©;) < L(O2) < L(0©;3) < ... € [L(Og), 0]. Additionally, Dempster et al.
(1977) showed that the limit point of a convergent parameter sequence (each pa-
rameter being a stationary point of its auxiliary function) is a stationary point
of the log likelihood. More interesting results were presented by (Wu 1983), who
showed that both the parameter sequence and the associated sequence of log
likelihood values converge, if some weak conditions are fulfilled. Additionally,
Wu investigated the conditions for convergence to local maxima. It is interesting
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4. generate corpus pg(x) of complete data (given parameter ®);

5. compute MLE O of models pe (x) on corpus pe(z);

Figure 4: Modified version of the EM algorithm (as a sequence of MLE steps)

that the EM algorithm equals a sequence of certain maximum likelihood esti-
mation (MLE) steps. For this pupose, we define the current complete empirical
distribution:

po(x) :=py) - pe(z]y) with y € Y such that z € X (y) .

Note, that this setting is well-defined, because the incomplete data type y is
unique (using the properties of the symbolic anlaysis component). Obviously, the
current complete empirical distribution can be regarded as a corpus of complete
data types. This corpus is finite (i.e. behaves like an ordinary corpus), if each
incomplete data type has a finite set of analyses. Thus, the auxiliary function
R+ (©) equals
Ls(©) := ) pa(z) - logpe(z) ,
reX

which is indeed a log-likelihood function, namely on the “current corpus” pe of
complete data types. We will use the presented definitions as a key step in the
following sections. For now, we note that the procedure of the EM algorithm (see
Figure 3) can be easily rewritten resulting in a sequence of MLE steps performed
on complete data associated with pe (see Figure 4).

Instantiation of the EM algorithm for probabilistic context-free gram-
mars

We wish to introduce the following notions for the symbolic component of a
probabilistic context-free grammar (see Hopcroft and Ullman (1979) for a more
precise presentation):

e A € (G denotes a category A of the grammar G, r € G denotes a rule r of
G, lhs(r) is the left-hand side of the rule r € G, r € G4 is arule r € G
with lhs(r) = A, z € T(G) denotes a syntax tree z of G, r € x is a rule
r € G occuring in x € T(G), y € L(G) denotes a sentence of G, z € T (y)
is a syntax tree of the sentence y € L(G).

Additionally, we use the following terms for the stochastic component of a context-
free grammar:

e p(r) denotes the probability of a rule r € G, f.(x) is the frequency of rule r €
G occuring in the syntax tree x € T(G), fa(x) is the frequency of category
A € G occuring in the syntax tree x € T(G), i.e. fa(z) :=X,cq, fr() , the
probability of a syntax tree x € T(G) is defined as p(z) := [I,¢, p(r)@ |
the probability of a sentence y € L(G) is defined as p(y) := X e7) () -



The standard probability model assumes that >-,cq, p(r) = 1 for all (productive
and reachable) categories A € G. Using the theorem of Booth and Thomp-
son (1973) and a further presumption it can be shown that G is consistent:
Yyec(c)P(y) = 1 . Moreover, Chi (1999) showed that probabilistic context-free
grammars estimated via tree-bank training or pure inside-outside algorithm (e.g.
without internal smoothing procedures) are always consistent. Using the intro-
duced notation, the EM algorithm will be defined for a probabilistic context-free
grammar as follows:

e YV = L(@), the incomplete data types are the grammatical sentences of a
given context-free grammar G. The empirical distribution p(.) of incom-
plete data types will be computed using the grammatical sentences of a
large training corpus of free text. The complete data types X = T(G) are
the syntax trees of G. The symbolic analysis component X (y) = T (y) is a
context-free parser which produces for each grammatical sentence its anal-
yses (i.e. its syntax trees) and for each ungrammatical sentence the empty
set. The parameter space Q2 = { © € [0,1]/%l | g4(©) = 0 } is constrained,
where |G| is the number of grammar rules. The parameterization ©, = p(r)
yields the following constraints: g4(©) =1-3,cq, O, (A € G). The set Q
of starting points will be randomly selected from the parameter space. The
parametrization ©, = p(r) yields the following parameterized distributions
of complete data types pe(z) = [I,ec ©F@.

Thus, the following well-known propostion is valid within this framework.
Lemma: The EM algorithm for probabilistic context-free grammars yields the
following simple re-estimation formulas:

o, = bell] (re G, A=lhs(r)).

" Dol fal

Here, po [ fr | and pe [ fa | denote the expected frequency of rule r, respectively
the expected frequency of category A given the current corpus pe of complete data
types, i.e. pa [ fr | := Xsex Po(2) - fr(z) , and Po [ fa | := Lpex Po(x) - fa(z) -
Proof: Using expectations, the current log likelihood of the corpus pe can be
rewritten as Lg(O) = Pg [ logpe | . The stationary points of this function can be
calculated using the first partial derivatives?’. We compute these exploiting the
“linear properties” of the expectation:

- B ~ 0,
arL‘P(@) = arp¢ [ logp@ ] = D& [ a’l" logp(-) ] = Po l pz@ ]

Thus, it follows

5

orLe(O) =i | &

]=é;ﬁdﬂ]-

Unfortunately, the parameters © € [0, 1]/¢| are restricted by constraints

ga(©) =0, (A€q).

2Throughout this proof, we use the following notation: 0, := 6.




Thus, we introduce Lagrangian multipliers A4 € IR yielding

0,Ls(O)|g_e + Z Aa-0,94O)|g_e = 0 (req).

A€G
This equation system can be simplified using 0,94(©) = { _01 leﬁsze Ga
Thus .
5 P fr] — Aa = 0 (reG, A=1hs(r))
which yields the solution:
6, = % (r € G, A=1hs(r)) .
A

As a last step, we add up the solutions for all » € G4 and respect the associated
constraint:

=pa|fa].

Ag = Zﬁcp[fr]Zﬁcbl Soof

reGa reGa

Combining the last two findings, we have our proposition. q.e.d.

4 Inside-Outside as Dynamic EM

In this Section, the well-known convergence properties of the inside-outside algo-
rithm, which have been unfortunately omitted in the original literature (Baker
(1979), Lari and Young (1990)), will be formally proven. For this purpose, we
will show that the inside-outside algorithm is a dynamic-programming variant of
the EM algorithm for context-free grammars. This property is also well-known in
stochastic linguistics, but to the best of our knowledege all mentioned properties
have not been formally proven till now. Moreover, the exact proof is more com-
plicated than generally expected (Manning and Schiitze 1999) and some insight
into both the inside-outside algorithm and the EM algorithm is necessary.
Theorem: Let G be a context-free grammar in Chomsky normal form. Let p(r)
the re-estimated probabilities resulting from one single step of the inside-outside
algorithm using the current rule probabilities p(r). Then the following proposi-
tions are valid: (i) The log likelihood L(.) of the training corpus increases mono-
tonically, i.e. L(p) > L(p). (ii) The limit points of a sequence of re-estimated prob-
abilities are stationary points (i.e. maxima, minima or saddle points) of the log
likelihood function. (iii) The inside-outside algorithm is a dynamic-programming
variant of the EM algorithm, i.e. p(r) corresponds with pgp(r) resulting from
one single EM iteration.

Proof: (i) and (ii) follow using both (iii) and the convergence properties of the
EM algorithm for context-free grammars. (iii): For each grammar rule r € G with

left-hand side A = lhs(r), we have: ppy(r) = %Z:;;J((j)) %::::j;:((:lj))ﬁ((?) . If the

empirical distribution p(.) is given by the sequence < ¥1,...,yn > of sentences
y; € Y, it follows p(y) = N~ ! - f(y) and:

() = Yyey F(Y) Zocrw) P(2lY) - fr(2) _ iy YzeT(w) P(x]Y) - fr(T)
oM Yuey FY) Zoerwy Ply) - falx) XUV Yerw P(2ly) - falz)
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Comparing these formulas with the re-estimation formulas presented by Lari and
Young (1990), it follows prp(r) = p(r), if for each sentence y € {y;...yn} ,
for each grammar rule » € G and each grammar category A € G the following
propositions can be shown:

> p(aly) - fr(x), and  Cy(A) = > p(zly)- falz) .

z€T (y) €T (y)

This is the goal of the rest of the proof, which we split in two lemmas. The first
lemma is probably due to Charniak, who at least used corresponding formulas
to present the inside-outside algorithm in his famous book on statistical NLP
(Charniak 1993). The lemma says that the category counts can be computed by
summing the rule counts of all rules with the same left-hand side. Unfortunately,
an explicit proof of this proposition was not given by Charniak (as well as a
reference to the work of Lari and Young (1990)).

Lemma: Cy(A) =Y ,cq, Cy(r) for each sentence y and category A.

Proof: Assuming Chomsky normal form, and y = w;y ... wy:

> Cylr) = ZC (A—=a) + > Cy(A—BCO)

reGy B,CeG
= Z D Z €(t, ta A) f(ta ta A)
a 1<t<n, wi=a
1 n—-1 n

+ Z Z Z ZpA—>BC’ e(s,r, Be(r +1,t,C) f(s,t, A)

BCEG s=1t=s+1r=s

1
= 5 ( > elt,t, A) f(t,t, A)

1<t<n

—+ nil i f(s,t, A) Z tip(A — BC)e(s,r, B)e(r + 1,t, C))

s=1t=s+1 B,CeGr=s

=

(Z e(t,t,A) f(t,t,A) + nf i f(s,t,A) e(s,t,A))

1<t<n s=1t=s+1

= 5 Y st A) flstA) = GlA).

1<s<t<n

In the fourth equation, we used the recursion formula of the inside probabilities.
q.e.d.

The lemma shows that the wanted identities for the category counts can be cal-
culated (by summation over all rules with the same left-hand side) using the
identities for the rule counts, because Cy(A) = > 4,4, Cy(A — @), and per defini-
tion fa(z) =X 4ssa fasa(x) . Thus, the proof of the theorem is finished, as soon
as the following lemma has been proven. It says that the grammar counts of the
inside-outside algorithm can be identified (not only intuitively but also formally)
with the expected rule frequencies of the EM algorithm.

Lemma: For each sentence y and each grammar rule r € G:

Cy(r) = > plaly)- fr(@) = p(Iy) [ £ ]

z€T (y)
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Proof: The second equation is the definition of the expectation. Assuming
Chomsky normal form, we make a fall differentiation:

First case: The grammar rule has the form A - B C

For a given sentence y = w;...w, and given numbers 1 < s < r <t < n we
define

Xt A)(smB)(r1,4,0) = S =" wi...ws 1 Awgyr .. wy
= wl...ws,lBthH...wn
=" wy...w, C Wiy ... Wy

*
= Wy ...Wy, .

This means that X, ; 4)(s,r,B)(r+1,t,0) 18 the set of all syntax trees corresponding to
the given derivation. The right-hand side of Figure 1 displays the three relevant
spans (s,r, B), (r +1,t,C), and (s,t, A). Let

1 if -TEXsAs,r, 1t
st t)srmreino) (@) = {o else P BEO

the characteristic function interpreting the parse forest X(s; a)srB)(r+1,1,0) a8
a simple subset of the set of all possible syntax trees 7 (y) of the sentence y.
Thus, the frequency fa_,pc(z) of the rule A — B C occurring in the syntax tree
x € T(y) can be computed as follows:

fasse(@) = D festay s o) (T) -

1<s<r<t<n

Using the linear properties of the expectation, it follows:

p(y) [ fasBe ] = p(|y) Z J(s,6,4)(s,r,B)(r+1,4,C)

1<s<r<t<n

= Z p(-ly) [ S(s,,4) (5,7, B)(r+1,6,C) ]

1<s<r<t<n

= Z Z p Iy stA srB)(r+1tC)()

1<s<r<t<n zeT (y)

1
= — Y S° p(®) ¢ fis A s B)ri10) (T)
p(y) 1<s<r<t<n zeT(y)
1
_ Z 3 p(z)
p(y) 1<s<r<t<n $€X(s,t,4)(s,rB)(r+1,5,0)

= Y (X, s0B)r410))

= % Z f(s,t,A) - p(A— BC) -e(s,r,B) - e(r + 1,t,C)
Cy
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Second case: The grammar rule has the form A — «
Analogously to the first case, we define for a given sentence y = w; ... w, and a
given span (¢,t, A) a parse forest together with its characteristic function (1 <
t <n):

Xipa) = S =" wi...wm1 Awgr ... wy
= Wi...W,

and
1 if x € X(t,t,A)

f(t,t,A)(x) = {0 else

Thus, the frequency fa_q(z) of the rule A — a occurring in the syntax tree
x € T(y) can be computed as follows:

fasa(z) = Z faepa(x) -

1<t<n, wi=a

Therefore:

p(|y) [ fasa] = p(|y) [ > funa ]

1<t<n, wr=a

= Z p(-y) [ fit.t.4) ]

1<t<n, wi=a
= Z Z p(zly) - fit,a)(2)

1<t<n, wi=a z€T(y)

= — > > p(®) - fiay(z)

p(y) 1<t<n, wi=a zeT(y)

= > > p)

y) 1<t<n, wi=a wEX (41, 4)

= P(X(t,t,4))

= > e(t,t,A) - f(t,t, A)

1<t<n, wi=a

= Cy(A—a) q.e.d.

Y|

Reviewing the complete proof of the theorem, which is fairly straight-forward,
the key step is to identify the rule and category counts of the inside-outside al-
gorithm with the corresponding conditional expected frequencies used by EM. In
consequence of the first lemma, the desired identities for the grammar categories
arise as once as the identities for the grammar rules have been proven. These
identities are the subject of the important second lemma. Here, the key steps
are: (i) to express the frequency for a grammar rule as a sum over corresponding
spans, (ii) to use the linear properties of the expectation in order to compute
the expectation of this sum as a sum of expectations, and (iii) to identify the
expectations inside the sum as probabilities of certain parse forests which can be
easily calculated in terms of inside and outside probabilities.

12



5 Conclusion

We have presented a brief review of the inside-outside algorithm for context-free
grammars which follows the lines of the original work of Baker (1979) and Lari
and Young (1990). Baker presented the inside-outside algorithm for a training
corpus of size 1, whereas Lari and Young introduced the inside-outside algorithm
in its modern form. Unfortunately, no convergence proofs were given by these
pioneers, which is probably due to the fact, that Baker intuitively generalized the
forward-backward algorithm for hidden Markov models (Baum 1972), where an
explicit proof of the convergence properties exists.

Furthermore, we briefly reviewed the standard EM algorithm. We presented an
implementation in pseudo code, discussed its input, as well as its output focussing
on the well-known convergence behaviour described by Dempster et al. (1977)
and Wu (1983). As a nice side effect, we presented the EM algorithm as a sequence
of maximum likelihood estimations on so-called current corpora of complete data
types. We applied the EM algorithm to probabilistic context-free grammars and
derived the EM-based re-estimation formulas for rule probabilities confirming
the well-known fact that re-estimated rule probabilities rely on expected rule and
category frequencies.

As the central goal of this paper, we have shown that the re-estimation formulas
given by inside-outside can be transformed to EM re-estimation formulas. Even
if this result is considered in isolation it is very interesting, because it seems
to have never been formally proven. Moreover, it has the desired effect that the
well-known convergence behaviour of the inside-outside algorithm, which has been
confirmed by many experiments, is a consequence of the convergence behaviour
of the EM algorithm, and has now been formally proven.
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