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1.1 Introduction

This paper presents a framework for developing and training statisti-
cal grammar models for the acquisition of lexicon information. Util-
ising a robust parsing environment and mathematically well-defined
unsupervised training methods, the framework enables us to induce
lexicon information from text corpora. Particular strengths of the ap-
proach concern (i) the fact that no extensive manual work is required
to set up the framework, and (ii) that the framework is applicable
to any desired language. It has already been applied to English and
German (Carroll and Rooth 1998, Beil et al. 1999, Rooth et al. 1999,
Schulte im Walde 2000a), Portuguese (de Lima 2001), and Chinese
(Hockenmaier 1999).

Manual work within the framework is reduced to a minimum, since
the necessary grammars need not go into detailed structures for the rele-
vant grammar aspects to be trained sufficiently. The automatic training
process utilises a shallow parser embedded in the mathematically well-
defined Expectation-Maximisation algorithm. The training approach en-
forces the lexicalised parameters in the statistical grammar to obtain
linguistic reliability. A basic assumption thereby expects that the lin-
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guistically correct analyses of text correspond to those analyses which
maximise the probability of the data.

The linguistic value of the grammar models mainly lies in the lex-
icalised model parameters: they contain lexicalised rules, i.e. grammar
rules referring to a specific lexical head, and lexical choice parameters, a
measure of lexical coherence between lexical heads. Concerning verbs, for
example, the lexical rule parameters serve as basis for probability distri-
butions over subcategorisation frames, and the lexical choice parameters
supply us with nominal heads of subcategorised noun phrases, as basis
for selectional constraints. The information can be used straightly as lex-
ical description, or as input for lexicon tools, such as semantic clustering
techniques (Rooth et al. 1999, Schulte im Walde 2000a), or as basis for
a variety of applications, e.g. parser improvement (Riezler et al. 2000),
chunking (Schmid and Schulte im Walde 2000), or machine transla-
tion (Prescher et al. 2000).

The reader might still wonder about the exact nature of the lexi-
cal information we gain. Consider this concrete example: our trained
grammar model for German informs you that the verb essen ‘eat’ most
probably occurs transitively, but might as well occur intransitively. In
addition, we learn that e.g. the most frequent nominal heads in the di-
rect object slot of the transitive frame are the German equivalent nouns
for bread, meat, banana and ice-cream.

The first part of this chapter concerns the grammar development
and its training: section 1.2 allows practical insights into the prerequi-
sites for our statistical grammars and describes a characteristic grammar
development process by means of the German grammar. Following in
section 1.3, the reader will find an introduction to the theoretical back-
ground of statistical grammars and their head-lexicalised refinements, as
well as a description of their training facilities. Section 1.4 then presents
the application of the training procedure concerning the German gram-
mar example.

The second part of this chapter illustrates various possibilities to
exploit the lexicalised probability models: section 1.5 straightly utilises
the model parameters, to extract lexical parameters for —-mainly— verbs,
and to apply specific parsing facilities such as Viterbi parsing, or noun
chunking. Section 1.6 demonstrates the usage of lexical information —
with specific reference to lexical coherence between verbs and subcate-
gorised nouns— as input for semantic clustering techniques.
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1.2 Grammar Development

Our statistical grammar models can be developed for arbitrary lan-
guages, presupposing (i) a corpus as source for empirical input data,
(ii) a morphological analyser for analysing the corpus word-forms and
assigning lemmas where appropriate, and (iii) a context-free grammar
(CFQG) for parsing the corpus data.

The grammar is supposed to cover a sufficient part of the corpus,
since in order to develop a statistical grammar model on basis of the
grammar (cf. sections 1.3 and 1.4), a large amount of structural relations
within parses is required. The more corpus data is accessible for grammar
training, the more reliable the probability model will be.

As mentioned in the introduction, manual work concerning the gram-
mar is reduced to a minimum. The necessary grammars need not go into
detailed structures for the relevant grammar aspects to be trained suf-
ficiently. The complete framework can be set up within a few weeks
time, and easily be transferred to a different language. This property
advances the grammar framework compared to e.g. tree-bank gram-
mars (Charniak 1996), since it does not presuppose a tree-bank for the
relevant language.

So far, we have worked on statistical grammar models for En-
glish (Carroll and Rooth 1998), German (an earlier version is de-
scribed in (Beil et al. 1999)), Portuguese (de Lima 2001), and Chi-
nese (Hockenmaier 1999). The preparation of the relevant corpus data,
the task definition of the morphological analyser and a context-free
grammar are described below. For the purpose of illustrating the gram-
mar development framework, we concentrate on the German model. We
specifically describe the grammar development facilities and outline the
grammar structure.

1.2.1 Corpus Preparation

We created two sub-corpora from the 200 million token newspaper cor-
pus Huge German Corpus (HGC), (a) a sub-corpus containing 450,000
verb-final clauses with a total of 4 million words, and (b) a sub-corpus
containing 1,1 million relative clauses with a total of 10 million words.
Apart from non-finite clauses as verbal arguments, there are no further
clausal embeddings, and the clauses do not contain any punctuation ex-
cept for a terminal period. The average clause length is 9.16 and 9.12
words per clause, respectively.

1.2.2 Morphological Analyser

We utilised a finite-state morphology (Schiller and Stockert 1995) to as-
sign multiple morphological features such as part-of-speech tag, case,
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gender and number to the corpus words, partly collapsed to reduce the
number of analyses. For example, the word Bleibe (either the case am-
biguous feminine singular noun ‘residence’ or a person and mode am-
biguous finite singular present tense verb form of ‘stay’) is analysed as
follows:

analyse> Bleibe
Bleibe+NN.Fem.Akk.Sg
Bleibe+NN.Fem.Dat.Sg
Bleibe+NN.Fem.Gen.Sg
Bleibe+NN.Fem.Nom.Sg
*bleiben+V.1.Sg.Pres.Ind
*bleiben+V.1.Sg.Pres.Konj
*bleiben+V.3.S5g.Pres.Konj

DU WN -

~

Reducing the ambiguous categories leaves the two morphological analy-
ses

Bleibe { NN.Fem.Cas.Sg, VVFIN }

Apart from assigning morphological analyses the tool in addition serves
as lemmatiser (cf. (Schulze 1996)).

1.2.3 The German Context-Free Grammar

The context-free grammar contains 5,033 rules with their heads marked.
With very few exceptions (rules for coordination, S-rule), the rules do
not have more than two daughters. The 220 terminal categories in the
grammar correspond to the collapsed corpus tags assigned by the mor-
phology.
Grammar development is facilitated by (a) grammar development envi-
ronment of the feature-based grammar formalism YAP (Schmid 1999),
and (b) a chart browser that permits a quick and efficient discovery
of grammar bugs (Carroll 1997). Figure 1 shows that the ambiguity in
the chart is quite considerable even though grammar and corpus are
restricted.

The grammar covers 92.43% of the verb-final and 91.70% of the rel-
ative clauses, i.e. the respective part of the corpora are assigned parses.

The following sections describe two essential parts of the gram-
mar, the noun chunks and the definition of subcategorisation
frames. For more details concerning the German grammar structure,
see (Schulte im Walde 2000b).

Noun Chunks

On nominal categories, in addition to the four cases Nom, Gen, Dat, and
Akk, case features with a disjunctive interpretation (such as Dir for
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FIGURE 1 Chart Browser for Grammar Development

Nom or Akk) are used. The grammar is written in such a way that non-
disjunctive features are introduced high up in the tree. Figures 2 to 5
illustrate the use of disjunctive features in the noun projections for the
German noun phrase eine gute Gelegenheit ‘a good opportunity’ in all
four cases; the terminal NN contains the four-way ambiguous Cas case
feature; the N-bar (NN1) and noun chunk NC projections disambiguate to
two-way ambiguous case features Dir and 0bl; the weak/strong (Sw/St)
feature of NN1 allows or prevents combination with a determiner, re-
spectively; only at the noun phrase NP projection level, the case feature
appears in disambiguated form. The use of disjunctive case features re-
sults in some reduction in the size of the parse forest. Essentially the
full range of agreement inside the noun phrase is enforced. Agreement
between the subject NP and the tensed verb is not enforced by the gram-
mar, in order to control the number of parameters and rules.

The noun chunk definition refers to Abney’s chunk grammar or-
ganisation (Abney 1996): the noun chunk (NC) is a projection that
excludes post-head complements and (adverbial) adjuncts introduced
higher than pre-head modifiers and determiners, but includes participial
pre-modifiers with their complements.



6 / SABINE SCHULTE IM WALDE, HELMUT SCHMID, MATS ROOTH, STEFAN RIEZLER, DETLEF PRESCHER

NP.Nom

NC.Dir

N

ART1.E NN1.Fem.Dir.Sw

| 7\

ART.Indef. E  ADJ1.E NNIL1.Fem.Dir.Sw

eine ADJ.E NN.Fem.Cas.Sg

gute Gelegenheit

FIGURE 2 Noun Projection: NP with Nominative Case

NP.Akk

NC.Dir

N

ART1.E NN1.Fem.Dir.Sw

| 7\

ART.Indef.E ADJ1.E NN1.Fem.Dir.Sw

eine ADJ.E NN.Fem.Cas.Sg

gute Gelegenheit

FIGURE 3 Noun Projection: NP with Accusative Case
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NP.Dat

NC.Obl

N

ART1.R NN1.Fem.Obl.Sw

| /N

ART.Indef.R  ADJ1.N NN1.Fem.Obl.Sw

einer ADJ.N NN.Fem.Cas.Sg

anderen Gelegenheit

FIGURE 4 Noun Projection: NP with Dative Case

NP.Gen

NC.Obl

N

ART1.R NN1.Fem.Obl.Sw

| /N

ART.Indef. R ADJ1.N  NN1.Fem.Obl.Sw

einer ADJ.N NN.Fem.Cas.Sg

anderen Gelegenheit

FIGURE 5 Noun Projection: NP with Genitive Case
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Subcategorisation Frames

The grammar distinguishes four subcategorisation frame classes: active
(VP4), passive (VPP), non-finite (VPI) frames, and copula constructions
(VPK). A frame may have maximally three arguments. Possible argu-
ments in the frames are nominative (n), dative (d) and accusative (a)
NPs, reflexive pronouns (r), PPs (p), and non-finite VPs (i). The gram-
mar does not distinguish plain non-finite VPs from zu-non-finite VPs.
The grammar is designed to distinguish between PPs representing a
verbal complement or adjunct: only complements are referred to by the
frame type. The number and the types of frames in the different frame
classes are given in Table 1.

Frame Class # | Frame Types

VPA 16 | n, na, nd, np, nad, nap, ndp
ni, di, nai, ndi

nr, nar, ndr, npr, nir

VPP 18 | n, np-s, d, dp-s, p, pp-s

nd, ndp-s, np, npp-s, dp, dpp-s
i, ip-s, ni, nip-s, di, dip-s
VPI 8 -, a,d, p, r, ad, ap, dp, pr
VPK 2 | n, i

TABLE 1 Subcategorisation Frame Types

German, being a language with comparatively free phrase order, al-
lows for scrambling of arguments. Scrambling is reflected in the partic-
ular sequence in which the arguments of the verb frame are saturated.
Compare Figure 6 as example of a canonical subject-object order within
an active transitive frame der sie liebt ‘who loves her’ and its scrambled
object-subject order den sie liebt ‘whom she loves’.

VPA.na.na VPA.na.na
RN RN
NP.Nom VPA.na.a NP.Akk VPA.na.n
/" N\ / N\
der NP.Akk  VPA.na den NP.Nom VPA.na
| | |
sie VPA sie VPA
liebt leebt

FIGURE 6 Realising Scrambling Effect in the Grammar Rules
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Abstracting from the active and passive realisation of an identical
underlying deep-level syntax we generalise over the alternation by defin-
ing a top-level subcategorisation frame type, e.g. IP.nad for VPA.nad,
VPP.nd and VPP .ndp-s (with p-s a prepositional phrase within passive
frame types representing the deep-structure subject, realisable only by
PPs headed by von or durch ‘by’); see Figure 7 as example, presenting
the relative clauses der die Frau verfolgt ‘who follows the woman’, die
verfolgt wird ‘who is followed’ and die von dem Mann verfolgt wird ‘who
is followed by the man’.

IP.na IP.na
VPA.|na.na VPI|’.n.n
N\ 7\

NP.Nom VPA.na.a NP.Nom VPP.n
/ N\ |
der NP.Akk VPA .na die verfolgt wird

die Frau verfolgt

IP.na

VPP.np-s.np-s

PN

NP.Nom VPP.np-s.p-s
die PP.Dat:von VPP.np-s

von dem Mann verfolgt wird

FIGURE 7 Generalising over the Active-Passive Alternation of
Subcategorisation Frames
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1.3 Probability Model

The probabilistic grammars are parsed with a head-lexicalised proba-
bilistic context-free parser called LoPar!(Schmid 2000). It is an imple-
mentation of the Left-Corner algorithm for parsing and of the Inside-
Outside algorithm for parameter estimation. Probabilistic context-free
parsing is a well-known technique (Lari and Young 1990). Innovative
features of LoPar are head lexicalisation, lemmatisation, parameter pool-
ing, and a sophisticated smoothing technique.

1.3.1 Probabilistic Context-Free Grammars

A probabilistic context-free grammar (PCFG) is a context-free grammar
which additionally assigns a probability P(r) to each grammar rule r.
The probability of a parse tree is defined as the product of the proba-
bilities of the rules which are used to build the parse tree.

PCFGs rank the different analyses (= parse trees) of a sentence ac-
cording to their probabilities. However, PCFGs fail to resolve some fre-
quent syntactic ambiguities like PP attachment ambiguities and coordi-
nation ambiguities. For example, in the sentence The COLING con-
ference in August at the University of Saarland in Saarbricken was
well attended, the prepositional phrase in Saarbricken could syntac-
tically attach to any of the preceding noun phrases. Disambiguation of
these ambiguities requires information about the lexical heads of the
constituents (see also (Hindle and Rooth 1993)). Head-lexicalised prob-
abilistic context-free grammars incorporate this type of information.

Head-Lexicalised Probabilistic Context-Free Grammars

Syntactically, a head-lexicalised probabilistic context-free grammar
(HPCFG) (Carroll 1995, Carroll and Rooth 1998) is a probabilistic
context-free grammar in which one of the categories on the right hand
side of each grammar rule is marked as the head by an apostrophe (?),
e.g. NP — DT N’. Each constituent bears a lexical head, which is prop-
agated from the head daughter. The lexical head of a terminal node is
the respective word form.

1LoPar is basically a re-implementation of the Galacsy tools which were developed
by Glenn Carroll in the SFB, but LoPar provides additional functionality.
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HPCFGs assign the following probability? to a parse tree T:

P(T) = Psgari(cat(root(T))) =
Pyiori(head(root(T)) | cat(root(T))) =

H Pryie(rule(n) | cat(n), head(n)) *
nonterm n in T

H Pehoice(head(n) | cat(n), cat(parent(n)), head(parent(n))) x

nonroot n in T

H Poyie ((term) | cat(n), head(n)) Piey (word(n) | cat(n), head(n))

term nin T

Five families of probability distributions are relevant here. Py, (C')
is the probability that C is the category of the root node of a parse
tree. Pgqre(h|C) is the probability that a root node of category C bears
the lexical head h. Py (r|C, h) is the probability that a node of cate-
gory C with lexical head h is expanded by rule r. P.pyice(h|C,Cp, hyp)
is the probability that a (non-head) node of category C has the lexical
head h given that the parent category is C, and the parent head is hy.
Pryie({term)|C, h) is the probability that a node of category C' with lex-
ical head h is a terminal node. P, (w|C, h), finally, is the probability
that a terminal node with category C' and lexical head h expands to the
word form w. If the lexical head of a terminal node is the word form
itself (rather than e.g. its lemma), then P, (w|C,h) is 1 if w and h are
identical and 0 otherwise.

Lemmatisation

The major problem in training HPCFGs is the large number of parame-
ters which have to be estimated from a limited amount of training data.
The number of parameters is reduced if stems are used as lexical heads
rather than inflected word forms, increasing the reliability of the pa-
rameter estimates. This is in particular true for languages with a rich
morphology like German.

If the lexical heads are stems, the word form probability distribution
Py (w|C, h) is not trivial anymore because several word forms could
have the same stem and part of speech (just assume that all numbers
have the same stem). The P, parameters therefore have to be estimated
from training data like other parameters.

2The auxiliary functions cat, head, parent, word and rule return the syntactic
category, the lexical head, the parent node, the dominated word or the expanding
grammar rule of a node. root returns the root node of a parse tree and <term> is a
constant.
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1.3.2 Parameter Estimation

The parameters of lexicalised as well as unlexicalised probabilis-
tic context-free grammars are iteratively estimated with the Inside-
Outside algorithm (Lari and Young 1990), which is an instance of the
Ezpectation-Mazimisation (EM) algorithm (Baum 1972). Each iteration
of the Inside-Outside algorithm consists of two steps, namely frequency
estimation and parameter estimation.

Lexicalised probability models are estimated with a bootstrapping
approach. First, an unlexicalised PCFG is trained starting with a ran-
domly initialised model. The unlexicalised PCFG is then used to esti-
mate initial values for the lexicalised probability model. The lexicalised
model is retrained until it does not improve anymore.

Parameter Smoothing

The number of parameters of PCFGs and HPCFGs is usually so large
that some of the corresponding events do not occur in the training data.
Their estimated frequency is therefore 0. The same holds for the prob-
abilities if relative frequency estimates are used. In order to avoid that
all analyses with unobserved events are assigned zero probabilities, the
probability distributions are smoothed. A variant of the absolute dis-
counting method (Ney et al. 1994) is used for this purpose.

The basic idea of absolute discounting is to subtract a small amount
(the discount) from all frequency counts and to redistribute the sum of
these discounts over the events with zero frequency according to some
backoff distribution. This is done recursively. The absolute discounting
method had to be adapted in order to be applicable to the real-valued
frequency counts generated by LoPar.

Parameter Pooling

It has already been discussed how lemmatisation is used to reduce the
number of parameters of a HPCFG. Another way to achieve a reduc-
tion is parameter pooling. Parameter pooling applies to the lexical choice
probabilities. It is based on the observation that the probability of the
lexical head of the daughter node is usually similar for different inflec-
tional variants of the lexical head of the mother node. Consider the
following grammar rule which adjoins an adverb to a verb phrase.

VP_fin_past -> VP_fin_past’ ADV
The lexical choice probability P.peice (heavily| ADV, VP _ fin_past,rain)
is unlikely to differ much from the probabil-
ity P.poice (heavily| ADV, VP _ fin_pres, rain) or
Pehoice(heavily|ADV, VP _inf,rain) etc. Therefore, it is possi-
ble to pool the corresponding distributions into one distribution
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Pehoice(adv|ADV,V P_ fin_past|VP_ fin_pres|...,verb) in order to
get more reliable estimates.

Similarly, it is possible to pool the daughter categories. By pooling
mother and daughter categories in case of the rules

NBAR_nom_sg -> ADJ_nom_sg NBAR_nom_sg’
NBAR_nom_pl -> ADJ_nom_pl NBAR_nom_pl’
NBAR_gen_sg -> ADJ_gen_sg NBAR_gen_sg’

NBAR_acc_pl -> ADJ_acc_pl NBAR_acc_pl’

we obtain a single probability distribution for the adjectival modifiers
of the German noun Buch ‘book’. If the phrase das alte Buch ‘the old
book’ (nominative case) is observed in the training data, the probability
of the phrase den alten Biichern ‘the old books’ (dative case) will also
be high.

1.4 Statistical Grammar Training

What is the linguistically optimal strategy for training a head-lexicalised
probabilistic context-free grammar, i.e. estimating the model parameters
in the optimal way? The EM-algorithm guarantees improving an under-
lying model towards a (local) maximum of the likelihood of the training
corpus, but is that adequate for improving the linguistic representation
within the probabilistic model? Various training strategies have been
developed in the past years, with preliminary results referred to by Beil
et al. (Beil et al. 1998).

Elaborating the optimal training strategy results from the interaction
between the linguistic and mathematical motivation and properties of
the probability model:

¢ Mathematical motivation: perplexity of the model
The perplexity Perpy(C) of a corpus C wrt. a language model M
is a measure of fit for the model. The perplexity is defined as

—logPps(C)
Perpy(C) =e— =+

where Py (C) is the likelihood of corpus C' according to model M,
and N is the size of the corpus. Intuitively, the perplexity measures
the uncertainty about the next word in a corpus. For example, if
the perplexity is 23, then the uncertainty is as high as it is when
we have to choose from 23 alternatives of equal probability.

The perplexity on the training and test data should decrease during
training. At one point the perplexity on the test data will increase
again which is referred to as over-training. The optimal point of
time to stop the training is at the minimum of perplexity, before
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the increase.

e Linguistic motivation: representation of linguistic features

The linguistic parameters can be controlled by investigating rule
and lexical choice parameters, e.g. what is the probability distri-
bution over subcategorisation frames concerning the verb achten
(ambiguous between ‘to respect’ and ‘to pay attention’), and does
it correlate to existing lexical information?

In addition, the models were inspected by controlling the parsing
performance on specified grammatical structures, i.e. noun chunks
and verb phrases have been assigned labels which form the basis
for evaluating parses.

Section 1.4.1 describes the up to the present optimal training strategy.
In section 1.4.2 the resulting model is evaluated; section 1.4.3 describes
the linguistic performance in more detail, i.e. strength and weaknesses
of the model are investigated.

1.4.1 Training Strategy

For training the model parameters we used 90% of the corpora, i.e. 90%
of the verb-final and 90% of the relative clauses, a total of 1.4 million
clauses. Every 10th sentence was cut out of the corpora to generate a
test corpus. The training was performed in the following steps:

1. Initialisation:
The grammar was initialised by identical frequencies for all
context-free grammar rules.
Comparative initialisations with random frequencies had no effect
on the model development.

2. Unlexicalised training:
The training corpus was parsed once with LoPar, re-estimating the
frequencies twice.
The optimal training strategy proceeds with few parameter re-
estimations. Without re-estimations or with a large number of re-
estimations the model was effected to its disadvantage.
With less unlexicalised training more changes during lexicalised
training take place later on.

3. Lexicalisation:
The unlexicalised model was turned into a lexicalised model by

e setting the probabilities of the lexicalised rule probabilities to
the values of the respective unlexicalised probabilities

e initialising the lexical choice and lexicalised start probabilities
uniformly.
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4. Lexicalised training:
Three training iterations were performed on the training corpus,
re-estimating the frequencies after each iteration.
Comparative numbers of iterations (up to 40 iterations) showed
that more iterations of lexicalised training did not have further
effect on the model.

To achieve a reduction of parameters and improve the lexical choice
model, we utilised the pooling option as described in section 1.3.2: all ac-
tive, passive and non-finite verb frames were pooled according to shared
arguments, disregarding the saturation state of the frames, in order to
generalise over their arguments without taking into account their po-
sitional facilities. In addition, each of the categories describing noun
phrases, noun chunks, the noun bar level and proper names was pooled
disregarding the features for gender, case and number, thus allowing to
generalise over open class categories like adjectives which combine with
nouns disregarding these features.

1.4.2 Probability Model Evaluation

As mentioned above, main background for the development of the train-
ing strategy were the perplexity of the model as the measure of mathe-
matical evaluation on the one hand, and the parsing accuracy of gram-
matical structures as the measure of linguistic evaluation on the other
hand. Figure 8 displays the development of the perplexity on the train-
ing data, Figure 9 the development of the perplexity on the test data,
both referring to the experiment described in section 1.4.1, illustrating
lexicalised training up to its fifth iteration. As the figures show, both
the perplexity on the training data and the perplexity on the test data
monotonously decrease during training, which means that according to
perplexity the model improves steadily and has not reached the status
of over-training yet.
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1000 T T

"perplexity.train® ——

800 - -

600 - -

400 -

200 - -

1 1
untrained unlex lex0 lex5

FIGURE 8 Perplexity on Training Data

1000 T T

"perplexity.test" ——

800 |- B

400 + B

200 -

0 1 1
untrained unlex lex0 lex5

FIGURE 9 Perplexity on Test Data
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The linguistic parameters of the models were evaluated concerning
the identification of noun chunks and subcategorisation frames. We ran-
domly extracted 200 relative clauses and 200 verb-final clauses from the
test data and hand-annotated the relative clauses with noun chunk la-
bels, and all of the clauses with frame labels. In addition, we extracted
100 randomly chosen relative clauses for each of the six verbs beteili-
gen ‘participate’, erhalten ‘receive’, folgen ‘follow’, wverbieten ‘forbid’,
versprechen ‘promise’, versuchen ‘try’, and hand-annotated them with
their subcategorisation frames. Probability models were evaluated by
making the models determine the Viterbi parses (i.e. the most probable
parses) of the test data, extracting the categories of interest (i.e. noun
chunks and subcategorisation frame types) and comparing them with
the annotated data. The noun chunks were evaluated according to

e the range of the noun chunks: did the model find a chunk at all?

e the range and the identifier of the noun chunks: did the model find
a noun chunk and identify the correct syntactic category and case?
and the subcategorisation frames were evaluated according to the frame
label, i.e. did the model determine the correct subcategorisation frame
for a clause? Precision was measured in the following way:
tp
tp+ fp
with tp counting the cases where the identified chunk/label is correct,
and fp counting the cases where the identified chunk/label is not correct.

Figures 10 and 11 present the strongly different development of noun
chunk and subcategorisation frame representations within the models,
ranging from the untrained model until the fifth iteration of lexicalised
training. Noun chunks were modelled sufficiently by an unlexicalised
trained grammar, lexicalisation made the modelling worse. Verb phrases
in general needed a combination of unlexicalised and lexicalised training,
but the representation strongly depended on the specific item. Unlex-
icalised training advanced frequent phenomena (compare, for example,
the representation of the transitive frame with direct object for erfahren
and with indirect object for folgen), lexicalisation and lexicalised train-
ing improved the lexicalised properties of the verbs, as expected.

Tt is obvious that perplexity can hardly measure the linguistic perfor-
mance of the training strategy and resulting models; the perplexity (on
training as well as on test data) is a monotonously decreasing curve, but
as explained above the linguistic model performance develops differently
according to different phenomena. So perplexity can only serve as rough
indicator whether the model reaches towards an optimum, but linguistic
evaluation determines the optimum.

precision =
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FIGURE 10 Development of Precision and Recall Values on Noun Chunk
Range and Label

The precision values of the "best" model according to the training
strategy in section 1.4.1 were as in Table 2.

Noun Chunks Subcategorisation Frames on Sub-Corpora
range | range-label || relative clauses verb final clauses
98% 92% 63% 73%
Subcategorisation Frames on Specific Verbs
beteiligen erhalten | folgen verbieten | versprechen | versuchen
‘participate’ | ‘receive’ | ‘follow’ ‘forbid’ ‘promise’ ‘try’
48% 61% 88% 59% 80% 49%

TABLE 2 Precision Values on Noun Chunks and Subcategorisation Frames

For comparison reasons, we evaluated the subcategorisation frames
of 200 relative clauses extracted from the training data. Interestingly,
there were no striking differences concerning the precision values.

Without utilising the pooling option the precision values for low-
frequent phenomena such as non-finite frame recognition was worse, e.g.
the precision for the verb versuchen was 9% less than with pooling.
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FIGURE 11 Development of Precision Values on Subcategorisation Frames
for Specific Verbs
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1.4.3 Investigating the Linguistic Performance of the Model

Which linguistic aspects could be learned by the probability model, i.e.
what is the strength and what are the weaknesses of the model? Noun
chunks, subcategorisation frames and prepositional frames have been
investigated.

Concerning the noun chunks, a remarkable number was identified
correctly, concerning their structure (i.e. what is a noun chunk) as well
as their category (i.e. which case is assigned to the noun chunk). Before
training, a large number of noun chunks was assigned wrong case, but
after training the mistakes were mostly corrected except for few noun
chunks being assigned the accusative case instead of nominative or da-
tive.

For subcategorisation frames, the distribution and confusion of the
multiple frames is manifold. Some interesting feature developments are
cited below.

e Highly common subcategorisation types such as the transitive
frame are learned in unlexicalised training and then slightly un-
learned in lexicalised training. Less common subcategorisation
types such as the demand for an indirect object are unlearned
in unlexicalised training, but improved during lexicalised training.

e It is difficult and was not effectively learned to distinguish between
prepositional phrases as verbal complements and adjuncts.

e The active present perfect verb complexes and passive of condition
were confused, because both are composed by a past participle and
a form of to be, e.g. geschwommen ist ‘has swum’ vs. gebunden ist
‘is bound’.

e Copula constructions and passive of condition were confused, again
because both may be composed by a past participle and a form of to
be, e.g. verboten ist ‘is forbidden’ vs. erfahren ist ‘is experienced’.

e Noun chunks belonging to a subcategorised non-finite clause were
partly parsed as arguments of the main verb. For example, der ihn
zu iberreden versucht ‘who him,.. tried to persuade’ was parsed as
demanding an accusative plus a non-finite clause instead of recog-
nising that the accusative object is subcategorised by the embed-
ded infinitival verb.

¢ Reflexive pronouns appeared in the subcategorisation frame as ei-
ther reflexive pronoun itself or as accusative or dative noun chunk.
The correct or wrong choice of frame type containing the reflex-
ive pronoun was learned consequently right or wrong for different
verbs. For example, the verb sich befinden ‘to be situated’ was
generally parsed as a transitive, not as inherent reflexive verb.
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This feature confusion reflects the background for the identification of
the frame types concerning the specifically chosen verbs:

e The verb beteiligen was mostly parsed as transitive verb. Two
sources of mistakes were combined here: (i) the verb was assigned
a transitive instead of inherent reflexive frame, and (ii) the oblig-
atory prepositional phrase was consequently parsed as adjunct in-
stead of argument. All feature tendencies were already determined
by unlexicalised training and not corrected in lexicalised training.

e The transitive frame of erhalten was recognised well, not many
mistakes were made except for the PP-assignment.

e As consequence of unlexicalised training, the verb folgen was partly
parsed as transitive, but lexicalised training corrected that ten-
dency.

e The main problem for the verb werbieten was being assigned a
copula-construction instead of a passive of condition.

e For the verb versprechen the main mistake was using the domi-
nance of the bitransitive frame also for parsing the transitive re-
flexive verb sich versprechen.

e The main mistake for versuchen was parsing a direct object in-
stead of recognising the object’s correlation with the embedded
infinitival verb.

We conclude the linguistic feature description by presenting probability
distributions of selected verbs over subcategorisation frames in Table 32,
as extracted by questioning tools on the model parameters.

3Examples are only given in case the frame usage is possible. Otherwise an expla-
nation for a wrong frame indication is given.
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Verb Prob. | Frame | Example

funktionieren 79% | IP.n weil die Maschine funktioniert
‘because the machine works’
29% | IP.np [PP cannot be argument]

erfahren 50% | IP.na weil er die Neuigkeit erfahren hat
’because he found out the news’
25% | IP.np weil er von den Anderungen erfahren will
’because he wants to find out about the changes’
11% | IP.n intransitive use not possible]
10% | IP.nap | [PP cannot be argument]
folgen 67% | IP.nd weil er ihr folgen wollte
‘because he wanted to follow her’
13% | IP.n weil wichtige Entscheidungen folgen werden
‘because important decisions will follow’
erlauben 42% | IP.na weil meine Eltern vieles erlaubt haben

‘because my parents allowed a lot’
29% | IP.nad | weil sie mir vieles erlaubt haben
‘because they allowed me a lot’
achten 45% | TP.np weil das Kind auf die Ampel achten sollte
’because the child should pay attention
to the traffic lights’
31% | IP.na daf wir die Bemiihungen achten
‘that we respect the effort’

19% | IP.n [intransitive use not possible]
basieren 89% | IP.np dafl die Ausnahme auf der Regel basiert
‘that the exception is based on the rule’
beginnen 48% | IP.np daf3 wir mit der Schule beginnen mdchten

‘that we want to start with school’
24% | IP.n daf8 die Vorlesung beginnt
‘that the seminar starts’

11% | IP.na weil wir das Frihstick bereits begonnen haben
‘because we started breakfast already’
scheinen 32% | IP.ni weil die Regelung zu funktionieren scheint
‘because the regulation seems to work’
25% | IP.n weil die Sonne heute scheint

‘because the sun is shining today’

16% | IP.nai | [accusative should be parsed as direct object
of embedded infinitival verb]

erweisen 61% | IP.nr [PP as argument needed]

17% | TP.npr | weil sie sich als eine gute Fee erwiesen hat
‘because she proved to be a fairy’

11% | IP.nad | weil er ihr die Ehre erweist

‘because he paid her respect’

enden 66% | IP.np weil die Stunde mit dem Glockenschlag endet
‘because the hour ends to the stroke’
29% | IP.n weil auch die schonsten Zeiten enden werden
‘because even the best times will end’
beteiligen 48% | IP.npr | weil wir uns an dem Kauf beteiligen wollen
‘because we want to participate in the purchase’
22% | IP.np confusion copula construction / passive of condition]

15% | IP.nr PP as argument needed]

TABLE 3 Probability Distribution over Subcategorisation Frames
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1.5 Exploiting the Lexicalised Probabilistic Grammar
Model

Having trained the statistical grammar models, we are equipped with
valuable lexical information. But how to detect it? What are the possi-
bilities to determine relevant lexical information and apply it to interest-
ing tasks? The following sections refer to the potential of the grammar
models, with section 1.5.1 presenting a collection of lexicalised probabil-
ities for verbs; section 1.5.2 applies Viterbi parsing on basis of the lexical
probabilities to an example sentence, followed by section 1.5.3 extracting
an empirical database of subcategorisation frames from Viterbi parses;
finally, section 1.5.4 explains how to base a chunker on the trained gram-
mar.

1.5.1 Lexicalised Probabilities

The model parameters can be queried by tools. First, we queried for
the subcategorisation frames of specific verbs. This kind of parameter
belongs to the lexicalised rules; it specifies the probability of the sentence
generating the category IP.<Frame>, depending on a verb. Following
you find the relevant probabilities of the IPs, for display reasons with a
cut-off probability of 10%:

Verb: glauben ‘believe’ Verb: geben ‘give’
prob IP.<frame> prob IP.<frame>
0.45115 IP.n 0.51598 IP.na
0.14787 IP.na 0.22681 IP.nap
0.13740 IP.np 0.15378 IP.nad
Verb: folgen ‘follow’ Verb: enden ‘end’

prob IP.<frame> prob IP.<frame>
0.70054 IP.nd 0.66980 IP.np
0.13717 IP.n 0.28282 IP.n

Verb: achten ‘respect/pay attention’ Verb: beteiligen ‘participate’

prob IP.<frame> prob IP.<frame>
0.45376 IP.np 0.52087 IP.npr
0.30238 IP.na 0.18734 IP.np
0.18469 IP.n 0.14666 IP.nr

Secondly, we queried for the probabilities of subcategorised prepositional
phrases in verb phrases (containing a prepositional phrase as one argu-
ment). The probabilities also represent a kind of lexicalised rule param-
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eters: the probability of a certain PP, e.g. a PP with dative case and
headed by the preposition mit, representing the subcategorised PP in
the subcategorisation frame, e.g. the frame np.

Verb: sprechen ‘talk’ VP: VPA.np

prob rule

0.18752 PP.Dat:von ‘about’
0.13271 PP _Akk: fiir ‘for’
0.13136 PP.Dat:mit ‘with?

Verb: enden ‘end’ VP: VPA.np

prob rule

0.25152 PP.Dat:mit ‘with?
0.22102 PP.Dat:in ‘in’
0.20671 PP.Dat:an ‘at’

prob rule
0.39232 PP.Akk:fiir ‘for?
0.15285 PP.Dat:zu ‘to?

In the final example, we filtered frequency distributions over nominal
heads in subcategorised noun phrases. This kind of parameter belongs
to the lexical choice parameters; it specifies the probability of a certain
lemma, e.g. the noun Kind ‘child’, as head of a subcategorised noun
phrase, e.g. an NP with accusative case.

Verb: entstammen ‘descend from’ VP: VPA.nd -- NP.Dat

freq word

3.0 Familie ‘family?

3.0 Jahrhundert ‘century’

3.0 Welt ‘world’

2.0 Disziplin ‘discipline’

2.0 Drogenhandel ‘drug trafficking’
2.0 Elternhaus ¢ (parental) home’
2.0 Zeit ‘time’

Verb: drohen ‘threaten’ VP: VPA.nd -- NP.Nom

freq word
18.9 Gefahr ‘danger?’
17.0 Abschiebung ‘deportation’

17.0 Verfolgung ‘prosecution’
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13.8 Todesstrafe ‘death penalty?
7.9 Tod ‘death’
5.0 Arbeitslosigkeit ‘unemployment’
5.0 Ausweisung ‘instruction’
5.0 Entlassung ‘dismissal’
5.0 Kiindigung ‘termination’

Verb: erziehen ‘educate’ VP: VPA.na -- NP.Akk

freq word

16.0 Kind ‘child’
2.0 Junge ‘boy?
2.0 Sohn ‘son’
2.0 Tochter ‘daughter’

1.5.2 Viterbi Parses

With LoPar, it is possible to parse a corpus unambiguously by select-
ing the respective analysis with the highest probability (called Viterbi
parse). Viterbi parses are printed in a list notation; graphical tools allow
the parse tree representation. For example, the Viterbi parse of the rel-
ative clause die vielen Menschen das Leben retten kénnte ‘which could
save many people’s lives’ is represented by the parse tree in Figure 12.
The parser correctly chose the ditransitive subcategorisation frame nad
for the verb retten ‘save’, and provided the relevant NPs with the correct
case, die as a nominative relative pronoun, vielen Menschen as an NP
with dative case, and das Leben as an NP with accusative case. Viterbi
parsing is used to build large parsed corpora (called treebanks), or as an
intermediate step in larger NLP systems for e.g. machine translation,
text mining, information retrieval, question answering, query analysis.

1.5.3 Empirical Subcategorisation Frame Database

Section 1.5.2 introduced Viterbi parses as a method for determining the
most probable parse of a sentence. We collected the parses to build an
empirical database, an input to complex NLP systems. The database
has actually been used for semantic clustering (cf. (Rooth et al. 1999,
Schulte im Walde 2000a)) and experiments on verb biases concerning
lexical syntactic preferences (Lapata et al. To appear).

For example, the following lines represent some example subcategori-
sation frames tokens for English, extracted from the Viterbi parses of
the respective sentences in the British National Corpus (BNC). Each
line represents one subcategorisation frame; the verb as well as the ar-
guments are defined by a 2-/3-/4-tuple describing the syntactic category
and its features: each syntactic category was accompanied by the lexical
head, the prepositional phrase by the lexical head plus the head noun of
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vielen Menschen ART.Def.Z HH.Neut.MotGen.Sg VWINF VMFIN

das Lehen retien kiinnte

FIGURE 12 Viterbi Parse

the sub-ordinated noun phrase, and the verb by its mode.

The frames start with the description of the verb, followed by all argu-
ments, in the order they appeared in the parses. To give an example,
the frame token

act*excelled subj*nobody obj*him pp*in*judgement

describes the sentence Nobody excelled him in that judgement.

pas*described obj*realism pp*by*pn*fischer
act*proved subj*distinction ap*difficult
act*took subj*this obj*forms

act*argued subj*he pp*against*type

act*intend subj*museum to*act*sponsor
pas*limited obj*writing pp*by*demands

actxhas subj*critic obj*advantage

act*serve subjkcomparison obj*us pp*as*example
act*seem subj*they to*act*proceed

act*demands subj*pn*michelangelo obj*preference

A more detailed description of the frame tokens can be found
in (Schulte im Walde 1998).
A comparable database was created for German. Following are ex-

amples starting with a verb-final clause, followed by all arguments and
the verb frame.



STATISTICAL GRAMMAR MODELS AND LEXICON ACQUISITION / 27

S dass in diesem Jahr der grosse Coup gelingen wiirde
‘that the big coup would succeed this year’
NP.Nom Coup

IP.n gelingen

S weil die Stadtvdter Schmiergelder fiir die Einrichtung
eines modernen Miillplatzes einsteckten
‘because the city management accepted bribe money
for the establishment of a modern dump’

NP.Nom Stadtvidter

NP.Akk Schmiergelder

IP.na  einsteckten

S dass diese Kunst menschlichen Bediirfnissen entspricht
‘that this art corresponds to human needs’

NP.Nom Kunst

NP.Dat Bediirfnissen

IP.nd entspricht

1.5.4 Chunking

A chunker is a tool which marks all —possibly recursive— chunks in a sen-
tence. Arbitrary syntactic categories can be defined as relevant chunks.
Whereas the context-free grammars under development often cope with
restricted parts of the respective language (cf. the German grammar de-
scribed in section 1.2), we developed a language-independent method
which allows to extend the grammars with robustness rules, to extract
various kinds of chunks from unrestricted text.

The best chunk sequence of a sentence is defined as the sequence of
chunks (with category, start and end position) for which the sum of the
probabilities of all parses which contain exactly that chunk sequence is
maximal. The algorithm sums probabilities up to the level of the chunks
like the Inside algorithm and computes the maximum above the level of
chunks like the Viterbi algorithm. To be more specific, we compute for
each node n in the parse forest

e the maximum of the probabilities of all analyses of n containing
chunks, and

e the sum of the probabilities of all analyses of n containing no
chunks.

We have concentrated the chunking on nouns (cf.
(Schmid and Schulte im Walde 2000)), since many low-level NLP
systems are using them, e.g. as index terms in information retrieval or
as candidates for terminology extraction.

The German base grammar currently covering verb final and relative
clauses has automatically been extended by robustness rules. All rules
have been trained on unlabelled data by the probabilistic context-free
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parser. For extracting noun chunks, the parser generates all possible
noun chunk analyses, scores them and chooses the most probable chunk
sequences according to the above algorithm. LoPar is able to generate
chunked output in which either minimal (i.e. non-recursive) chunks or
maximal chunks are marked with surrounding brackets.
The following example presents a German sentence, followed by the
noun chunks extracted. The noun chunks are marked by case.
S Damit sei freilich noch keine Garantie gegeben,
schreiben beide Politiker weiter,
dass die Verhandlungen tatsédchlich widhrend des Gipfeltreffens
in Amsterdam zu einem guten Ende gelangten.
‘There is still no warranty,
the politicians continued,
that the negotiations at the summit meeting
im Amsterdam conclude with a good solution.?
NC.Nom keine Garantie
NC.Nom beide Politiker
NC.Nom die Verhandlungen
NC.Gen des Gipfeltreffens
NC.Dat Amsterdam
NC.Dat einem guten Ende

1.6 Lexical Semantic Clusters

This section presents a method for automatic induction of semantically
annotated subcategorisation frames from unannotated corpora. We use
the statistical system for inducing subcategorisation frames for verbs
as described in section 1.5.3, which estimates probability distributions
and corpus frequencies for pairs of a verbal head and a subcategorisa-
tion frame. Since the statistical parser can also collect frequencies for
the nominal fillers of slots in a subcategorisation frame, the induction
of labels for slots in a frame is based upon the estimation of a probabil-
ity distribution over tuples consisting of a class label, a selecting head,
a grammatical relation, and a filler head. The class label is treated as
hidden data in the EM-framework for statistical estimation. For fur-
ther information on theory and applications of our clustering model see
(Rooth et al. 1998) and (Rooth et al. 1999).

1.6.1 EM-Based Clustering
Basic Idea

In our clustering approach, classes are derived directly from distribu-
tional data—a sample of pairs of verbs and nouns, gathered by parsing
an unannotated corpus and extracting the fillers of grammatical rela-
tions. Semantic classes corresponding to such pairs are viewed as hidden
variables or unobserved data in the context of maximum likelihood es-
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timation from incomplete data via the EM algorithm. This approach
allows us to work in a mathematically well-defined framework of statis-
tical inference, i.e., standard monotonicity and convergence results for
the EM algorithm extend to our method.

The basic ideas of our EM-based clustering approach were presented
in (Rooth 1995) (see also (Rooth 1998)). An important property of our
clustering approach is the fact that it is a “soft” clustering method,
defining class membership as a conditional probability distribution over
verbs and nouns. In contrast, in hard (Boolean) clustering methods
such as that of (Brown et al. 1992), every word belongs to exactly one
class, which because of homophony is unrealistic. The foundation of our
clustering model upon a probability model furthermore contrasts with
the merely heuristic and empirical justification of similarity-based ap-
proaches to clustering (Dagan et al. 1999). The probability model we
use can be found earlier in (Pereira et al. 1993). However, in contrast
to this approach, our statistical inference method for clustering is for-
malised clearly as an EM-algorithm. Approaches to probabilistic clus-
tering similar to ours were presented recently in (Saul and Pereira 1997)
and (Hofmann and Puzicha 1998). There also EM-algorithms for similar
probability models have been derived, but applied only to simpler tasks
not involving a combination of EM-based clustering models as in our
lexicon induction experiment.

General Theory

We seek to derive a joint distribution of verb-noun pairs from a large
sample of pairs of verbs v € V and nouns n € N. The key idea is to view
v and n as conditioned on a hidden class ¢ € C, where the classes are
given no prior interpretation. The semantically smoothed probability of
a pair (v,n) is defined to be:

p(o,n) = 3 ple,v,m) = 3 pe)p(vlo)p(ne)
ceC ceC

The joint distribution p(c, v, n) is defined by p(c,v,n) = p(c)p(v|c)p(n|c).
Note that by construction, conditioning of v and n on each other is solely
made through the classes c.

In the framework of the EM algorithm (Dempster et al. 1977,
McLachlan and Krishnan 1997), we can formalise clustering as an es-
timation problem for a latent class (L.C) model as follows. We are given:

e a sample space Y of observed, incomplete data, corresponding to
pairs from V x N,

e a sample space X' of unobserved, complete data, corresponding to
triples from C' x V x N,
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o aset X(y) ={z € X | z=(cy), c € C} of complete data related
to the observation y,

e a complete-data specification py(zx), corresponding to the joint
probability p(c,v,n) over C x V x N, with parameter-vector
0 = (0.,0yc,0nc|c€ C,v € V,neN),

e an incomplete data specification py(y) which is related to the
complete-data specification as the marginal probability pg(y) =

Ex(y) po(z)-

The EM algorithm is directed at finding a value 6 of 9 that maximises
the incomplete-data log-likelihood function L as a function of 6 for a
given sample ), i.e.,

6 = argmax L(0) where L(f) = In H;Do(y)-
0
y

As prescribed by the EM algorithm, the parameters of L(6) are es-
timated indirectly by proceeding iteratively in terms of complete-data
estimation for the auxiliary function Q(8;6), which is the conditional
expectation of the complete-data log-likelihood Inpg(z) given the ob-
served data y and the current fit of the parameter values §*) (E-step).
This auxiliary function is iteratively maximised as a function of § (M-
step), where each iteration is defined by the map

6+ = M (6D = argmax Q(8;0M)
0

Note that our application is an instance of the EM-algorithm for context-
free models (Baum et al. 1970, Baker 1979), from which the following
particularly simple re-estimation formulae can be derived. Let z = (¢, y)
for fixed ¢ and y, and f(y) be the frequency of y in the training sample.

Then
ZyE{v}xN f@)ps(zly)
M{Gec) >, fWpe(zly)
Yyevxin FW)pa(zly)
M (ne) >, [Wpoaly)
6 zyf%;zlaa(ﬂy)

Intuitively, the conditional expectation of the number of times a partic-
ular v, n, or ¢ choice is made during the derivation is prorated by the
conditionally expected total number of times a choice of the same kind
is made. As shown by (Baum et al. 1970), every such maximisation step
increases the log-likelihood function L, and a sequence of re-estimates
eventually converges to a (local) maximum of L.
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Clustering Examples

In the following, we will present some examples of induced clusters. In
one experiment the input to the clustering algorithm was a training
corpus of 1,178,698 tokens (608,850 types) of English verb-noun pairs
participating in the grammatical relations of intransitive and transi-
tive verbs and their subject and object fillers. The data were gathered
from the maximal-probability parses the head-lexicalised probabilistic
context-free grammar of (Carroll and Rooth 1998) gave for the British
National Corpus (117 million words).

Figure 13 shows an induced semantic class out of a model with 35
classes. At the top are listed the 30 most probable nouns in the p(n|5)
distribution and their probabilities, and at left are the 30 most probable
verbs in the p(v|5) distribution where 5 is the class index. Those verb-
noun pairs which were seen in the training data appear with a dot in
the class matrix. Verbs with suffix .as : s indicate the subject slot of an
active intransitive. Similarly .aso : s denotes the subject slot of an active
transitive, and .aso : o denotes the object slot of an active transitive.
Thus v in the above discussion actually consists of a combination of a
verb with a subcategorisation frame slot as : s, aso : s, or aso : o.

Induced classes often have a basis in lexical semantics; class 5 can be
interpreted as clustering agents, denoted by proper names, ‘man’, and
‘woman’, together with verbs denoting communicative action. Figure 14
shows a cluster involving verbs of scalar change and things which can
move along scales. Figure 15 can be interpreted as involving different
dispositions and modes of their execution.

In another experiment, we extracted 418,290 tokens (318,086 types)
of pairs of German verbs or adjectives and grammatically related nouns
from maximal-probability parses; the parsed corpus was the verb final
sub-corpus from the HGC described in section 1.2.1. The underlying
lexicalised statistical model for German was described in section 1.4.

Figure 16 and Figure 17 show two classes out of a model with 35
classes. On the left and at the top are listed the 30 highest prob-
able verb/adjective predicates and nouns appearing as fillers of the
verb/adjective slots, ordered according to their probability given the
class. Verbal predicates are annotated with subcategorisation slots, e.g.,
liegen- VPA .np:NP.Nom denotes the nominative noun-phrase filler of the
subject-slot of an active verb liegen ‘lie’ subcategorising for a nomina-
tive and a prepositional phrase. tragen- VPA.na:NP.Akk is the accusative
noun-phrase filler of the object slot of the transitive verb tragen ‘carry’,
steigen- VPA.n:NP.Nom denotes the nominative filler of the subject slot
of the intransitive verb steigen ‘rise’. Clearly, due to the smaller size of
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FIGURE 13 English Class 5: communicative action

the German input data compared to the English data, German classes

are less dense than the English counterparts.

Figure 16 shows a cluster involving scalar motion verbs and things
which can move along scales. Figure 17 shows a class which can be

interpreted as governmental/public authority, involving nouns such as

police force and public prosecutor’s office.
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FIGURE 14 English Class 17
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FIGURE 15 English Class 8: dispositions
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FIGURE 17 German Class 14: governmental/public authority
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1.6.2 Evaluation of Clustering Models
Pseudo-Disambiguation

We evaluated our clustering models on a pseudo-disambiguation task
similar to that performed in (Pereira et al. 1993), but differing in detail.
The task is to judge which of two verbs v and v’ is more likely to take a
given noun n as its argument where the pair (v,n) has been cut out of
the original corpus and the pair (v', n) is constructed by pairing n with a
randomly chosen verb v’ such that the combination (v',n) is completely
unseen. Thus this test evaluates how well the models generalise over
unseen verbs.

The data for this test were built as follows. We constructed an evalu-
ation corpus of (v, n,v") triples from a test corpus of 3,000 types of (v, n)
pairs which were randomly cut out of the original corpus of 1,280,712
tokens, leaving a training corpus of 1,178,698 tokens. Each noun n in
the test corpus was combined with a verb v' which was randomly chosen
according to its frequency such that the pair (v',n) did appear neither
in the training nor in the test corpus. However, the elements v, v', and
n were required to be part of the training corpus. Furthermore, we re-
stricted the verbs and nouns in the evaluation corpus to the ones which
occurred at least 30 times and at most 3,000 times with some verb-
functor v in the training corpus. The resulting 1,337 evaluation triples
were used to evaluate a sequence of clustering models trained from the
training corpus.

The clustering models we evaluated were parameterised in starting
values of the training algorithm, in the number of classes of the model,
and in the number of iteration steps, resulting in a sequence of 3 x 10 x 6
models. Starting from a lower bound of 50% for randomly initialised
models, accuracy was calculated as the number of times the model de-
cided for p(n|v) > p(nlv') out of all choices made. Figure 18 shows the
evaluation results for models trained with 50 iterations, averaged over
starting values, and plotted against class cardinality. Different starting
values had an effect of ¥ 2% on the performance of the test. We obtained
a value of about 80% accuracy for models between 25 and 100 classes.
Models with more than 100 classes show a small but stable overfitting
effect.

The German models were evaluated in a similar way. An evaluation
corpus of 886 (v,n,v') triples was extracted from the original corpus of
428,446 verb/adjective-noun tokens, leaving 418,290 tokens for training
a sequence of clustering models. Again, the models were parameterised
in starting values, number of classes and iteration steps, resulting in a
sequence of 3 x 11 x 20 models. Figure 18 shows the evaluation results
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for models trained with 100 iterations, averaged over starting values,
and plotted against class cardinality. We obtained an accuracy of over
75% for models up to 35 classes. Different starting values had an effect
of £ 2% on the evaluation results. For models with more than 50 classes
again a small overfitting effect can be seen.

Smoothing Power

A second experiment addressed the smoothing power of the model by
counting the number of (v, n) pairs in the set V' x N of all possible combi-
nations of verbs and nouns which received a positive joint probability by
the model. The V' x N-space for the above clustering models included
about 425 million (v,n) combinations; we approximated the smooth-
ing size of a model by randomly sampling 1,000 pairs from V' x N and
returning the percentage of positively assigned pairs in the random sam-
ple. Figure 19 plots the smoothing results for the above models against
the number of classes. Starting values had an influence of = 1% on per-
formance. Given the proportion of the number of types in the training
corpus to the V x N-space, without clustering we have a smoothing
power of 0.14% whereas for example a model with 50 classes and 50
iterations has a smoothing power of about 93%.

Corresponding to the maximum likelihood paradigm, the number of
training iterations had a decreasing effect on the smoothing performance
whereas the accuracy of the pseudo-disambiguation was increasing in the
number of iterations. We found a number of 50 iterations to be a good
compromise in this trade-off.

For German models we observed a baseline smoothing power of
0.012% which is the relation of the number of types in the German train-
ing corpus to the 2.5 billion combinations in the V' x N-space for the
German experiments. Despite of the fact that this baseline is 10 times
smaller than the baseline for the English models, we have a smoothing
power of about 32% for models with 25 classes, which were best in terms
of the pseudo-disambiguation task. This is shown in Figure 19. The best
compromise in terms of iterations was a number of 100 iterations for the
German experiments.
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1.6.3 Lexicon Induction based on Latent Classes

The goal of the following experiment was to derive a lexicon of several
hundred intransitive and transitive verbs with subcategorisation slots
labelled with latent classes.

Probabilistic Labelling with Latent Classes using EM-
Estimation

To induce latent classes for the subject slot of a fixed intransitive verb the
following statistical inference step was performed. Given a latent class
model pro () for verb-noun pairs, and a sample ny,...,ny of subjects
for a fixed intransitive verb, we calculate the probability of an arbitrary
subject n € N by:

p(n) =>_ple,n) = ple)pro(nlo).
ceC ceC
The estimation of the parameter-vector § = (f.|c € C) can be formalised
in the EM framework by viewing p(n) or p(c,n) as a function of 8 for
fixed prc(.). The re-estimation formulae resulting from the incomplete
data estimation for these probability functions have the following form
(f(n) is the frequency of n in the sample of subjects of the fixed verb):

2nen F(n)po(cn)
Yonen f(n)

A similar EM induction process can be applied also to pairs of nouns,
thus enabling induction of latent semantic annotations for transitive verb
frames. Given a LC model prco(-) for verb-noun pairs, and a sample
(n1,m2)1,- .., (n1,n2)yr of noun arguments (n; subjects, and ny direct
objects) for a fixed transitive verb, we calculate the probability of its
noun argument pairs by:

M(ac) =

plni,me) = Y pler,ca,n,na)
c1,c2€C

= Z p(Ch C2)PLC (n1|cl)ch(n2|02)
c1,c20€C

Again, estimation of the parameter-vector 8 = (6., c,|c1,c2 € C) can be
formalised in an EM framework by viewing p(ni,n2) or p(c1, ca,n1,n2)
as a function of  for fixed prc(.). The re-estimation formulae resulting
from this incomplete data estimation problem have the following sim-
ple form (f(n1,n2) is the frequency of (n1,ns) in the sample of noun
argument pairs of the fixed verb):

2onimeen F(n1,m2)ps(c1, c2lni, ma)

an,MeN f(n17n2)

M(001c2) =
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Note that the class distributions p(c) and p(c;,¢2) for intransitive and
transitive models can also be computed for verbs unseen in the LC
model.

Lexicon Induction Experiment

In a first experiment with English data we used a model with 35 classes.
From maximal probability parses for the British National Corpus de-
rived with the statistical parser of (Carroll and Rooth 1998), we ex-
tracted frequency tables for intransitive verb/subject pairs and transitive
verb/subject/object triples. The 500 most frequent verbs were selected
for slot labelling. Figure 20 shows two verbs v for which the most prob-
able class label is 5, a class which we earlier described as communicative
action, together with the estimated frequencies of f(n)py(c|n) for those
ten nouns n for which this estimated frequency is highest.

blush 5 0.982975 snarl 5 0.962094
constance 3 mandeville 2
christina 3 jinkwa 2

willie 2.99737 man 1.99859
ronni 2 scott 1.99761
claudia 2 omalley 1.99755
gabriel 2 shamlou 1
maggie 2 angalo 1
bathsheba 2 corbett 1

sarah 2 southgate 1

girl 1.9977 ace 1

FIGURE 20 Lexicon Entries: blush, snarl

Figure 21 shows corresponding data for an intransitive scalar motion
sense of increase.

increase 17 0.923698
number 134.147
demand 30.7322
pressure 30.5844
temperature  25.9691
cost 23.9431
proportion 23.8699
size 22.8108
rate 20.9593
level 20.7651
price 17.9996

FIGURE 21 Lexicon Entry: increase

Figure 22 shows the intransitive verbs which take 17 as the most
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probable label. Intuitively, the verbs are semantically coherent. When
compared to (Levin 1993)’s 48 top-level verb classes, we found an agree-
ment of our classification with her class of “verbs of changes of state”
except for the last three verbs in the list in Figure 22 which is sorted by
probability of the class label.

0.977992  decrease | 0.560727 drop
0.948099  double 0.476524  grow
0.923698  increase 0.42842 vary
0.908378  decline 0.365586  improve

0.877338  rise 0.365374  climb
0.876083  soar 0.292716  flow
0.803479  fall 0.280183  cut
0.672409  slow 0.238182  mount

0.583314  diminish

FIGURE 22 Scalar Motion Verbs

Figure 23 shows the most probable pair of classes for increase as a
transitive verb, together with estimated frequencies for the head filler
pair. Note that the object label 17 is the class found with intransitive
scalar motion verbs; this correspondence is exploited in the next section.

increase (8,17) 0.3097650
development - pressure 2.3055
fat - risk 2.11807
communication - awareness 2.04227
supplementation - concentration  1.98918
increase - number 1.80559

FIGURE 23 Transitive increase with Estimated Frequencies for Filler Pairs

Further experiments were done with two German models with 35
and 50 classes respectively. The data for these experiments were ex-
tracted from the maximal probability parses of the verb final German
sub-corpus from the HGC described in section 1.2.1, parsed with the lex-
icalised probabilistic grammar described in section 1.4. Figure 24 shows
the subjects of the transitive verb bekanntgeben ‘make public’. The nouns
are classified with probability 0.999999 to class 14, which was described
above as class of governmental/public-authority. The numbers in the
column show the estimated frequencies of the subject fillers.

Figure 25 shows the subjects of the intransitive verb steigen ‘rise’
which belong with probability 0.67273 to class 26 which was interpreted
above as a class of gradation/scalar change.

Similar to the English experiments we observe semantic uniformity



44 / SABINE SCHULTE IM WALDE, HELMUT SCHMID, MATS ROOTH, STEFAN RIEZLER, DETLEF PRESCHER

bekanntgeben 14 0.999999 | ‘make public’

Sprecher 4 ‘spokesman’

Polizei 3 ‘police’

BundesAmt 3 ‘Federal Agency’
BiirgerMeister 2 ‘mayor’

VorstandsChef 2 ‘Chairman of the board’
GeschiftsLeitung 2 ‘manager’

Vorstand 2 ‘board of management’
unternehmen 1.99996 ‘company’

WetterAmt 1 ‘meteorological office’
VolksBank 1 ‘cooperative bank’

FIGURE 24 Intransitive Lexicon Entry: bekanntgeben ‘make public’

steigen 26 0.67273 | ‘rise’

Zahl 23.333 ‘number’

Preis 15.895 ‘price’
ArbeitsLosigkeit 10.8788 | ‘unemployment’
Lohn 9.72965 | ‘wage’
NachFrage 6.83619 | ‘demand’

Zins 6.80322 | ‘interest’
Auflage 5.22654 | ‘print run’
Beitrag 4.22577 | ‘contribution’
Produktion 4.21641 | ‘output’
GrundstuecksPreis 4 ‘price of a piece of land’

FIGURE 25 Intransitive Lexicon Entry: steigen ‘rise’

in the verbs of scalar change. Figure 26 shows 10 intransitive verbs which
take class 14 of a 50-classes model (corresponding to class 26 of the 35-
class model) as the most probable class to label their respective subject
slots. On the basis the most probable class labels these verbs can be
summarised as scalar motion verbs. When compared to linguistic classi-
fications of verbs given by (Schuhmacher 1986), we found an agreement
of our classification with the class of “einfache Anderungsverben” (simple
verbs of change) except for the verbs anwachsen ‘increase’ and stagnieren
‘stagnate’ which were not classified there at all.

An example of the two most probable subject-object class pairs of
a transitive verb, senken ‘lower’ is shown in Figure 27. Class 14 has
been introduced before as governmental/public authority and class 26 as
gradation/scalar change.

Figure 28 shows the transitive verb dauern ‘last’ selecting the class-
pair (0,10) with probability 0.957095 as semantic label for its subject
and object slots. Class 0 can be interpreted as project/action-class and
class 10 as class of time.
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0.741467
0.720221
0.693922
0.656021
0.438486
0.375039
0.316081
0.215156
0.160317
0.154633

ansteigen
steigen
absinken
sinken
schrumpfen
zuriickgehen
anwachsen
stagnieren
wachsen
hinzukommen

cgo up:
‘rise’
‘sink’

‘go down’
‘shrink’
‘decrease’
‘increase’
‘stagnate’
‘grow’

‘be added’

FIGURE 26 Intransitive Scalar Change Verbs

senken (14,26) 0.450352 | ‘lower’

BundesBank - LeitZins 5.81457 ‘Federal bank’ - ‘base rate’

BundesBank - Zins 2.97838 ‘Federal bank’ - ‘interest’

superMarkt - Preis 1 ‘super market’ - ‘price’

SommerGeschift - Verlust 1 ‘summer business’ - ‘loss’

BundesBank - DiskontSatz 0.99999 ‘Federal bank’ - ‘minimum lending rate’
senken (14,14) 0.147857

BundesBank - Lombardsatz 0.999973 | ‘Federal bank’ - ‘rate on loanes on security’

StrafAndrohung - AbtreibungsQuote  0.96842
StrafAndrohung - AbtreibungsZahl 0.96842

FachHandel - LagerKost
Harmonisierung - sozialNiveau

0.878333
0.764319

‘threat of punishment’ - ‘abortion rate’
‘threat of punishment’ - ‘number of abortions
‘stores’ - ‘storage charges’

‘harmonisation’ - ‘social level’

’

FIGURE 27 Transitive Lexicon Entries: senken ‘lower’

dauern (0, 10) 0.957095 | ‘last’/‘go on’

Entwirrung - Zeit 2 ‘disentanglement’ - ‘time’
BuergerFrageStunde - Stunde 2 ‘question time’ - ‘hour’
Prozess - Jahr 2 ‘trail’ - ‘year’
schreckensZeit - Jahr 1 ‘scaring time’ - ‘year’
ratenZahlung - Jahr 1 ‘buy in installments’ - ‘year’

FIGURE 28 Transitive Lexicon Entry: dauern ‘last’
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Linguistic Interpretation

In some linguistic accounts, multi-place verbs are decomposed into rep-
resentations involving (at least) one predicate or relation per argument.
For instance, the transitive causative/inchoative verb increase is com-
posed of an actor/causative verb combining with a one-place predicate
in the structure on the left in Figure 29. Linguistically, such represen-
tations are motivated by argument alternations (diathesis), case linking
and deep word order, language acquisition, scope ambiguity, by the de-
sire to represent aspects of lexical meaning, and by the fact that in some
languages the postulated decomposed representations are overt, with
each primitive predicate corresponding to a morpheme. For references
and recent discussion of this kind of theory see (Hale and Keyser 1993)
and (Kural 1996).

VP VP VP VP
NP V1 NP vl NP vl NP A%
|
A /\ R,, A increase,,
VP V VP A% VP v

Naer /N m /R

NP V NP V NP V

increase R,, R,, A increase,,

FIGURE 29 First Tree: Linguistic Lexical Entry for Transitive Verb increase.
Second Tree: Corresponding Lexical Entry with Induced Classes as
Relational Constants. Third Tree: Indexed Open Class Root added as
Conjunct in Transitive Scalar Motion increase. Fourth Tree: Induced Entry
for Related Intransitive increase.

We will sketch an understanding of the lexical representations in-
duced by latent-class labelling in terms of the linguistic theories men-
tioned above, aiming at an interpretation which combines computational
learnability, linguistic motivation, and denotational-semantic adequacy.
The basic idea is that latent classes are computational models of the
atomic relation symbols occurring in lexical-semantic representations.
As a first implementation, consider replacing the relation symbols in the
first tree in Figure 29 with relation symbols derived from the latent class
labelling. In the second tree in Fig 29, R17 and Rg are relation symbols
with indices derived from the labelling procedure of section 1.6. Such
representations can be semantically interpreted in standard ways, for
instance by interpreting relation symbols as denoting relations between



STATISTICAL GRAMMAR MODELS AND LEXICON ACQUISITION / 47

events and individuals.

Such representations are semantically inadequate for reasons given
in philosophical critiques of decomposed linguistic representations; see
(Fodor 1998) for recent discussion. A lexicon estimated in the above way
has as many primitive relations as there are latent classes. We guess
there should be a few hundred classes in an approximately complete
lexicon (which would have to be estimated from a corpus of hundreds of
millions of words or more). Fodor’s arguments, which are based on the
very limited degree of genuine interdefinability of lexical items and on
Putnam’s arguments for contextual determination of lexical meaning,
indicate that the number of basic concepts has the order of magnitude
of the lexicon itself. More concretely, a lexicon constructed along the
above principles would identify verbs which are labelled with the same
latent classes; for instance it might identify the representations of grab
and touch.

For these reasons, a semantically adequate lexicon must include ad-
ditional relational constants. We meet this requirement in a simple way,
by including as a conjunct a unique constant derived from the open-class
root, as in the third tree in Figure 29. We introduce indexing of the open
class root (copied from the class index) in order that homophony of open
class roots not result in common conjuncts in semantic representations—
for instance, we don’t want the two senses of decline exemplified in de-
cline the proposal and decline five percent to have a common entailment
represented by a common conjunct. This indexing method works as long
as the labelling process produces different latent class labels for the dif-
ferent senses.

The last tree in Figure 29 is the learned representation for the scalar
motion sense of the intransitive verb increase. In our approach, learning
the argument alternation (diathesis) relating the transitive increase (in
its scalar motion sense) to the intransitive increase (in its scalar motion
sense) amounts to learning representations with a common component
Ry7 Nincrease,,. In this case, this is achieved.
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1.6.4 Further Applications

Probabilistic clustering methods for natural language applications
mainly focus on the following two tasks: (i) induction of smooth proba-
bility models on language data, and (ii) automatic discovery of class-
structure in natural language. In the above described application of
clustering to lexicon induction we focussed our attention on the sec-
ond task. There we were interested in the structure of the induced
clusters as a statistical semantics underlying the data in question. In
other applications the class-structure itself is not of interest, rather
data clusters are consulted as general back-up sources of information
when information about specific events is sparse or missing in the
input. Here smooth clustering models can be used to solve sparse
data problems in various application areas. For applications of EM-
based clustering in lexical disambiguation in machine translation see
(Prescher et al. 2000), or in head-word lexicalisation of probabilistic
grammars see (Johnson and Riezler 2000, Riezler et al. 2000).

1.7 Conclusion

In the preceding sections, we presented a framework for the development
and training of statistical grammar models and successfully applied it
to the acquisition of lexicon information. In particular, we described
methods for the extraction of subcategorisation frames for verbs and for
the determination of selectional restrictions. The resulting information is
easy to use for lexicographers. Our approach has already been applied to
German, English, Portuguese and Chinese and will be applied to Greek
and Spanish in the near future. In addition, the linguistic information
gained in our experiments is valuable for natural-language applications
like lexicography, parsing, information retrieval, or machine translation.

In an extensive experiment, we applied semantic clustering tech-
niques to predicate-argument pairs in order to induce semantic classes
representing typical predicate-argument relationships. Such classes are
not only interesting from a linguistic point of view, but can also be di-
rectly used to solve sparse-data problems in natural language modelling.

The mathematically well-defined Expectation-Maximisation algo-
rithm for unsupervised learning was used in all our experiments. Al-
though there is no guarantee that the maximisation of the likelihood
of the training data which the EM algorithm performs, also improves
the linguistic correctness of the resulting syntactic analyses, our exper-
iments show that in practice this is the case. Gaining more insight into
the relationship between linguistic plausibility and likelihood of linguis-
tic analyses will be an interesting future research topic.
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