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A language-independent morphological component for the recognition and generation of
word forms is presented. Based on a lexicon of morphs, the approach combines two-level
morphology and a feature-based unification grammar describing word formation. To over-
come the heavy use of diacritics, feature structures are associated with the two-level rules.
These feature structures function as filters for the application of the rules. That way infor-
mation contained in the lexicon and the morphological grammar can guide the application
of the two-level rules. Moreover, information can be transmitted from the two-level part to
the grammar part. This approach allows for a natural description of some nonconcatena-
tive morphological phenomena as well as morphonological phenomena that are restricted
to certain word classes in their applicability. The approach is applied to German inflec-
tional and derivational morphology. The component may easily be incorporated into natu-
ral language understanding systems and can be especially useful in medical, scientific, or
technical languages where it can be used for the automatic processing of compound words.

INTRODUCTION

Until recently, little research effort was spent on morphology (and even less
on morphonology) in knowledge-based natural language processing and compu-
tational linguistics. It was not regarded as a problem of great theoretical interest.
Some natural language systems used full-form lexicons, eliminating the need for
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morphological components altogether. At least for inflectional morphology a
number of modules (for various natural languages) exist (for the German lan-
guage, e.g., see Trost and Dorffner, 1987; Finkler and Neumann, 1988; Koch et
al., 1989). These modules are based on the idea of grouping words into equiva-
lence classes according to the set of endings they take (including morphonologi-
cal alterations). Emphasis is on speed, efficiency, and portability, not on linguis-
tic appropriateness. Derivation and compounding, on the other hand, are
regarded as unwieldy for an algorithmic approach and left to the lexicon. Re-
cently, however, there is a renewed interest in morphological components (re-
flected in the large number of contributions to recent conferences, e.g., five at
COLING-88, four at European ACL-89). Why is this so?

The reasons are manifold. New grammar formalisms developed in the fea-
ture unification paradigm (cf. Shieber, 1986) provide for an integrated process-
ing of the various linguistic levels which were traditionally treated in a strictly
modular way. For the first time we can handle phenomena that cross the border
between two (or more) linguistic levels in a principle-based way. This is a strong
incentive to try to come up with a morphological component that is compatible
with such formalisms. For, it is impossible to draw a clear-cut borderline be-
tween morphosyntax and syntax at the sentence level. The intuitive concept
"word" defies an exact definition. Sometimes the same phenomenon might be
described as a syntactic one or as a word formation process, depending on
circumstances.

Take for example, to-infinitive formation in German. The usual way is to
put the particle zu in front of the bare infinitive just like in English (zu kaufen, to
buy) rendering a sequence of two words. For a certain class of verbs though
(those having a separable prefix) a single word is formed (e.g., einzukaufen, to
purchase). As a result, morphology must deal with the latter but not with the
former. A very similar problem is posed by the omission of the stem when
coordinating two words (e.g., Bin- und Verkauf for Einkauf und Verkauf pur-
chase and sale). Without knowledge about word formation, such a phrase cannot
be treated properly. To cope with such examples, a uniform processing of mor-
phological and syntactical structures seems desirable.

The lexicon cannot be regarded as a closed set of entries. At least nouns,
verbs, and adjectives are open word classes. Word formation is a very active
process that leads to the continuous creation of new words. A majority of them
are ad-hoc compounds that are invented on the spot and may never be used
again. One cannot expect them to be included in any system's lexicon. Neverthe-
less, a language understanding system needs means to cope with them. A pre-
requisite is a system that is capable of analyzing such words in terms of the
morphemes of which they are built.

There are more practical reasons, too. One is the development of natural
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words combine with a large number of affixes encoding a wide range of
morphosyntactic information. This leads to combinatoric explosion with re-
gard to the number of possible word forms. A number of morphonological
processes alter the surface forms depending on the phonological context. The
resulting huge number of different word classes makes the use of a conven-
tional classification-based morphological component technically impossible.

Another reason is knowledge acquisition. A lexicon containing the necessary
vocabulary is a basic part of every natural language system. Lexical structures
must be enlarged or changed all the time. The classification process used in
current morphological components is hardly understandable to the user of a
natural language system because it is used to encode all the morphonological
rules. On the other hand, it is almost impossible to leave the adaptation of the
lexicon solely to the expert. A partial remedy for this problem is the develop-
ment of intelligent knowledge-based acquisition systems (e.g., Ballard, 1986;
Trost and Buchberger, 1986). But all of these systems have to be developed for a
specific classification scheme. None of these acquisition components could be
used for a language other than the one for which it was made. Systems that allow
the description of morphological (and morphonological) processes in a declara-
tive way can do with a much more reasonable set of word classes and are,
therefore, easier to work with.

From a more abstract point of view, there is a strong tendency in computa-
tional linguistics toward formalisms that allow for the declarative description of
linguistic knowledge. The idiosyncrasies of a specific language can then be
captured in the data while systems can be designed independent of language.
Traditional morphological components do not fulfil these requests, because they
also always encode language-specific information in the processes. Another ad-
vantage of the declarative approach is that the same linguistic knowledge base
can be used for both analysis and generation. Bidirectional process models are
currently a promising research area (cf. Shieber, 1988).

This article next introduces the most widely used of the new approaches to
morphology, namely two-level morphology. Criticism brought forward against
this approach and some proposals for remedies are discussed. On the basis of
this discussion I introduce my ideas for a hybrid morphological system compris-
ing a unification-based morphosyntactic grammar and the rule part of two-level
morphology. The architecture of that system is explained in detail and I show
how it can overcome many of the problems of standard two-level morphology
by demonstrating its application to German morphology and morphonology.

Finally, I discuss some possible applications of such a system for practical
natural language understanding systems. Besides the general advantages men-
tioned above, some specifically suited application areas are pointed out. It can
be used to automatically analyze compounds with nonidiosyncratic semantics.
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especially in medical expressions. One advantage over other approaches is the
natural integration of that capability into my existing system.

TWO-LEVEL MORPHOLOGY

Rules for describing morphonological phenomena have been used in genera-
tive phonology for a long time. (For an introduction to the ideas of generative
phonology, see for example, Schane, 1973.) There, the derivation of a word
form from its lexical structure is performed by the successive application of
phonological rules creating a multistep process involving several intermediate
levels of representation. Such an approach is suited for generation but it leads to
problems if applied to analysis. Since the ordering of rule application influences
the result, it is difficult to reverse the process.

Two-level morphology is a an attempt to overcome these problems. It was
originally proposed by Kimmo Koskenniemi (1983, 1984) and has since been
implemented in a number of different systems (e.g., Karttunen, 1983). Start-
ing with Finish (Koskenniemi, 1985), it has been applied to a wide range of
natural languages. Among them are English (e.g., Karttunen and Wittenburg,
1983) and German (see "Describing German Morphology using Two-level
Rules" below), but also quite exotic ones, like Accadian (Kataja and Kosken-
niemi, 1988).

As the name suggests, the main idea behind two-level morphology is that
two levels suffice to describe the phonology (or orthography) of a natural lan-
guage. These two levels are called lexical level and surface level. Each level has
its own alphabet. On the surface level, words appear just as they are pronounced
(or written) in ordinary language, with the important exception of the null char-
acter, which will be described later. On the lexical level, the representation of
words includes special symbols—so-called diacritics—which are used to repre-
sent features that are not phonemes (or graphemes) but nevertheless constitute
necessary phonological information. Two diacritics that are always used are +
and $, which indicate morph boundary and word boundary, respectively.

The link between the two levels is a set of pairs of lexical and surface
characters. These pairs constitute possible mappings between lexical and surface
characters. Pairs are usually written as:

lexical character - colon - surface character (e.g., a:a or + :0)

To any of these pairs, rules may be attached to restrict their applicability. Pairs
with no attached rules can be applied as defaults. Rules serve to allow or enforce
(depending on the rule operator) the application of a pair in a certain surround-
ing phonological context. In contrast to generative morphology, rules are not
applied one after the other, but in parallel. They are viewed as constraints on
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mappings between the surface and the underlying form of morphs. Since there is
no ordering of the rules involved, this is a completely declarative way of de-
scription.

Rules consist of a substitution (one pair of characters), a left and a right
context (regular expressions made up from such pairs), and an operator. The
substitution indicates the affected character pair. The left and right context serve
to define the phonological conditions for that substitution to take place. The
operator defines the status of the rule. In the original version (Koskenniemi,
1984) there are four of them: <=, =>, <=> , and / <=.

The context restriction operator <= means that the substitution of the lexical
character is obligatory in the context defined by that rule (other phonological
contexts are not affected).

The surface coercion operator => means the substitution of the lexical character
is allowed only in this context* (it may not occur anywhere else).

The <=> is a combination of the former two operators.
The fourth operator /<= states prohibitions (i.e., the substitution may not take

place in this context).

As an example, let's look at a simple epenthesis rule:

+ :e <= {s:s x:x z:z[{s:s c:c} h:h]} _s:s ; (1)

This rule specifies that a morph boundary on the lexical level (indicated by the
' +') between s, x, z, sh, or ch on the left side and an 5 on the right side must
correspond to an e on the surface level. It makes no statements about other
contexts where ' + ' may map to an 'e'. This rule covers part of the cases where
an e is inserted between stem and an inflectional morph starting with s (like the
plural morpheme) in English. The idea is that, by default, the morph boundary
maps to the null character, but that in some contexts it maps to e. Rule (1) would
correctly produce, for example, dishes from dish + s. Of course, (1) does not
capture all the cases where epenthesis of e occurs; for example, spies could not
be produced from spy + s. A more complete rule would look like:

+ e: o {s:s x:x z:z [{s:s: c:c} h:h] :v [C y:] 0:0} _s:s; (2)

Rule (2) defines all contexts where + maps to an e (by use of the « operator).
It makes use of some conventions for abbreviations. (Other conventions not
used here are given in Dalrymple et al., 1987.) A colon followed by a charac-
ter denotes the set of pairs with that surface character. Accordingly, a character

*Default character pairs could be viewed as such a kind of rules with an empty context.
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followed by a colon means the set of pairs with that lexical character. Names
may be given to arbitrary sets of characters that are globally defined. In rule
(2), the C stands for the set of consonants (i.e., b:b, c:c, d:d,. . .). To cope
with the spies example, we need another rule that controls the mapping from y
to i.

y:i <=> C_{ + :e[ + :e:e]};
V C + _ + : C ; (3)

Rule (3) differs from (2) in that it has two different contexts. If either of them is
satisfied, the substitution must occur (i.e., contexts are OR connected). Contexts
are separated by semicolons. In the second context the ' + ' operator is used. It
indicates that at least one occurrence of the preceding sign is expected (the
operator '*' has the reading arbitrarily many occurrences). V stands for the set
of vowels. Rules (2) and (3) together would now correctly map spies to spy + s.
Rule (2) handles some more cases like mapping shelf + s to shelves (if an
appropriate rule for the pair f:v is available) and potato + s to potatoes.

A given pair of lexical and surface strings can map only if they are of equal
length. There is no possibility of omitting or inserting a character in one of the
levels. On the other hand, elision (deletion) and epenthesis (insertion) are com-
mon phonological phenomena. To cope with these, the null character (written as
0) is included in the surface alphabet. The null character is taken to be contained
in the surface string for the purpose of mapping lexical to surface string and vice
versa, but it does not show up in the output or input of the system. Diacritics are
mapped to the null character by default. Any other mapping of a diacritic has to
be licensed by a rule.

Assumption of the explicit null character is essential for the processing. A
mapping between a lexical and a surface string presupposes that for every posi-
tion there exists a character pair. This implies that both strings are of equal
length (nulls are considered as characters in this respect). Rules can then be
implemented as finite state transducers and these transducers can be applied in
parallel to a given pair of strings. The use of finite state machinery allows for
efficient implementation. An interesting aspect is the automatic compilation of
two-level rules into finite state transducers. One example for such a compiler
(named TWOL) is described in Dalrymple et al. (1987).

Up to now, we have described only the rule part of two-level morphology
that is responsible for taking care of morphonological phenomena. It is comple-
mented by a partitioned lexicon of morphs (or words) that takes care of word
formation by affixation. The underlying idea is that of partitioning the whole
lexicon into (nondisjunctive) continuation classes. The members of every contin-
uation class form their own sublexicon. For every morph, a set of legal continu-
ation classes is stored. The continuation class found with a morph determines
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which sublexicon must be searched for continuations. The class of morphs that
can begin a word is stored in the so-called init lexicon.

The whole process can be viewed as the stepping through a finite automaton.
A successful match can be taken as a move from some state x of the automaton to
some other state y. Lexical entries can be thought of as arcs of the automaton: a
sublexicon is a collection of arcs having a common from state. The lexicon in two-
level morphology is used for two purposes: one is to describe which combinations
of morphs are legal words of the language, the other one is to act as a filter
whenever a surface word form shall be mapped to a lexical form. Its use for the
second task is crucial because otherwise there would be no way to limit the
insertion of the null character.

To enable fast access, lexicons are organized in the form of a letter trie
(Fredkin, 1960). Such a structure is well suited for an incremental (letter-by-
letter) search because at every point in the trie exactly those continuations leading
to legal morphs are available. With every node that represents a legal morph its
continuation classes are stored. In recognition we can now make use of that
structure. Search starts at the root of the trie. Each character that is proposed must
be matched against the lexicon. Only if that character is a legal continuation at that
node in the trie may it be considered as a possible mapping.

Related Formalisms

Some proposals have been made to extend or change the two-level frame-
work as proposed by Koskenniemi. Bear (1986) notes the difficulty in express-
ing optional rules with the standard rule set. As an example he gives e insertion
between stems ending in o and flectional s in English. In some cases (e.g.,
potatoes) the e is obligatory, in some others (e.g., banjoes or banjos) it is
optional, and in some (e.g., pianos} it may not occur. To cope with optionality,
he proposes a system with a slightly altered set of operators.

In particular, Bear's system uses the three operators—'allowed', 'disal-
lowed' and 'requested'—instead of the standard ones. As in the standard formal-
ism there is a set of default character pairs. 'Allowed' rules serve to restrict the
occurrence of a character pair to certain contexts, 'disallowed' rules, on the
other hand prohibit the occurrence of a certain character pair in the given con-
text. The 'required' rule is a combination of an 'allowed' rule with a corre-
sponding 'disallowed' rule for all the other character pairs having the same
lexical character. Internally, 'required' rules are represented using the other two
operators. Unfortunately, Bear's proposal solves the above-stated problem only
partially. One can now state rules in a way that the e is always optional, thereby
overgenerating for all words where e insertion is required or forbidden.

There is a correspondence to Koskenniemi's operators. The 'required' con-
text restriction corresponds to the <=> operator, 'allowed' to =>. The <= has a
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more complicated correspondence. The rule + :e <= s:s s:s ; in the Kosken-
niemi formalism would correspond to + :0 disallowed in s:s s:s iff + :0 and
+ :e are the only pairs with ' + ' as lexical character.

Bear also proposes a different implementation of the two-level rules. Instead
of their transformation to finite state transducers, the rules are interpreted di-
rectly. While working from left to right over the input string, the system keeps
track of the left contexts of all rules. If a left context is found to be satisfied, the
rule becomes applicable, that is, for every such allowed rule a branch (repre-
senting a possible partial mapping) is created (if it is not wed out by a 'disal-
lowed' rule). The right context of this rule must now be watched. If it turns out
to be fulfilled (and if no disallowed rule becomes true) a successful match has
been reached.

One subtle difference between direct rule interpretation and transducers oc-
curs in the repeated application of the same rule to one string. The transducer
implicitly extends the phonological context to the whole string. It must therefore
explicitly take care of overlapping right and left contexts [e.g., in (1), the pair
s:s constitutes both a left and right context]. With direct interpretation, a new
instance of the rule is activated every time the left context is found in the string
and overlapping must not be treated explicitly.

Black et al. (1987) note the inelegance of Koskenniemi's formalism for
describing a phonological (or orthographic) change that affects not a single char-
acter but a sequence of characters. In Koskenniemi's algorithm, this requires the
definition of a separate rule for every character involved, the interaction of
which is not easy to understand.

As a remedy, Black et al. (1987) propose a slightly different form of rules.
Their rules consist of a surface string (called LHS for left-hand side), an opera-
tor (<= or =>) and a lexical string (called RHS for right-hand side). LHS and
RHS must be of equal length. Surface-to-lexical rules (=>) request that there
exists a partition of the surface string so that each partition is the LHS of a rule
and the lexical string is a concatenation of the corresponding RHSs. Lexical-to-
surface rules (<=) request that any substring of a lexical string which equals a
RHS of a rule must correspond to the surface string of the LHS of the same rule.
The rules in (4) are equivalent to rule (1).
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ches => ch + s ches <= ch + s (4)

These rules collapse context and substitution into one indistinguishable unit.
Instead of regular expressions, only strings are allowed. Using this approach,
phonological (orthographical) changes affecting more than one character can be
described easily.

A drawback is the fact that surface-to-lexical rules may not overlap. If two
different changes happen to occur close to each other, they must be captured in a
single rule. It remains unclear how this could be done in a situation where the
same rule must be applied to an unknown number of instances. Take, for exam-
ple, a phonological process like vowel harmony in Turkish. The stem vowel
determines the vowel in the surface form of all suffixes. So-called large vowel
harmony enforces i after stem e and i, u after ö and ü (we disregard the rest of
the Turkish vowels here). Consequently, the lexical form bil+ Vr+ Vm* would
render the surface form bilirim (I speak), while gör +Vr+ Vm yields görürüm (I
see). Such a process could easily be captured in the standard formalism with
rules like

V:i <=> {:e :i} X* _; (where X is the set of all characters besides the vowels)

(5)

but it cannot be described in the same generality in the rule formalism described
by Black et al. (1987).

Ruessink (1989) tries to remove this problem by introducing contexts again.
Both LHS and RHS may come with a left and right context. He also allows LHS
and RHS to be of different length, doing away with the null character. He gives
no account of the resulting complexity of his algorithm though. One can suspect
that it is, in general, less constrained than the Koskenniemi system.

Recently, some alternative proposals for morphological systems have been
made in computational linguistics. They include so-called paradigmatic mor-
phology described in Calder (1989) and the DATR system (Evans and Gazdar,
1989a, 1989b). Common to both is the idea to introduce some default mecha-
nism that makes it possible to define a hierarchically structured lexicon where
general information is stored at a very high level. Lower in the hierarchy this
information can be overwritten. Both systems seem to be more concerned with
morphosyntax than with morphonology. It is an open question if these ap-
proaches could somehow be combined with two-level rules.

*The V stands for a lexically underspecifled vowel. Its surface form is determined by the preceding stem
vowel and the associated vowel harmony process.
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Criticism against Two-Level Morphology

Criticism has been directed against various aspects of two-level morphology.
We will start with some results by Barton (1986) and Barton et al. (1987, Chap-
ter 5) concerning the complexity of two-level morphology. The claim of sup-
porters of two-level morphology is that because of the compilation of rules into
finite state transducers and because of the use of continuation classes for
morphosyntax, these systems are inherently fast and efficient.

In contrast to that claim, Barton shows that—despite the use of finite state
machinery—the problem is at least NP-complete with respect to the number of
rules. This is demonstrated by using two-level morphology to solve arbitrary
constraint-satisfaction problems which leads to combinatorial search. At the
same time he argues that such complexity is probably not required by the prob-
lems posed by the morphology of natural languages. He says that morphology
can do with a more constrained algorithm than the standard mechanism used in
two-level morphology. He proposes the use of constraint algorithm with local
information flow and restricted interactions between different automata. This
less complex algorithm is based on an algorithm for the interpretation of line
drawings described by Waltz (1975).

Koskenniemi and Church (1988) argue that Barton—while his results are
formally correct—misses the point, because inherent properties of natural lan-
guages inhibit the creation of rule sets that would lead to exponential complexity.
More specifically, they argue that the only critical phonological processes are
the vowel harmony processes like (5) and that existing languages exhibit, at
most, two different vowel harmony processes. Still, it seems promising to try to
restrict the complexity of two-level morphology by using a weaker algorithm. It
is interesting to note in this respect that Ritchie (1989) proves that arbitrary
finite state transducers allow the expression of problems that cannot be ex-
pressed in two-level rules. He does not show though if his results have any
impact on the complexity considerations of Barton.

Apart from complexity and efficiency considerations, linguistically moti-
vated criticism against the two-level approach has also been brought forward. In
Koskenniemi's original proposal, morphosyntax is handled with the use of con-
tinuation classes. The use of continuation classes is probably insufficient for the
description of more complicated morphological phenomena. Even if it were
sufficient, it makes it very difficult to state the word grammar in a linguistically
adequate way. It also goes against the tendency to integrate morphology and
syntax more closely as suggested in the introduction. As a solution, the replace-
ment of these continuation classes with a grammar based on feature structures
describing the legal combinations of morphemes has been proposed in several
papers (e.g., Bear, 1986; Ritchie et al., 1987; Carson, 1988; Pulman et al.,
1988; Görz and Paulus, 1988). Of course, unification of feature structures with
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disjunction and negation is NP-complete (Smolka, 1988). Therefore, compared
to continuation classes, one gets a higher degree of complexity. But feature
structures are easily integrated into a sentence grammar that is based on such
feature structures as well. Therefore, their use in morphology seems to be well
motivated.

Another point is the liberal use of diacritics at the lexical level. The original
intention was to describe phonological features apart from the phonemes like
morph boundaries and stress markers. But, mainly because there is no way to
restrict the application of phonological rules by the morphosyntax (captured in
the continuation classes), diacritics are used to express purely morphological
features as well. Several authors have criticized this point. Bear (1988b, p. 29),
for example, notes that

. . . diacritics are put into the lexical representation of a word in order to allow
the linguist to write a phonological rule that applies in some words and not
others according to the presence or absence of the diacritic.

This points at a serious lack of expressivity of the formalism which forces
grammar writers to use available features in a nonintended way.

One typical problem with two-level morphology is that some morphonolo-
gical rules apply only to certain subclasses of the vocabulary. As an example,
Bear (1988b) cites the plural forms of English nouns ending in -o like potato
and piano which are potato-e-s and piano-s respectively. Emele (1988) gives
some examples for German, where schwa (an unmarked neutral vowel, in
German orthographically represented by e) epenthesis depends on word cate-
gory. The widely used solution in such cases is the use of a diacritic to ensure
correct rule application, that is, a diacritic is inserted in the lexical representa-
tions belonging to that subclass and the corresponding rule expects that dia-
critic in its context.

A related problem is the fact that morphosyntax makes use not only of
affixation but also of a range of nonconcatenative processes. One such example
is umlaut in German. Umlaut is used to express a range of morphosyntactic
features (see the next section). It coincides with certain affixes (one of which
happens to be the null morph). In standard two-level morphology, this can again
be handled by marking these affixes with a certain diacritic which is then put
into the right context of umlaut rules. The only use of that diacritic is to encode
morphosyntactic information at the phonological level. Such a use of diacritics
should be reexamined. Diacritics have their place in two-level morphology if
they are justified for phonological reasons, but they should not be used to trans-
fer information or to encode purely morphological features.

More generally stated, a major problem with the standard two-level formal-
ism is the lack of interaction between the two-level rules and the word formation
nert (i.e. the continuation classes). When replacing continuation classes with a
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feature-based unification grammar, one gets the ability to express all morpholog-
ical features there. What is needed is a way to transfer information from the
unification grammar to the two-level rules and vice versa. I will show that this
can be accomplished by associating feature structures—called filters—with the
two-level rules.

One final remark regarding the application of two-level morphology to writ-
ten language: Two-level rules have been developed as a means to deal with
morphonology. Nevertheless, most applications deal with written language,
hence, one should apply them to orthography. This may lead to some complica-
tions because rules of orthography are slow to adapt to changes in the language,
and many orthographic conventions can be explained only diachronically.

German Morphology and Morphonology

German is an inflecting language with a comparatively rich morphology.
Basically, inflection is expressed by affixation. As usual in inflecting lan-
guages, such affixes may carry more than one morphosyntactic feature (port-
manteau morphs), and the same morpheme may be realized by different affixes
in different inflection paradigms. The unmarked case, that is, the nonoccur-
rence of an inflectional affix is also quite common (e.g., case marking for
nouns is rudimentary, at most, genitive singular and dative plural are explicitly
marked by endings).

The use of a prefix for morphosyntactic making is restricted to two cases.
One is the particle ge-, which indicates past participle together with the appro-
priate ending sag (say) => ge-sag-t]. The other one is the particle zu which
helps forming to-infinitive just like it does in English.

Apart from affixation there are some nonconcatenative morphological phe-
nomena as well. The most prominent one is umlaut, where the stem vowel
changes in a systematic manner. Transformations are a => a, o => o, u => u, and,
in some cases, e => i. While the umlaut can historically be explained as a
phonological phenomenon, it has attained the status of morphological feature* in
modern German. Umlaut realizes quite different features. Most important is its
use in inflection. With nouns it can mark the plural either by itself (e.g., Mutter
=> Mutter) or in combination with a some plural endings (e.g., Mann => Man-
ner), depending on the inflection paradigm. With adjectives, it is used to mark
some comparative forms (gro@ => grower => am größten), for verbs following
strong conjugation, it marks the subjunctive II (gabst =* gäbst) and second- and
third-person singular of the indicative present tense (gebe => gibst). It also

*One fact supporting this claim is that it is still productive in some cases. When forming a diminutive
form using the derivative affix -chen, the stem may carry an umlaut even if its a foreign one (e.g., Atom =>
Atömchen).
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occurs in some forms of modal verbs like the plural forms of indicative present
tense.

Umlaut also occurs in derivation in combination with a number of deriva-
tional particles, for example -lich (klagen => kläglich). In contrast to its use in
inflection, umlautung provides for no extra morphosyntactic information in deri-
vational forms. Lastly, it appears in compounding in combination with some
"Fugenelement" (joining element) (e.g., Männerchor, male chorus). (Alterna-
tively, one could interpret these forms as plurals, because they always coincide
morphologically with the plural form.)

To have the potential for umlaut is an idiosyncratic property of stems, at
least viewed synchronically. Stems having an umlaut in inflection usually also
take one in derivation and vice versa. Unfortunately, there are some exceptions
to the rule. The plural of Hand (hand) is Hände while the derived adjective
handlich (handy) shows no umlaut. The plural of the noun Hund (dog) is Hunde
(although the plural morph -e triggers umlaut, e.g., Wolf => Wölfe), while the
derivation with suffix -in is Hündin (female dog).

There are two common ways to cope with umlautung in conventional mor-
phological components for German. One is to treat all forms created by um-
lautung as suppletions, that is, to enter these forms explicitly into the lexicon.
This is linguistically inadequate, because it obscures the morphological (and
phonological) similarity between the two forms. The other solution is a special
function replacing (and interpreting) or generating the umlaut in all stems
which are marked for umlautung required by the context. This makes um-
lautung a special case neglecting its status as a regular means of morphosyntac-
tic marking.

Besides umlaut there are other vowel changes as well, but they are lexica-
lized and not recognized as conforming to a rule anymore. The so-called ablaut
is used to form the different tensed forms of modal verbs and verbs following
strong conjugation. For instance, the verb schwimmen (to swim) has the allo-
morphs schwimm, schwamm, schwomm for the formation of present tense, past
tense, and past participle, respectively. Stems formed with ablaut are probably
best treated as suppletive forms, because rules governing the vowel change
would need a quite idiosyncratic phonological context (for the stem vowel i there
is, e.g., also the possibility sing, sang, sung) and to contemporary speakers of
German, the formation of these forms from a common stem is no more transpar-
ent.

Another particular feature of German morphology are separable verb pre-
fixes, for example, einkaufen (to buy), but ich kaufe ein (I buy) when used in a
main clause. These particles force the past participle prefix ge- (ein-ge-kauft) as
well as infinitival zu (ein-zu-kaufen) into an infix position.

There are a number of morphonological rules. The most interesting ones
concern the occurrence (or absence) of schwa at morph boundaries (between a
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stem and an inflectional ending) and inside some stems (which would otherwise
not be phonologically well formed). According to current literature (Rennison,
1980; Giegerich, 1987; Wiese, 1988), this phenomenon is best explained as
epenthesis (i.e., insertion) of the schwa. The application of epenthesis rules in
some cases seems to depend on the morphological class, compare for example
the two different past tense forms of senden (to send) sand-te vs. send-e-te,
where schwa epenthesis occurs only with the weak inflexional paradigm.

We will now go through some of the examples in more detail to show the
problems in developing a coherent theory of schwa epenthesis in German word
forms. Let's start with schwa epenthesis inside stems. Roughly, the concerned
stems are those ending with a consonant cluster the last consonant of which is /,
r, m or n.

(6)

The rule for stem epenthesis is roughly the following: For all those stems, schwa
is inserted if the morph is followed by a word boundary (e.g., Trockeneis, dry
ice) or a derivative morph starting with a consonant (e.g., atemlos, breathless).
Those stems ending in / and r additionally insert schwa if followed by any
morph starting with a consonant (e.g., handelst, you bargain).

We will now turn to schwa epenthesis at the morph boundary. A pervasive
phenomenon is schwa epenthesis before the ending n. This is true for most of the
different morphosyntactic uses, with verbs (geh + n => gehen), nouns (Fleck +
n => Flecken) and adjectives (alt + n => alten). There is some interdependence
between schwa inside the stem and this epenthesis rule. We will discuss this
problem later on.

verb stems ending with a final d or t also trigger schwa epenthesis before
inflectional s and t (e.g., bad + st => badest, arbeit + t => arbeitet). For verbs
following strong conjugation this rule does not apply in all cases (e.g., tritt + st
=> trittst, tritt + t => tritt, trat + st => tratst).

An interesting problem is posed by subjunctive formation. To indicate sub-
junctive, a schwa is always inserted between stem and endings. In cases where
epenthesis takes place with indicative as well, forms are of course indistinguish-
able. According to these data, one could suppose a morpheme for subjunctive
realized by the morph -e which is attached to the stem. There is one counterex-
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ample though. For stems ending in el and er (coming with a schwa inserted in
the stem) no subjunctive -e appears. If we do not want any schwa elision rules,
we cannot assume such a morph. Instead, we are forced to explain the data with
an epenthesis rule which is triggered by subjunctive.

A last case includes word forms where the schwa indicates the ending, for
example, first-person singular (geh-e, I go; sag-t-e, I said). According to Wiese
(1988) this can be explained by assuming a kind of "empty" morpheme which
cannot be realized at the surface but nevertheless triggers schwa epenthesis.

A different view on schwa in German is expressed by Issatschenko (1974).
He assumes two kinds of schwa. One which he calls "schwa mobile" can be
present or absent, depending on the phonological context. The other one called
"schwa constans" is always present. Schwa at the end of a word would be an
example of the schwa constans. Another example is the schwa that comes with
adjective endings. According to his theory, one would assume all of these end-
ings to start with e (e, em, en, er, es). This assumption gets the data straight.
Adjectives with a stem ending in el and er behave differently from verbs with
such stems if we assume the flectional affix to come without schwa (e.g., -ri) in
both cases: for the adjective teuer (expensive) affixation with n yields the word
form teuren; for the verb with stem wander (to hike), the form wandern.

Other morphonological phenomena (e.g., the elision of s or t in certain
contexts) pose no problems. They can be explained by post-lexical rules
straightforwardly without considering morphological features.

Finally, something should be said about orthography as opposed to phonol-
ogy. A phoneme is sometimes represented not by a single character but by a
combination of several characters (in German such combinations are sch, ch,
and ng, which represent the phonemes \, x, and , respectively). Another prob-
lem is the optional representation of the length of a vowel. In German, an h
following a vowel indicates a long vowel (ah, eh, ih, oh, uh). A different
representation is ie for a long 'i'. Both methods may be combined yielding ieh to
represent the same phoneme. Some vowels may simply be geminated to express
length (aa, ee, oo). Short vowels can be indicated by a gemination of the follow-
ing consonant.

In itself, these things are not necessarily problems for two-level morphol-
ogy. They may become problems only when different word forms make use of
different conventions. Take, for example, the German verb sehen (to see). The
second-person singular is formed by umlaut transforming e to i. Thus, one
would expect the form to be du sihst (you see), but the length of the vowel is
indicated differently, producing the actual form du siehst. Such problems render
some forms as irregular that would otherwise fall into the regular classes.

A possible solution to such problems with orthography is to represent com-
binations of characters representing a single phoneme as a single surface (and
corresponding lexical) character. For example, ch in German can never indicate
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two phonemes, so one might as well treat them as a single character. With sch, it
is a bit more difficult. It can indicate a single phoneme (e.g., haschen, to snatch)
or a concatenation of s and ch (e.g., Haschen, bunny). This leads to an ambigu-
ity in the creation of the surface string.

DESCRIBING MORPHONOLOGY AND MORPHOLOGY USING
TWO-LEVEL MORPHOLOGY

How can two-level rules be used to describe morphonological phenomena?
Apparently, the most important application of two-level rules is to describe the
phonological (or orthographical) changes that occur in the process of concatenat-
ing morphs. There are three types of possible alterations:

a. A lexical character may change to a different surface character [rule (3) is
an example for a change from lexical y to surface i].

b. An elision rule may prevent a lexical character from appearing in the
surface string. In two-level morphology, this involves a rule that maps that charac-
ter to the null character (while the default is a mapping to the corresponding
surface character).

c. The third possibility is epenthesis. There a character is inserted in the
surface string that has no correspondence in the lexical string. The null character
is not included in the lexical alphabet; therefore, a direct encoding of this phenom-
enon is impossible. Instead we must use a more indirect way. We need a lexical
character that maps to the null character by default (like diacritics). An epenthesis
rule is a rule that defines a mapping of that lexical character to a surface character
different from the null character. An example is rule (2), which maps lexical ' + '
to surface e.

More difficult to handle are situations where more than one character is in-
volved in a phonological (or orthographic) change. We must then define different
rules for each character involved. Moreover, one must make sure that these rules
interact in the expected way. Again, a simple example would be rules (2) and (3).
Their contexts are defined in such a way that the expected orthographic changes
take place. Rule (2) maps ' + ' to e after a lexical y. Rule (3), on the other hand,
maps y to i in front of a ' + ' mapped to e.

Basically, two-level morphology has been developed to deal with morphonolo-
gical phenomena that are related to the process of affixation. Historically, this can
be explained because affixation is the single most important morphological pro-
cess in agglutinating languages like Finnish, the first language to which two-level
morphology was applied.

Morphosyntax is handled with the use of continuation classes (see "Two-
Level Morphology," above). Again, the emphasis is on affixation. Continuation
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classes handle "rightward" subcategorization straightforwardly in that one can
define, for every morph, the class of morphs that may follow to complement it.
"Leftward" subcategorization can be dealt with only indirectly. If, for example, a
derivative suffix requests a certain subclass of adjectives, this cannot be stated
with the suffix. Instead, it must be encoded in the continuation classes of the
adjectives concerned.

More complex concatenation rules, where information must be transmitted
over some distance, can hardly be described in a natural way using continuation
classes. Take, for example, prefixes that go only with a certain class of endings
(examples in German are the past participle formed by the prefix ge- and a suffix
and to-infinitive of verbs with separable prefix). Grammar rules are much better
suited for this task.

Besides affixation, there is a wide range of nonconcatenative morphological
phenomena as well. An attempt to apply a two-level device to such phenomena as
well is described in Kay (1987). His aim is to describe Arabic word formation. In
Arabic, root forms are triples of consonants. Their internal ordering and vocaliza-
tion in a specific word form carries the morphosyntactic information. Kay pro-
poses to use transducers running in parallel on four instead of two tapes. One is
the surface tape as usual. The other ones are for the consonant triple (resembling
the root), the vowels for vocalization, and the pattern of vowel-consonant distribu-
tion (describing the morphosyntactic status), respectively. Morphological knowl-
edge is encoded in the quadruples of characters—called frames—responsible for
the mapping of the tapes. Although it is a very interesting approach, it has not
been pursued further in the literature. Approaches to deal with nonconcatenative
morphosyntax in German (e.g., umlaut) are described in the next section.

We have now reached the point where we can formulate some requirements a
two-level morphological component must meet if it shall be applied to the full
range of morphological phenomena described up to here.

• The integration of morphosyntax into a more general framework, including sen-
tence level syntax on the one hand and the more natural description of rightward
reaching subcategorization requirements on the other hand, ask for the use of a
(feature-based) word grammar instead of continuation classes.

• To handle morphosyntactic phenomena involving the change of the internal struc-
ture of a stem (e.g., German umlaut), we need a means to transfer information
between two-level rules and the word grammar. The indirect treatment with the
use of diacritics is inappropriate.

• Because the application of some morphonological rules is restricted to certain
morphosyntactic environments (e.g., word class) it must be possible to restrict
the application of two-level rules using filters that are checked against morpho-
syntactic information.
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Describing German Morphology Using Two-Level Rules

Many morphonological phenomena in German can be described straightfor-
wardly by two-level rules. There are, for example, elision rules for s and t at
morph boundaries. A lexical string like $ras + st$ must render the surface
string rast, $tritt + t$ the surface sting tritt. The following two rules will take
care of this:

s:0 <=> {s:s x:x z:z} + :0 ;

t:0 » t:t +:0_; (7)

Two phenomena require close attention: umlaut and schwa epenthesis. Two
different solutions have already been proposed for umlaut in the two-level para-
digm. Both solutions rely on the idea of representing stem vowels that exhibit
umlautung with special diacritics* (e.g., A) at the lexical level. Both are also
concerned only with umlaut in verb conjugation and disregard the other uses of
umlaut in German morphology.

Görz and Paulus (1988) extend the two-level formalism. To trigger the ap-
propriate substitution, they use a separate data structure which they call vowel
table. Stems contain only a "generic" vowel. The vowel table indicates for each
word form which vowel is to appear at the surface level for the generic vowel.
Using this vowel table they can handle ablaut as well.

Schiller and Steffens (1990) stay in the two-level paradigm. In stems that
exhibit umlaut, a diacritic represents that stem vowel. By default, this diacritic is
mapped to the original vowel (e.g., A => a). A rule is used to produce umlaut.
To trigger this rule, they introduce still another diacritic symbol. Flectional
endings triggering umlautung start with the diacritic $ (realized as 0 at the
surface level). (This $ should not be confused with the diacritic for word bound-
ary in the standard formalism. In the system of Schiller and Steffens a different
symbol is used for that purpose.) The context to the right of the substitution of
all umlaut rules requires the occurrence of exactly that $. Therefore, the umlaut
rule would fail if no such affix follows the stem. (As a consequence, the null
morph must be explicitly represented by $ in lexical strings where morphosyn-
tactic information is expressed by umlautung only.)

Although both solutions work, they provide no clean and general solution
for the integration of umlautung in the framework of two-level morphology. The
use of a separate data structure is contrary to the intuition that umlautung is a
regular phenomenon of German morphology, the treatment of which should

*One can regard these stem vowels as being underspecified lexically, which leads to different representa-
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require no extra mechanism. And the use of the diacritic $ is one that has been
rightly criticized in the literature (see "Related Formalisms," above). It places a
burden on morphonology which clearly belongs to morphosyntax.

The approach by Schiller and Steffens (1990) would also run into problems
if it were to be extended to derivational morphology (currently the system deals
only with inflection). As mentioned, umlaut in inflection does not always imply
umlaut in derivation and vice versa. What we do need in this case is some
explicit flow of information between the morphosyntactic part and the two-level
rules proper, as proposed above.

For schwa epenthesis inside stems, we use a separate diacritic e. The corre-
sponding default pair is e:0. If we adopt the idea of a "schwa constans" we can
define an epenthesis rule for e:e that is applicable across the whole lexicon. For
schwa epenthesis at the morph boundary, the situation is different. We need to
restrict the application of some of the various contexts attached to the + :e
epenthesis rule. Probably the most obvious example is that subjunctive mode
triggers schwa epenthesis (see "German Morphology and Morphonology,"
above). (Of course, the solution to introduce a diacritic is also open. But as with
umlaut this solution seems inappropriate.)

A remark is in order with regard to the use of continuation classes vs. more
elaborate grammar rules. Unlike agglutinating languages like Finnish, inflecting
languages like German use different inflectional paradigms for, say, declination
and conjugation but usually have only a quite limited vocabulary of endings.
Almost every ending has therefore different interpretations, that is, a certain
ending may stand for different morphemes in different contexts. This leads to
many different continuation classes (or sublexicons) and, consequently, to ineffi-
ciency. Furthermore, a single ending sometimes encodes two or more mor-
phemes in parallel (e.g., number and case, number and person). Another point
against the standard formalism are unmarked forms where a null morph is as-
sumed. An explicit word grammar makes it possible to treat null morphs exclu-
sively in the grammar part. They no longer have to show up in the lexical string
given to the the two-level part anymore.*

EXTENSIONS TO THE TWO-LEVEL FORMALISM

A number of proposals have been made to counter the criticism against two-
level morphology formulated in the section "Related Formalisms," above. To
us, the most important drawback seems to be the lack of a clear distinction
between morphology and morphonology. The concatenative part of morphology

*Note that the use of diacritics for the triggering of rules (e.g., to handle umlaut) entails that at least
those null morphs must show up in the lexical string which contain that diacritic (although it always translates
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has been separated from the two-level rules proper where all other phenomena
are handled. The only—very indirect—connection is via the use of diacritics.
This unmotivated use of diacritics has been rightly criticized.

A first step to overcome these problems is to replace continuation classes by
some other formalism more appropriate for the description of a word grammar.
Most alternatives up to now make use of some form of feature-unification-based
formalism (e.g., Bear, 1986; Ritchie et al., 1987; Carson, 1988; Görz and
Paulus, 1988). My system follows this line, too. The word grammar is exclu-
sively expressed in feature structures.

For the integration of word grammar and two-level rules according to the
demands expressed in the previous section, Bear (1988b) and Emele (1988)
suggest making use of the feature structure part to restrict rule application. Bear
(1988b) introduces the notion of what he calls "negative rule features." The
algorithm he proposes for their processing rests on the direct interpretation of
rules in his system as described uner "Related Formalisms," above. In the
course of recognition, all two-level rules that are applied must be collected.
"Allowed"-type rules must also be assigned to the character pair they support.
Whenever a morph boundary is reached, the algorithm must search the set of
rules. All those rules where the rule filter does not unify with the feature struc-
ture of the morph must be discarded. A character pair that is left without a
supporting rule indicates that the solution found so far must be discarded as a
whole.

There seem to be flaws in this algorithm. "Disallowed" rules block the use
of a character pair whenever their morphological context is found. If they are
provided with negative rule features, they would still block in the same cases.
Therefore, the morph that would exclude the application of that rule will never
be regarded as a possibility. In generation, of course this problem would not
appear. A second disadvantage is that the algorithm takes into account only such
features that are lexically linked to the morph where the rule applies.

Emele (1988) proposes allowing arbitrary feature structures as filters for
rules. His proposed rules are of the form IF feature structure, THEN two-level
rule. As an example, he gives a rule for umlaut with nouns. In our notation,*
this rule looks like:

IF [number: pi] THEN A:a <=>_; (8)

Although the basic idea behind this proposal seems plausible, there are several
problems. The possibility of umlaut is an idiosyncratic property of stems. Num-

*The original rule makes no use of the diacritic A Instead it uses the additional feature [umlaut + ] in the
rule All stems must be marked with either [umlaut + ] or [umlaut - ] and the phonological context must make
sure that only the stem vowel is changed Besides an obvious loss in efficiency little seems to depend on that
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ber, on the other hand, is indicated by the inflectional ending. One must, there-
fore, check the feature [number: p1] against the ending. Since, in general, it
depends on the grammar to which morph the needed information (in our exam-
ple [number: p1]) is attached, this is not a viable solution. Or we must make
sure that the relevant features are associated with the structure of the word as a
whole. This leads to difficulties, since the relevant information may be only
local and not be applicable to the whole word.

A second problem is that this filter works only with noun inflection. As we
have seen, umlaut is a much more pervasive feature of German morphology. To
integrate the morphosyntactic interpretation of umlaut into the rule filter should
be avoided. It would lead to separate rules for every different morphosyntactic
feature that is expressed by umlaut. Instead, we would like to transfer from the
two-level rule to the word grammar only the information that umlaut has taken
place. The interpretation of the umlaut is then left to morphosyntax.

In conclusion, we can say that both proposals recognize the problem, but
that their solution is not wholly appropriate and, also, that the algorithms pro-
posed contain some subtle errors. The rest of the paper is devoted to a thorough
discussion of my system. I take up the idea of attaching feature structures to the
two-level rules but the algorithm avoids the pitfalls pointed out in this section.

SYSTEM ARCHITECTURE

Now I can describe the architecture of my morphological component. It is a
further development along the lines suggested above. As we have seen in the last
section, there are two sources of problems for an approach restricting the appli-
cation of the two-level rules with the use of filters:

• The interdependence between the definition of the rule operators and filter
application must be considered. Both are means to restrict the applicability of
a rule and may therefore interfere with each other.

• The feature structure attached to a morph may be complete only when the
word grammar has been successfully applied to the whole string. When a
filter is checked against a feature structure during processing, the possible
incompleteness of that structure must be regarded.

The general architecture of the system consists of two parts. One is a
feature-based word grammar. This word grammar interprets the lexical string as
a sequence of morphs with attached feature structures. It integrates all these
feature structures into one feature structure representing the whole word form.
The other part is a set of two-level rules. They map between a surface and a
lexical string. Both parts of the system make use of a common lexicon of
morphs. Morph boundary and word boundary are part of the lexical representa-
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tion of morphs, that is, prefixes end with ' + ', suffixes start with ' + ', Accord-
ingly, every legal lexical string must purely be a concatenation of morphs.

To provide for the necessary interaction between word grammar and two-
level rules, it is possible to attach arbitrary feature structures (so-called filters)
to the two-level rules. These filters are used to restrict the application of the
rules. The purpose of the rules is to license a certain character pair. A rule may
be applied only if its filter unifies with the feature structure of the morph to
which the lexical character of that pair belongs. Since a lexical string is just a
concatenation of morphs, that morph is always defined.

Figure 1 gives a sketch of the architecture. The two parts operate largely
independently. Two-level rules operate on the characters, the word grammar on
the feature structures. They are coupled via the lexicon which contains all legal
morphs. Morphs are seen as sequences of characters by the two-level part and as
bundles of feature structures by the word grammar. Explicit interaction between
the two parts is made possible by the filters. They allow the transformation of
information directly from the two-level part into the feature structures and the
other way round.

If an obligatory rule and an optional rule are applicable at the same time, the
obligatory rule wins. Two (or more) applicable optional rules show a (local)
ambiguity, two different applicable obligatory ones mean a failure (this could
happen only if the two rules have nonexclusive contexts). The drawback with
the "obligatory" operator is just that possibility of conflict. (Conflicts may of
course also arise in the Koskenniemi, 1983, system. For a discussion, see Dal-
rymple et al., 1987.) The advantage is that we can avoid the problem with
Bear's 'disallowed' operator with respect to the rule filters.

The mapping from one string (lexical or surface) to the other one(s) is
organized in a breadth-first way. Every rule with a satisfied (or empty) left
context is active. Those active rules where a fitting character pair is found
constitute one hypothesis, that is, at every point in that process there are as
many hypotheses as there are different character pairs licensed by rules. One can
view this process as spanning a search tree. Right contexts are used as filters for
new hypotheses. If no more continuation can be found, that branch of the search
tree must be discarded. A special case is obligatory rules. If the application of an
obligatory rule leads to at least one successful solution, all the optional branches
starting at the same position are removed.

Morphs are organized in a letter-trie-structured lexicon. Each morph has an
associated feature graph describing its morphological and morphosyntactic prop-
erties. This lexicon is also accessed by the complementary unification grammar
part. That unification grammar encodes the word formation rules. The next
subsection will give a detailed description. For the moment, it suffices to say
that it governs the combination of stems with prefixes and suffixes while at the
same time delivering a morphosyntactic interpretation. To handle nonconcatena-
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tive morphology (i.e., umlaut) and to be able to restrict two-level rules to certain
morphological contexts, we can provide two-level rules with filters connecting
the two-level rules with the unification grammar.

Two different morphological components incorporating these ideas have
been implemented. A first implementation (Trost, 1990) was based on Bear
(1988a, 1988b). A short overview of this implementation that follows will give
us an opportunity to look at the problems of using rule filters in more detail. The
rest of this section describes in detail the second implementation of the hybrid
morphological component where the two-level part comes closer to the original
system of Koskenniemi.

A First Implementation

In a first implementation, I followed the approach of Beer (1988a, 1988b).
Rules are not translated into finite state transducers but are interpreted directly.
A slightly different interpretation of the operators helped to avoid the problem
with rule filters that Bear's system encounters. Rules can be either 'obligatory'
(i.e., if the phonological context is present, the only possible mapping for the
lexical character is defined by the substitution pair) or 'optional' (i.e., the rule
may be applied if applicable; this is of course, equivalent to Bear's "allowed"
operator).

A rule may be applied only if its filter unifies with the feature structure of
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the morph actually processed (i.e., the morph that contains the lexical character
of the substitution pair of the rule). This is a relevant specification which is
missing in both Emele (1988) and Bear (1988b). It commits us to including the
morph boundary in the lexical representation of the morphs. We can now always
be sure which feature structure we have to check the filter against.

In generation, filter checking is easy because all the information is already
available with the feature structures of the morphs. Before generating a surface
character, unification of the filter of the licensing rule with the feature structure
of the morph is attempted. In case of failure the application of that rule is
blocked. With recognition the task is more difficult. At the time of the selection
of the character pair, the morph will not yet be recognized. The filters must be
stored and are checked against each candidate morph. Only those where unifica-
tion succeeds may be considered as possible candidates (if the right context of
the two-level rule applies too).

It can easily be seen that this procedure also handles the task of transmitting
information from the two-level part to the word grammar. Filters contain infor-
mation that is unified with the feature structures of the morphs. This influences
the working of the unification grammar. Therefore, in recognition, the relevant
information is transported from the two-level part to the grammar. In genera-
tion, on the other hand, filters are used to trigger those rules effecting noncon-
catenative morphological phenomena.

Because filters are tested against the feature structure of the actual morph,
they also make computation easier. While the use of diacritics to restrict the
application of rules makes a wide context necessary, this does not hold for
filters. There the propagation of the necessary information is performed by the
unification process, and the need for contexts is reduced to true phonological
cases.

We will now look at two examples from German morphology. The first one
is concerned with umlaut. What we need to do is to mark all stems that may take
umlaut. This is done by using a diacritic for the concerned (phonologically
underspecified) stem vowels (say, e.g., A for an a). We then need a feature
[umlaut: +] for all suffixes triggering umlaut, and [umlaut: -] for all others.
The following two rules are needed:

A:a <=> _ ; optional

A:ä <=> ; obligatory; filter: [umlaut +]

The feature [umlaut: + ] makes up the filter of the (obligatory) rule mapping
lexical A to surface a. The (optional) default rule for A:a needs no filter. Note
that we need no context at all for these rules.

Let's now take the plural form of Garten (garden) which is formed with
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umlaut: Garten. The morph found in the lexicon is gArten. For generation, it is
necessary to provide it with the feature [umlaut: +] to trigger the correct rule.
This is done by the unification grammar which combines the stem gArten with
the null morph making plural. The feature structure associated to the null morph
contains [umlaut: + ] which is unified with the feature structure of gArten. As a
result, the rule for A:ä applies, yielding the surface string gärten. In recognition
the rule unifies its filter with the features of the morph. This blocks all affixes in
the unification grammar which have the feature [umlaut: — ], as for example,
the singular morpheme.

As a second example, take schwa epenthesis. Let's look at the past form of
senden (to send), which can be either sendete or sandte. The two lexical strings
are $send + t + e$ and $sand + t + e$, respectively. To generate the correct
forms we need two rules for ' + ':

+ :0 <=> _ ; optional

+ :e <=> {d, t} _{s, t, n}; obligatory

These two rules would help to generate sendete correctly, but would also gener-
ate sandete, which is wrong. We need to prevent the application of the second
rule by providing it with an appropriate filter which restricts its application to
weak verb stems. Verb stems are marked in the lexicon with either {paradigm :
weak] or [paradigm : strong]. The appropriate filter is therefore [paradigm :
weak]. Now this rule can no longer be applied to $sand + t + e$, and applica-
tion of the optional default rule yields sandte.

Although that implementation of the system does work, there were some
drawbacks. It proved extremely difficult to directly interpret arbitrary regular
expressions as contexts (most difficult were contexts of unbounded length).
Also, the search through the tree of possible mappings can be computationally
very costly. These considerations led to a complete reimplementation of the
system which came closer to the original proposal in Koskenniemi (1983, 1984).
The rest of this section is devoted to a thorough description of that new imple-
mentation.

Word Grammar and Morph Lexicon

The word grammar is the part of the morphological component that governs
the rules for combining morphs to legal word forms. It relies on a lexicon of
morphs containing all the necessary morphological and morphosyntactic infor-
mation. As stated before, the lexicon is organized as a letter trie. At every node
that represents a legal morph, information is stored in the form of an extended
feature structure.
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In our system, we use an approach that relies solely on feature structures for
both the morph lexicon and the word grammar without using a context-free
backbone for the rules of the latter. The distinction between grammar and lexi-
con is blurred in such an approach. This view of the grammar is influenced by
head-driven phase structure grammar (HPSG) as described in Pollard and Sag
(1987). There is a distinction in HPSG between grammar principles on the one
hand and language specific grammar rules and lexical entries on the other hand.
Principles are applied to every legal feature structure. They should capture in-
formation that is independent of the specific language and grammar. Language-
specific rules and lexical entries are more idiosyncratic. The basic idea, then, is
to apply principles in conjunction, and grammar rules and lexical entries in
disjunction.

A prerequisite for such an approach is a feature unification formalism which
can deal with disjunctice and implicative (or negative) feature structures. A
number of algorithms have been proposed and some systems have been imple-
mented that meet these requirements. Disjunctive feature structures were pro-
posed quite early (e.g., Karttunen, 1984). A formal semantics was given by
Kasper and Rounds (1986). First implementations based on the use of disjunc-
tive normal form proved to be inefficient. Recently, algorithms have been pro-
posed that promise to be much more efficient in the average case (Kasper, 1987;
Eisele and Dörre, 1988). A new generation based on feature logic (Ait-Kaci,
1984) may perform even better (e.g., Eisele and Dorre, 1989).

We use a feature unification formalism developed and implemented at the
Austrian Research Institute for Artificial Intelligence (Matiasek, 1990), which
builds on the algorithm proposed in Eisele and Dorre (1988) for handling dis-
junction. It also allows for implication (as proposed in Kasper, 1988), with a
built-in modus-ponens inference rules. Using this feature unification system, we
can write grammar principles in the form of implicative feature structures. In
our morphosyntactic grammar there are very few principles needed. The most
important one is a head feature convention (cf. Pollard and Sag, 1987, p. 58):

Head feature convention simply pushes the information up from the head daugh-
ter. Next there is a rudimentary form of the semantics principle. Currently its
only task is to push root information up the projection path. For the semantic
interpretation of compounds one would, of course, need a more elaborate form
of that principle.
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Projection is very simple. Some lexical entries subcategorize for other items.
This is indicated by a nonempty subcategorization list (this is the equivalent of
minimal bar level in Xbar theory). The subcategorization principle consists of
projection rules that are responsible for creating a structure where the original
structure is the head daughter, and the complement daughter is joined with the
first element of its subcategorization list. The rest of the subcategorization list is
just pushed "upward". One projection rule creates a headed structure with an
empty subcategorization list. The complement daughter path is linked to the first
element of the subcategorization list of the head daughter.

The last principle is concerned with the linear ordering of the constituents.
There is one rule for left and another one for right complementation. The pur-
pose of these rules is to get the boundary information correct.



438 H. Trost

These principles suffice for our purposes. It should be pointed out here why a
word grammar is much simpler than a sentence grammar:

• There are no optional constituents.
• There is always exactly one complement. Instead of head and complement,

we could as well use a simple functor-argument structure.
• The order of the constituents is fixed.
• Long-distance phenomena occur only in a very restricted form.

The lexicon contains an entry for every morph. I will shortly give some
information about the structure of the entries in the current lexicon of German
morphs. Note that the actual form of the lexicon entries must be viewed sepa-
rately from the overall design of the morphological component which would of
course also do well with a differently defined set of lexical entries and grammar
rules.

Figure 2 shows the maximal structure for a finite verb form. The occurrence
of prefixes is optional. This is no contradiction to the statement above that there
are no optional constituents in word grammar because prefixes categorize for
other constituents, not the other way round. All other constituents shown in Fig.
2 must occur, but adjacent ones may be collapsed into a single constituent. For
example, all strong verbs have different present and past tense stems, that is
stem and tense-maker are collapsed into a tensed stem.

With the exception of prefixes, heads are in the right position and comple-
ments in the left. It is unclear whether inflectional-suffix and modus-marker
should not generally be collapsed into a single unit because the modus marker is
consistently realized by the null morph. The e that appears in some subjunctive
forms is best explained as schwa epenthesis (see "German Morphology and
Morphonology," above). Finite and infinite verb forms would then have an
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almost equal basic structure comprising prefixes, (tensed) stem, and modus-
marker. Using that head-complement structure, nouns and adjectives can be
described in an analogous way. Adjective stems combine with comparison
marker and inflectional suffix, noun stems with number and case markers.

To provide for the necessary information, morphs must have information
that is needed by the two level part, for example, an umlaut feature for endings.
The grammar must also provide for means to share these features with other
morphs where the information is needed. In the case of the umlaut feature this
means the stem for which the ending subcategorizes.

Two-Level Part

Our two-level rule formalism follows quite closely Koskenniemi's (1984)
proposal and the more detailed description of the KIMMO system given in
Dalrymple et al. (1987). Rules are expressed in the same notation and have the
same interpretation as proposed there. The important difference is the addition
of filters, which will be described later. Rules are translated into transition tables
of finite state transducers. Processing of the two-level rules is organized along
the lines proposed in Barton et al. (1987, Chapter 6). The idea is not to run
through the finite state automata but to use a local constraint algorithm (Waltz,
1975) instead.

A (very simplified) rule for schwa epenthesis in German verbs will help to
demonstrate our approach. The morphonological rule is as follows: An e must
be inserted between stems with final d or t and inflectionals starting with s or t.
Such a rule can be easily expressed in the formalism:

+ :e <=> {d:dt:t}_{s:s t:t}; (9)

Let's assume that this is our only rule and that the lexical alphabet comprises all
the regular German characters plus the diacritics ' +' and '$' with their usual
interpretation. The surface alphabet comprises all German characters too, plus the
'0'. Allowed character pairs are all pairs where a lexical character is mapped to its
direct surface counterpart (i.e., a:a, b:b, . . . ) plus the pairs + :0, + :e, and $:0.

Now our system containing rule (9) and the alphabet of pairs defined above
is applied to present tense forms of the two German verbs sagen (to say) and
senden (to send):

lexical level: $ s a g + e$ $ s a g + s t $ $ s e n d + e$ $ s e n d + s t $

surface level: O s a g O e O O s a g O s t O O s e n d O e O O s e n d e s t O

(10)
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As expected, the e is inserted only in case of the verb form sendest (you send).
In all other forms, rule (9) did block and the default pair + :0 was taken instead.
No other pairings could be found for either the lexical or the surface forms than
the ones given in (10). We will now expand our example to past tense forms of
the same verbs. Past tense of regular verbs (like the ones from our example)
form past tense by adding a t to their stem, for example, present tense sage (I
say) has the corresponding past tense sagte (I said).

lexical level: $ s a g + t + e$ $ s e n d + t + e $ $ s e n d + t + s t $

surface level: O s a g O t O e O O s e n d e t O e O O s e n d e t e s t O

(11)

Again, the rule functions just the way we expect it to. An e is inserted between
the stem send and the affix t, but not between sag and the t. Again, no other
pairings would fit. But senden is one of those few regular verbs that come with
two different stems for past tense. The second stem is sand. Applying our rules
to this stem leads to the pairings:

lexical level: $ s a n d + t + e$ $ s a n d + s t $

surface level: O s a n d e t O e O O s a n d e t e s t O ' '

Unfortunately, the surface forms are wrong this time. Instead of sandete and
sandetest one expects sandte and sandiest. That means that the epenthesis rule
should not apply in this case. Clearly, there is no morphonological reason for
this. The behavior is due to the word class, because all other verbs in this class
(e.g., wenderi) exhibit the same behavior. What we do need is a means of
restricting the application of two-level rules to certain classes of words. This is
done by providing rules with filters. In our example, that means attaching
information about the paradigm to all stems. The feature structure [paradigm:
strong] is attached to the lexical entry of all past tense stems behaving like
sand. We must then attach the filter [paradigm: weak] to rule (9), resulting in a
new rule:

+ :e & {d:d t:t} {s:s t:t}, [paradigm: weak]; (13)

Before applying this new rule (13), we must now unify its filter with the feature
structure associated with the affected morph. If unification is successful, the rule
must be applied; if it fails, this rule must not be considered. The only problem
that remains is to decide which moron is affected An intuitive solution is to say
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that the affected morph is the one to which the lexical character belongs whose
substitution is governed by the rule.

In our example, that lexical character is the ' +.' Up to now, we treated
morph boundaries as not belonging to any morph. There are two solutions to
this. One is to add the morph boundary to all prefixes and affixes (i.e., sand +
t + st is made up of the morphs sand, +t and +st). The other solution is to
assume that filters that are applied to ' +' must be checked against either the
preceding or the following morph. Adding boundaries to the morphs has the
additional benefit that it helps to discriminate between stems, prefixes, and suf-
fixes. Therefore this solution is the one adopted in my system.

Implementing the Rules

Because of efficiency considerations, we did not want to interpret rules
directly. Instead, we are translating them into transducer tables. These tables are
used to apply a local constraint mechanism (Waltz, 1975). We first show infor-
mally the construction of these tables from the rules. At the moment, this rule
compilation process is done manually. A compiler is under development that will
eventually perform this task automatically.

Going back to rule (13), we start by defining equivalence classes over our
pair alphabet with respect to the rule. One class is clearly formed by the substi-
tution pair +:e. A next class contains the set of all other pairings for lexical
' + ,' which is in our example only the pair + :0. As a next step, we are looking
at the pairs occurring in the contexts. The left context is a simple set of character
pairs. It forms the class {d:d t:t}. Analogously, the right context forms the class
{s:s t:t}. Next, we exclude all pairs that are in the intersection of these sets,
namely t:t. This pair must be excluded from both sets and forms a set of its own.
This leaves us with the three classes: {s:s}, {d:d}, and {t:t}. The remaining
pairs of the alphabet form together one more class. This class is designated by
=: =. On the basis of these equivalence classes, we can now construct our
transducer. Transition table (14) describes a transducer with four states which is
a translation of rule 9.
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The header line of diagram (14) denotes the four states. Periods following state
numbers indicate a terminal state. The columns give the successor states for
each transition. Dashes indicate that no transition starting from that node is
possible for that pair.

Let's now come back to our example (11). We must make a distinction
between recognition and generation. We will start with generation because it is
easier to describe. The input word shall be the lexical string $send + t + st$.
As a first step in our algorithm, we now search through the alphabet of pairs and
find for each lexical character possible surface characters. For most of our
lexical characters, we come up with exactly one pair. For ' + ' we find the two
pairs + :0 and + :e. This yields the following structure:

lexical level: $ s e n d + t + s t $

surface level: O s e n d G e t O e s t O ( 1 5 )

Next, we have to activate the appropriate subset from our rules. The selec-
tion criterion is the set of pairs used in (15). Rules associated to any of these
pairs are to be activated. For all activated rules with filters we must check for
applicability. This check is done against the feature structure of the morph to
which the pair that led to the activation of the rule belongs. In our example, the
only selected rule is (13). Since rule (13) has an associated filter, we have to
check whether it may be applied. For that purpose, we must examine the rele-
vant morphs, which are +t and +st. The feature structures of both unify with
the filter; therefore, the rule must be applied with both occurrences of lexical
' +.' We must now look through the transition table and write down all the
possible transitions for every pair (this has to be done for every applicable rule).
We also have to write down the start symbol in front of the first pair and the
terminal nodes after the last one.
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n n 1-1 2-1 4-1

d d 1-2 2-2 4-2

+ 0 1-1 2-4 4-1

e 2-3

t t 1-2 2-2 3-2

+ 0 1-1 2-4 4-1

e 2-3

s s 1-1 2-1 3-1

t t 1-2 2-2 3-2

$ 0 1-1 2-1 4-1

Terminal nodes: 1 2 4

We can now apply our constraint mechanism. It is searching for contingent
paths from the start node to one of the terminal nodes. It starts from the left,
canceling out all transitions that have no fitting predecessor. The start node is 1.
At the next position all transitions starting with a node different from 1 must be
eliminated. This leaves us with transition 1-1. The only continuation node is 1
again. We now have to apply this procedure iteratively until the terminal position
is reached.

If any transitions have been eliminated in the course of this procedure, we
must check whether the elimination of a successor has left a predecessor without
a continuation. Therefore, we have to go backward again, applying the same
strategy. Then the procedure goes forward again, and so on, until finally no
more canceling takes place, ending with the situation described in (17). If a
character pair has no more transition attached, it must be excluded from the list
of possibilities. If that leaves a position in the lexical string without any mapping
surface character, no legal mapping exists.

Start node: 1

$ 0 1-1 (17)
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S S 1-1

e e . 1 - 1

n n 1-1

d d 1-2

+ 0

e 2-3

t t 3-2
(17)

+ o - (Cont.)

e 2-3

s s 3-1

t t 1-2

$ 0 2-1

Terminal nodes: 1

The solution found is correct. Both ambiguities were resolved because in both
positions the pair + :0 has no more transition attached to it. All other pairs are
still valid mappings. This leaves the string sendetest as result.

The whole procedure becomes slightly more complicated if more than one
rule is involved. We must then transmit to all other rules the fact that a rule has
sorted out a possible pair. This is quite simple. We must cancel all possible
transitions at that position in all other rules. Then we apply our local constraint
algorithm again.

Let's now turn to an example where rule application should be blocked by
the filter. As we know, this is the case with the lexical string $sand + t + st$.
Testing the rule filter with the morphs again, we find that it should be applied in
the second, but not the first case. How are we to proceed? The solution that
springs to mind first is to omit the rule altogether if the filter block obviously
doesn't work, because then we would get no epenthesis in the second position as
well.



Recognition and Generation of Word Forms 445

Start node: 1 1

$ 0 1-1 2-1 4-1 $ 0 1-1

s s 1-1 2-1 3-1 s s 1-1

a a 1-1 2-1 4-1 a a 1-1

n n 1-1 2-1 4-1 n n 1-1

d d 1-2 2-2 4-2 d d 1-2

+ 0 1-1 2-4 4-1 + 0 -

e 2-3 e 2-3

t t 1-2 2-2 3-2 t t 3-2 ,10,

+ 0 1-1 2-4 4-1 + 0 -

e 2-3 e 2-3

s s 1-1 2-1 3-1 s s 3-1

t t 1-2 2-2 3-2 t t 1-2

$ 0 1-1 2-1 4-1 $ 0 2-1

Terminal nodes: 1 2 4 1

What we really need is to locally change the automaton. That can be done by
eliminating the transition for + :e. Unfortunately this is not sufficient. Now the
rule would block altogether, because we have designed the automaton in a such a
way as to prevent it from allowing the default pair if the specified context is
present. We must now enable the automaton to continue from the state that it
reaches by processing + :0 with those continuations which are normally allowed
only as continuations of + :e. This leads to the following automaton:

(19)
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+ :0

d:d

s:s

t:t

= . =

1

2

1

2

1

4

2

1 1

2 2

1

1

2

1

2

1

(19)
(Cont.)

In this table, state 3 is useless because it cannot be reached anymore. Instead we
can continue with s:s and t:t from state 4. That is exactly what we want in the
situation where the filter blocks. We must now find a way to simulate this sort of
behavior just in the positions where it is needed.

In our constraint algorithm, we can simulate that behavior with some minor
adaptations. The column corresponding to + :e must be eliminated. Now the
only possible path is via the alternative + :0. But there would be no continua-
tions. We now check for the next pair(s). In our example this is the t:t. We then
insert the path 4-2 at that position. Now the algorithm will find a contingent path
while correctly blocking the rule.

(20)

Start node: 1 1

$ 0 1-1 2-1 4-1 $ 0 1-1

s s 1-1 2-1 3-1 s s 1-1

a a 1-1 2-1 4-1 a a 1-1

n n 1-1 2-1 4-1 n n 1-1

d d 1-2 2-2 4-2 d d 1-2

+ 0 1-1 2-4 4-1 + 0 2-4

e - e -

t t 1-2 2-2 3-2 4-2 t t 4-2

+ 0 1-1 2-4 4-1 + 0 -
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e 2-3 e 2-3

s s 1-1 2-1 3-1 s s 3-1

(20)
t t 1-2 2-2 3-2 t t 1-2 (Cont)

$ 0 1-1 2-1 4-1 $ 0 2-1

Terminal nodes: 1 2 4 1

Let us now reconsider the algorithm for effecting the local change in the
behavior of the automaton. First, we must always be able to know to which
context of the rule the filter is attached. Therefore we must always have a
uniquely identifiable edge licensing the substitution under a certain context. We
may never collapse two such edges. Instead, we would accept a nondeterminism
that poses no problem for the constraint algorithm. Second, we must know the
set of edges that must be inserted into the automaton to allow it to accept the
default pair (or any other pairing) at the respective position. That set can easily
be calculated. It is the set of edges leaving the node where the substitution edge
ends, but we have to change the start node into the node where the edge of the
other pair ends.

Looking at (14) we see that the substitution edge (for the pair + :e) is 2-3.
The only alternative edge (for the pair + :0) is 2-4. The set of edges starting
from node 3 is 3-1 (for s:s) and 3-2 (for t:t). That makes the set of replacement
edges 4-1 (for s:s) and 4-2 (for t:t). It is important to remember the label (pair)
of the edge. We can now describe the final form of our automaton:

+ :e

+ :0

d:d

s:s

t:t

1.

-

1

2

1

2

1

2.

3

4

2

1

2

1

3

-

-

-

1

2

4.

-

1

2

-

1

(21)

(filter: [paradigm: weak] substitution: 2-3 replacement: (s:s 4-l)(t:t 4-2))
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This automaton is completely equivalent to rule (13). Rules with more than one
context may of course have more filters and associated edge sets. The actual
insertion of the replacement edge(s) must be done according to the character pair
actually present in the string pair processed [e.g., edge 4-2 in (20)].

Up to now we have taken the feature unification part for granted. We will
now have a closer look and describe how it works. We will then finally be able
to show how the interaction between these two parts is organized.

Processing of the Word Grammar

The implementation of the feature unification part was designed in a bidirec-
tional way to fit with the two-level part. It was developed in the spirit of the
approach proposed in Shieber et al. (1989). Since morphology is inherently less
complex than syntax on the sentence level, the system could be kept quite sim-
ple.

Central to the processing are the ideas expressed in HPSG (Polland and Sag,
1987) where all grammatical and lexical information comes in the form of ex-
tended feature structures. Ideally, processing is extremely simple. To every
evolving structure, the conjunction of the grammar principles and the disjunc-
tion of the lexicon is applied. The projection goes along head and complement
daughter paths. Also, if two structures are to be combined, their phonological
(graphemic) strings must be in adjacent position. Projection goes along head
daughters. The structures that are subcategorized become complement daugh-
ters. Every structure that is not lexical contains exactly one head and one com-
plement daughter. Instead of the notion of head and complement, we could have
also used the terms functor and argument. What distinguishes our approach from
categorial grammar, though, is the use of rich feature structure instead of using
just categories.

Generation

Input to the generation is made up of the root form of the verb plus a number
of syntactic features. From a certain point of view, this root form can be re-
garded as similar to the semantic description of a sentence that is input into a
sentence generator. A root form may actually be a list of simpler root forms to
describe a compound word, whereas lexical entries (which represent single
morphs) by definition contain only simple root forms. [Morphs that do not
contribute to the semantics of a word form (i.e., endings) have no root form and
do therefore not show up in the input root form.] An example for an input to the
generator is (22) which should be generated either as $send + t + st$ or $sand
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+ t + st$. These forms would then be input to the two-level part which should
map them to the surface strings sendetest and sandtest.

[ [sem-s [root [first: send] ] ]
[syn-s [head [cat: verb]

[person: 2]
[modus: indicative]
[number: sg]
[tempus: past]
[well-formed: +] ] ] ] (22)

The generation part starts by selecting entries from the lexicon that are
potentially applicable to the actual generation task. For this task, we select all
entries that unify with the root information of the input structure (i.e., [[sem-s
[root [first: send]]). In our example, this would yield all different stems (allo-
morphs) of send (i.e., the entries for the morphs send and sand) plus all the
lexical entries with an empty root form. These are all lexical entries that do not
contribute tot he root form of a word (e.g., inflectional particles). For the rest of
the generation process, only this pool of lexical entries is regarded, while the
remainder of the lexicon may safely be ignored.

As a first step, all those lexical entries are extracted from this pool that can
be unified with the head features of the input because, according to the head
feature principle, the input structure must be a maximal projection of a lexical
entry with the same head structure (in cases where a word is made up of a
single morph the lexical entry itself will already be that maximal projection).

We then build the actual structure in accordance with the projection rules
and the grammar principles. The structure we get applying this procedure can
then be unified with the original input. If we have created any complement
daughter slots during this procedure, we must now fill them in. This is done by a
recursive application of the process. We extract the head information from the
complement daughter slot (which is shared with the subcategorization slot) and
start the selection of lexical entries from our pool again. This procedure is
repeated until no more open complement daughters are left.

In the case of our example, we would in the first step select the lexical entry
for the morph ' + st'. This entry unified with the head features of the input
structure gives
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[[sem-s *pointer* syn-s subcat first sem-s]
[syn-s [head [cat: v]

[modus: indicative]
[number: sg]
[paradigma *pointer* syn-s subcat first syn-s head paradigma]
[person: 2]
[tempus: past]
[umlaut ^pointer* syn-s subcat first syn-s head umlaut]
[well-formed: +]]

[subcat [first [syn-s [head [cat: v]

[modus: modus-]
[tempus
*pointer* syn-s subcat first syn-s head tempus]

[well-formed: -]]
[prefix [trenn: -]]

[subcat: *empty*]]]
[rest: *empty*]]]

dtrs: *empty*]] (23)

ic subcategorization list contains one element (according to Fig. 2, a tensed
rb stem). Application of the projection principle leads to a structure where
3) becomes the head daughter. Because the subcategorization list of that new
ucture is empty, the maximal projection level is reached. At this point, (22) is
ified with that structure. We have now one complement daughter left to fill,
king the head features attached to the complement daughter feature, we search
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the pool of relevant lexical entries. This search delivers the feature structure of
the tense marker ' + t'.

That feature structure in turn has a one-element subcategorization list. Re-
cursive application of the process gets two lexical entries for the morphs send
and sand. These two have both an empty subcategorization list. Therefore, the
recursion stops here and we get the expected solutions $send + t + st$ or $sand
+ t + st$ which can be given to the two-level part to generate the correspond-
ing surface forms.

Analysis

Basically, analysis works the same way as generation. For efficiency, a chart
is used where the lexical entries are entered. This helps in two ways. First, it
quite naturally defines the part of the lexicon that has to be considered, and
second, it makes the ordering constraints explicit.

One remark about a difference between analysis and generation: While for
the generation process, every fully expanded structure constitutes a legal solu-
tion, the same is not true for analysis. The criterion of having reached a
maximal projection (i.e., a structure with empty subcategorization list) does
not entail that this structure is a legal word form. We need to explicitly mark
forms as being regular words of the language and not just parts of complete
word forms.

Let's look at the string $sag + t$, for example. This string consists of the
two morphs sag and +t which are input to the parser. The former is a regular
verb stem which means it may function either as untensed stem or as a present
tense stem. The latter can be either an inflectional ending or a derivational suffix
transforming untensed stems into past tense stems. If we combine the reading
present tense stem with the inflectional reading of +t we arrive at a correct
word form, namely present tense third-person singular. Taking the other possi-
ble combination, we arrive at a past tense stem. This structure is a maximal
projection, too. But in itself it is no legal word form because number/person
information is missing. What we need is the equivalent of the start symbol in a
more conventional grammar. Our solution is to add a head feature [well-formed:
+ ] to all lexical entries the maximal projection of which will qualify as legal
word forms, [well-formed: -] to all others. Solutions are only those spanning
edges containing the feature [well-formed: + ].

Let's now return to our example from generation. Suppose the two-level
part comes up with the lexical string $sand + t + st$ which consists of the
sequence of morphs sand, + t, and + st. The input to the parser is a chart
where the lexical entries corresponding to these morphs are entered (these
structures possibly are already altered because of filter application in the two-
level part). The chart also contains edges for all possible occurrences of null
morphs.
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To all entries with a nonempty subcategorization list, the projection princi-
ples are applied (this can be viewed as a prediction step). The grammar princi-
ples are applied to the resulting structures which are then merged with neighbor-
ing structures (the completion step) whenever possible (i.e., if these structures
have an empty subcategorization list and fit into the complement daughter). This
procedure continues until no more progress can be made. All spanning struc-
tures with the feature [well-formed: +] are legal solutions.

Interaction between the Two Parts

We are now in the position to describe the interaction between the word
grammar and the two-level part more closely. Let us examine once again what
the rule filters are used for technically. They are a means to block the application
of a rule on morphological grounds, although it would be applicable because of
the phonological (orthographic) context. (The transmission of information be-
tween word grammar and two-level rules arises as a by-product which needs no
special effort.) Inhibiting the application of a rule allows other pairings (most
notably the default pairing) to be applied again.

One can also view this from the other side. Application of the default
pairing implies that no rule with that lexical character in its substitution pair is
applicable. If the phonological context precludes that, then no further action
has to be taken. Otherwise the rule filters must be taken into consideration. A
further complication is that filters are attached to single contexts rather than a
rule as a whole. Therefore, the interaction of different contexts must also be
regarded.

Interaction between the two components of our morphology is slightly dif-
ferent for generation and recognition. With generation the interaction is rather
simple. The word form generator produces a fully expanded feature structure
from its input. From this structure—with its implicit ordering constraints—a list
of the morphs is created. To each morph, the relevant part of the feature struc-
ture is associated. This list is given to the two-level part.

From that point on, processing continues as described above under "Imple-
menting the Rules." Whenever it turns out that a rule filter fails to unify with the
relevant feature structure, the local change procedure is applied. The substitu-
tion edge is eliminated, replacement edges are inserted. Besides that, processing
continues the regular way.

For recognition, the task is more subtle. Here processing starts with the two-
level part. Rules without filters function the usual way. Whenever a filter rule is
applied (i.e., the relevant substitution edge has been consumed), we must store
the filter. Of course, only the filters of those contexts that are actually (or
potentially, if the right context is still open) present are relevant. As soon as a
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morph is found in the lexicon, we must check our filters. For every filter there
are three possible results:

• Unification fails. The substitution edge must be removed and the replacement
edges inserted. If there leaves no contingent path for that rule, the morph
must be discarded.

• The filter subsumes the feature structure of the morph. In this case, we are
safe and the rule must be applied.

• The filter unifies with the feature structure of the morph but does not sub-
sume it. In this case, we do not know if the parsing process will add features
and values that may lead to a feature clash. We can apply the rule anyway
because if that happens the parser will discard that solution. A problem here
is that another context of the rule may be applicable the filter of which
would still unify. We guarantee a correct solution in the following way: a
disjunctive filter structure is built from the filters of all applicable contexts
of the rule.

We must now examine the situation where we assume the nonapplicability of
a rule. If we use a default pair, all the rules attached to the lexical character of
that pair become active. If none of these rules blocks because of the phonologi-
cal context, everything is okay. If a rule blocks, the phonological context would
require the surface character licensed by the rule instead of the one actually
present. In that case the applicability of the filter must be checked. Again there
are three possible results:

• Unification fails, in which case we may safely ignore the rule.
• The filter subsumes the feature structure of the morph, which means the rule

should have been applied and we must discard the morph we are currently
working on.

• The filter unifies with the feature structure of the morph but does not subsume
it. Again we are in a situation where no final decision is possible. At this
point, the filter applies, but it might be the case that failure comes later on
because of additional information supplied by the word grammar.

This last case is the only really problematic one because we can hold up our
assumption only if we take for granted that a failure will happen in the future
course of processing. What we do is to unify the feature structure of the morph
with a negation of the filter. This leads to correct results if we can be sure that
the filter will be approved or disproved in the final feature structure of the word
form. Therefore, we have to pose this restriction on the form of the filters with
resnect to the word grammar.
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APPLICATIONS

I have so far presented a morphological component that recognizes and
generates word forms based on a morph lexicon, a word grammar, and a set of
two-level rules. It seems appropriate at this point to show potential applications
of such a system in practical environments. An advantage of our component is
that it is up to the system's designer if the component is used to deal only with
inflection—like conventional morphological modules for natural language under-
standing systems—or also with some subset of derivation. Promising areas are
scientific and technical languages, and especially medical language.

In medical language, we find a large set of complex derivatives and com-
pounds with clear compositional semantics. Instead of including all these words
into the lexicon, one can instead analyze them with the use of our component.
Since semantic interpretation follows a compositional pattern, one can use the
same mechanism for semantic interpretation as on the sentence level. Such an
approach would also make sure that, whenever a new technical expression is
entered into the lexicon, the full range of possible derivational and compound
forms is available. This facilitates knowledge acquisition and guarantees consis-
tency.

The range of possible applications goes from the (partial) analysis of unre-
stricted natural language text to less complex retrieval systems. For example,
the system WAREL (Dorda, 1990) retrieves data from a large base of unformat-
ted texts on the basis of keywords a user enters. A keyword may occur in
different inflected forms, be used as the basis for a derived word, and so on. The
described morphological component could be used to create all legal forms in
which that keyword could appear.

CONCLUSION

In this article I described a system for the morphological recognition and
generation of words that combines two-level rules with a unification-based word
grammar. Instead of just substituting continuation classes with feature struc-
tures, I propose a different solution. Filters in the form of feature structures are
added to the two-level rules. These filters fulfill two different purposes. They
restrict the application of two-level rules to certain classes of morphs, thereby
eliminating the need to encode morphological information with diacritics on the
lexical level. At the same time, they allow the transfer of morphological infor-
mation from the two-level rules to the grammar component. That way aspects of
nonconcatenative morphology like umlaut can be handled in a linguistically sat-
isfying way.

In the design of the two-level part, I adhered to the original notation of
Koskenniemi (1983. 1984s). The imolementation though is different T use a local
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constraint algorithm as proposed by Barton et al. (1987, chapter 6) which en-
ables the integration of the processing of the filters into the algorithm. Sources
of possible problems with these filters are discussed and solutions are shown.
The word grammar is represented in the form of feature structures without a
context-free backbone. Further work will be necessary to restrict the computa-
tional power of that part in a linguistically motivated way. The approach has
been successfully applied to the inflectional morphology and some aspects of the
derivational morphology of German. It remains to be shown that it can be ap-
plied to the whole of derivational morphology including compounding.
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