

Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Research
Report

RR-91-04

X2MORF:
A Morphological Component

Based on Two-Level Morphology

Harald Trost

January 1991

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
D-6750 Kaiserslautern, FRG
Tel.: (+49 631) 205-3211/13
Fax: (+49 631) 205-3210

Stuhlsatzenhausweg 3
D-6600 Saarbrücken 11, FRG
Tel.: (+49 681) 302-5252
Fax: (+49 681) 302-5341

Deutsches Forschungszentrum
für

Künstliche Intelligenz

The German Research Center for Artificial Intelligence (Deutsches Forschungszentrum für
Künstliche Intelligenz, DFKI) with sites in Kaiserslautern und Saarbrücken is a non-profit
organization which was founded in 1988 by the shareholder companies ADV/Orga, AEG, IBM,
Insiders, Fraunhofer Gesellschaft, GMD, Krupp-Atlas, Mannesmann-Kienzle, Siemens-Nixdorf,
Philips and Siemens. Research projects conducted at the DFKI are funded by the German Ministry
for Research and Technology, by the shareholder companies, or by other industrial contracts.

The DFKI conducts application-oriented basic research in the field of artificial intelligence and other
related subfields of computer science. The overall goal is to construct systems with technical
knowledge and common sense which - by using AI methods - implement a problem solution for a
selected application area. Currently, there are the following research areas at the DFKI:

o Intelligent Engineering Systems
o Intelligent User Interfaces
o Intelligent Communication Networks
o Intelligent Cooperative Systems.

The DFKI strives at making its research results available to the scientific community. There exist
many contacts to domestic and foreign research institutions, both in academy and industry. The
DFKI hosts technology transfer workshops for shareholders and other interested groups in order
to inform about the current state of research.

From its beginning, the DFKI has provided an attractive working environment for AI researchers
from Germany and from all over the world. The goal is to have a staff of about 100 researchers at
the end of the building-up phase.

Prof. Dr. Gerhard Barth
Director

X2MORF: A Morphological Component
Based on Two-Level Morphology

Harald Trost

DFKI-RR-91-04

 Deutsches Forschungszentrum für Künstliche Intelligenz 1991

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to
copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by
permission of Deutsches Forschungszentrum für Künstliche Intelligenz, Kaiserslautern, Federal Republic of
Germany; an acknowledgement of the authors and individual contributors to the work; all applicable portions
of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require a licence
with payment of fee to Deutsches Forschungszentrum für Künstliche Intelligenz.

 1

X2MORF1:
A Morphological Component Based on

Augmented Two-Level Morphology

Harald Trost
Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI)

Standort Saarbrücken
Stuhlsatzenhausweg 3, D-6600 Saarbrücken 11, FRG

phone: (+49 681) 302-5301
e-mail: htrost@dfki.uni-sb.de

Abstract

In this paper I describe X2MORF a language-independent morphological
component for the recognition and generation of word forms based on a
lexicon of morphs. The approach is an extension of two-level morphology.
The extensions are motivated by linguistic examples which call into question
an underlying assumption of standard two-level morphology, namely the
independence of morphophonology and morphology as exemplified by two-
level rules and continuation classes. Accordingly, I propose a model which
allows for interaction between the two parts.

Instead of using continuation classes, word formation is described in a feature-
based unification grammar. Two-level rules are provided with a
morphological context in the form of feature structures. Information
contained in the lexicon and the word formation grammar guides the
application of two-level rules by matching the morphological context against
the morphs. I present an efficient implementation of this model where rules
are compiled into automata (as in the standard model) and where processing
of the feature-based grammar is enhanced using an automaton derived from
that grammar as a filter.

1 X2MORF is an acronym for eXtented 2-level MORphology with Filters.

 2

Table of Contents

1 Introduction . 3

2 The architecture of X2MORF . 6

3 Describing our examples in the augmented formalism 7

4 Processing augmented two-level rules . 8

5 A non-directional process model of the word formation grammar . . 11

6 Partial compilation of the grammar to increase efficiency 13

7 Interaction with the word formation part . 14

8 Conclusion and future work . 17

References . 18

 3

1 Introduction

Recently there has been renewed interest in morphological analysis and
synthesis. One widely used approach is two-level morphology which
combines a fully declarative representation of morphological data with a non-
directional processing model. Two-level morphology was originally proposed
by Koskenniemi (1983) and has since been implemented in several systems
(e.g. Karttunen 1983). As the name suggests it assumes only two levels,
namely lexical and surface level. Besides the normal characters (representing
graphemes or phonemes) there are diacritics used at the lexical level
describing morphophonologically relevant information, e.g. '$' to mark word
boundary or '+' for morph boundary. By default all characters map to
themselves, diacritics to the 0 character. All other mappings between the two
levels are governed by rules consisting of a substitution (a pair of characters),
an operator and a left and a right context (regular expressions made up from
such pairs). The substitution defines a mapping between lexical and surface
level, where its application is restricted by the (phonological) contexts.

Word formation is handled very simply with so-called continuation classes
which are non-disjoint sets of morphs. Every morph contains information
about its potential continuations (a set of continuation classes).

In the following discussion basic familiarity of the reader with two-level
morphology is assumed (a concise description can be found in, e.g., Dalrymple
et al. 1987).

The standard model of two-level morphology makes (at least implicitly) a
number of assumptions:

a) Word formation is basically expressed by the concatenation of morphs,

b) the concatenation process can be (adequately) described by continuation
classes, and

c) morphology and morphophonology are autonomous systems with no
interdependencies.

For most cases these assumptions are justified. But none of them holds for
the whole range of morphological phenomena encountered in inflecting
languages. For every assumption stated above I will present some examples
from German and English to show where problems arise:

Concerning a), one can say that concatenation is the single most important
phenomenon in word formation, but there are notable exceptions:

 4

German umlaut2 is an example for an originally phonological process which--
over time--turned into a morphological one. Presently, umlaut expresses a
variety of different morphological features, among them the plural of nouns,

e.g.: Haus (house) ⇒ Häuser,
Wolf (wolf) ⇒ Wölfe,
Mutter (mother) ⇒ Mütter..

As these examples show, umlaut occurs together with endings but it may also
be the only morphological marker. One way to describe umlaut in two-level
morphology is to assume a (phonologically underspecified) lexical character
(e.g., U) which by default maps to the regular vowel (e.g., u). A rule maps the
lexical character to the umlaut (e.g., U to ü) in all cases where this is
morphologically required. E.g., in our example it is the morphological feature
plural, not any phonological context which triggers rule application.

As to b), right association can be adequately expressed by the continuation class
approach, but because of its left-to-right bias left association cannot and must
be recoded into right association. Circumfixation, as e.g. in the German past
participle, and infixation (e.g. German to-infinitive) must be expressed even
more indirectly. A formalism which allows for a more natural description of
such phenomena would be favourable.

A number of authors have proposed to replace continuation classes with a
grammar based on feature structures describing the legal combination of
morphs (e.g. Bear 1986, Carson 1988, Görz & Paulus 1988).

Concerning c) one must in some cases assume an interference between lexical
and/or paradigmatic features of morphs on the one hand and
morphophonological rules on the other hand. I will provide two examples,
one from English and one from German.

In English, an e must be inserted between noun stem and the plural morph s
under certain phonological conditions. One of these conditions is the stem
ending in o (e.g. potato ⇒ potatoes). This can be expressed by the following
rule3:

(1) +:e ⇐ o _ s ;

Unfortunately, there are exceptions to that rule:␣ In some words, e.g banjo,
epenthesis of e is optional, so both plural forms banjos and banjoes are

2 The alternation of the stem vowels a, i, o, u to ä, i, ö, ü respectively.
3 For the exact meaning of the operators in two-level rules see Koskenniemi (1983).

 5

acceptable. In some other words e epenthesis must not take place, e.g. for
piano the only legitimate plural form is pianos (see Bear 1988). To which of
these three classes a stem belongs seems to be idiosyncratic.

In German, a schwa is inserted between stems ending in d or t and suffixes
starting with s or t. The following two-level rule captures that phenomenon:

(2) +:e ⇔ {d, t} _ {s, t} ;

This rule4 correctly inserts a schwa in such forms as badest (you bath),
arbeitet (you work), leitetest (you guided), etc. But at a closer look one
identifies exceptions to the rule: e.g. hältst (you hold), rittst (you rode),
sandtest (you sent). All these stems exhibit umlaut or ablaut. Therefore a
possible explanation for these exceptions is that the alteration of the stem
vowel inhibits the application of the rule (2). The rule might be modified as
follows:

(2a) +:e ⇔ {+, $} X* {d, t} _ {s, t} ;

where X ∈ ∑ \ {A:ä, E:i, O:ö, U:ü, ablaut-pairs}

One problem with this solution is that it forces us to represent all alternations
of the stem vowel (i.e. both umlaut and ablaut) as morphophonological
phenomena. In the case of ablaut--which is fully lexicalized--this is both
difficult and wastful.

Even if we did this, we would still face cases that are not described correctly
even by this extended rule. There exist forms such as 2nd person plural past
tense of verbs following strong conjugation like tratet (you kicked) or hieltet
(you held) where schwa is inserted despite the occurrence of ablaut. No
phonological context can be constructed to account for this exception. We are
forced to view it as an idiosyncratic property of the paradigm position.

To deal with these problems in standard two-level morphology one has to
create artificial phonological contexts by using additional diacritics. I will
show how this approach works using the English plural example explained
before. Instead of a single plural morph s we have to assume two different
ones, nameley s and &s (the pair &:0 is added to the alphabet). Next we have
to further divide the continuation classes for noun stems: Stems which
behave regularly (like potato) may continue with s, stems where epenthesis is
blocked (e.g. piano) continue with &s, the ones with optional insertion of e

4 This rule (like all the others proposed in this paper) is a simplified version of what is
really needed for a morphological account of schwa epenthesis in German. But for the
purposes of this paper it suffices. For more detail see Trost (1990b).

 6

take both ending as continuations. Application of rule (1) would then yield
the desired results.

Analogous solutions can be found for the other problems cited above. There
are some severe drawbacks though with this kind of solution:

- additional diacritics (e.g., the & in the above example) are needed which
cannot be motivated phonologically,

- because of the artificial ambiguities created, more morphs are needed (e.g. s
and &s) which have to be organized in more continuation classes,

- the null morph must be explicitly represented at the lexical (and therefore
as well at the surface) level transferring it from the morphological to the
phonological level (e.g., to trigger the umlaut rule for the plural Mütter).

Consequently, the use of that approach leads to both linguistically inadequate
descriptions and--because of the ambiguities--to computational costs such as
larger requirements of space and processing time. In the following I will show
in which ways X2MORF augments the standard model to enable a more
adequate handling of these phenomena.

2 The architecture of X2MORF

To overcome the problems cited above, the standard model is augmented in
two related respects. First, the continuation class approach is substituted by a
feature-based unification grammar to describe word formation (feature
structures may contain disjunction and negation). For every morph the
lexicon contains a feature structure. Grammar rules and principles--also
formulated in the form of feature structures--guide the combination of the
morphs. A possible problem of the use of unification grammar is the higher
complexity involved. I will show how compilation techniques can help to
keep processing efficient.

Secondly, two-level rules are provided with a morphological context in
addition to the phonological one. This is accomplished by associating a
feature structure with the rule. This feature structure is checked against the
feature structure of the morph to which the substitution pair of the rule
belongs. Checking means unifying the two: If the result of unification is FAIL,
the morphological context of the rule is not present. If it succeeds the
resulting feature structure is associated with the morph.

 7

fs1fsj....................................fsm

$morph1morphjmorphm $

0 char1charicharn 0

Word Grammar

Lexicon

Filters
Two-level Rules

fs

Figure 1: Architecture of X2MORF

Application of a rule is then dependent of the presence of both the
phonological and morphological context. Similar ideas have been proposed
by Bear (1988) and Emele (1988) but neither author came up with a correct
algorithm for implementation. For a detailed discussion see Trost (1990b).

While a first implementation of X2MORF interpreted rules directly (Trost
1990a) I have now developed a more efficient implementation based on the
original approach of Koskenniemi (1983) of compiling rules into automata.

Figure 1 gives a sketch of the overall architecture. Like the standard model
X2MORF consists of two parts. One translates from a string of characters or
phonemes (the surface level) to a list of morphs (the lexical level). This is the
morphophonological component. The other one combines the feature
structures associated with every one of these morphs with a feature structure
describing the word form (a lexeme plus morphosyntactic information). This
is the morphological component, the word formation grammar.

3 Describing our examples in the augmented formalism

I will now show how X2MORF overcomes the problems cited above.
Obviously, the more powerful mechanism of unification grammar allows one
to describe both left and right association, circumfixation and infixation in an
adequate way.

How about the interaction between morphology and morphophonology?
Let's return to our example of German schwa epenthesis. All morphs where
schwa epenthesis should rightfully apply are marked with [morph [head
[epenthesis: +]]] and all others where it must be blocked are marked with
[morph [head [epenthesis: -]]] (this being the negation). An augmented rule

 8

incorporating the morphological context would then look like:

(2b) +:e ⇔ {d, t} _ {s, t} / [morph [head [epenthesis: +]]] ;

The morphological context will then achieve the required results of restricting
the application of schwa epenthesis in contrast to rule (2).

Rule (2b) comes with both a phonological and a morphological context. In
general, rules need not have both contexts specified. Many phonological rules
require no interaction with morphology, and there are also rules where the
application is only morphologically restricted. An example for such a purely
morphological rule is umlaut.

Again we must start by providing morphs with the necessary features: But
now we want to link umlaut with the plural of nouns. This is described in
grammar rule (3a) which states the interdependence between umlaut and
noun plural and (3b) relating the absence of umlaut to singular:

(3a) [morph [head [umlaut: +]]] ⇔ [morph [head [cat: noun, number: plural]]]

(3b) [morph [head [umlaut: -]]] ⇔ [morph [head [cat: noun, number: sing]]]

We can then formulate rule (4). This rule produces an umlaut in the surface
form in all cases where the morph is marked accordingly and where the
vowel U occurs.

(4) U:ü ⇔ _ / [morph [head [umlaut: +]]] ;

As these examples show, X2MORF is capable of representing data in a
linguistically adequate way which pose problems for standard two-level
morphology. We will now turn to the question of how to implement the
system in an efficient way.

4 Processing augmented two-level rules

Similar to the standard model the augmented two-level rules of X2MORF are
translated into automata table. Let's look at a sample rule to demonstrate that:
Rule (2) would yield the automaton5 shown in figure 2. But, as we have seen,
rule (2) must be augmented to rule (2b) by a morphological context to
guarantee correct application.

How are morphological contexts integrated into the automaton in figure 2?
We want a rule to apply if both the phonological and the morphological

5 Concerning the notation, shaded circles mean terminal nodes, the = stands for all characters
not explicitly mentioned in the set of labels, i.e. +:= stands for all pairs with lexical + except
+:e. With respect to the assumed alphabet that is the pair +:0.

 9

context apply. The automaton in figure 2 checks for the phonological context.
The morphological context is to be checked only when the substitution pair
actually occurs. This is equivalent to the situation that the arc labeled with the
substitution pair is taken. Consequently, morphological contexts can be
realized as tests on those arcs which are labeled with the substitution pair of
the two-level rule. ␣␣

+:= , s , =
d , t0 1

s
t

d

d , t

s , =

+:= , =
+:=

+:e

3

2

Figure 2: Automaton corresponding to rule (2)

But what happens if the phonological context is present, but the test returns
failure? Then the arc may not be taken and the automaton in figure 2 would
block. But of course it would also block for all alternative pairs (e.g. +:0). This
is clearly wrong.

To handle that situation correctly we must insert an extra arc labeled with all
alternative pairs to the substitution pair (i.e. all pairs with the same lexical but
a different surface character). Of course, this new arc may only be taken if the
test on the original arc returns failure. In all other cases it should block. To
produce that behaviour we have to associate a test to it as well. This test is the
negation of the original test. The result of that augmentation is the
automaton shown in figure 3.

A consequence of that realization of our morphological contexts is the need to
ensure that any morphological context used will either subsume the final
feature structure of the morph to which it is applied or unify to FAIL with it.
If this is not the case the application of the rule is optional for that morph
with respect to the morphological context, i.e the rule may or may not be
applied6.

6 The possibility to express optionality is in contrast to the phonological context where
there is no such possibility. There are cases though where the linguistic data seem to be
best expressed in terms of optionality.

 10

 ␣␣␣␣

alternative pairs

+:e
[morph [head: [epenthese: +]]]

+:=
[morph [head: [epenthese:-]]]

rule pair

+:= , s , =
d , t0 1

2

s t

d

d , t

s , =

+:= , =
+:=

3

Figure 3: Augmented Automaton corresponding to rule (2b)

For example, imagine a stem not marked for the feature epenthesis at all. If
the phonological context is present one could take both of the arcs connecting
state 1 and 2 because both tests would yield a positive result. In some cases
such optionality might be wanted. Remember the example of the plural of
words like banjo, where both forms banjos and banjoes are correct.

There is another consequence to associating tests with arcs. It might lead to
indeterminism in the automaton which cannot be reduced. Look at the
following rule:

(5) x:y <=> left-context _ right-context1 / morphological-context1 ;
left-context _ right-context2 / morphological-context2 ;

When translating such a rule we would have to accept an indeterminism
because we need two arcs labeled x:y with the different tests (morphological
contexts) attached.

Instead of processing the automata the usual way I follow a proposal by Barton
(1986) to use a local constraint algorithm instead. One initializes the process
by associating to each character pair of a given mapping all arcs which are
labeled with that pair. The algorithm then proceeds by marking all possible
paths eliminating dead ends. A diagram of the algorithm is given in figure 4.

This algorithm is more efficient than direct processing of the automata. It is
also weaker because it cannot handle non-local dependencies. E.g., if there
were different possibilities in two different positions the algorithm would
always yield all the combinatorially possible combinations as results. The

 11

claim is that such non-local dependencies do not occur in the morphology of
natural languages.

 1) Initialization
For every position:

For every character pair:
For every rule: Enter all arcs labeled with that pair.

 2) Forward Scan
For every rule:

From left to right for every position i:
Remove all arcs with no predecessor in position i-1
If no arc left for a pair at position i: eliminate that pair throughout all rules.
If no pair left at position i: RETURN with FAILURE.

 3) Backward Scan
 For every rule:

 From right to left for every position i:
 Remove all arcs with no successor at position i+1
 If no arc left for a pair at position i: eliminate that pair throughout all rules.
 If no pair left at position i: RETURN with FAILURE.

 4) If any arc was deleted in step 2) or 3): GOTO step 2)
otherwise RETURN.

Figure 4: Algorithm for automata processing

5 A non-directional process model of the word formation grammar

Because non-directionality is one of the advantages of the two-level model the
replacement of continuation classes by a feature-based grammar should keep
this property. Accordingly, a non-directional process had to be developed
which is able to match lists of morphs and its internal representation (lexeme
plus morphosyntactic information).

The parser-generator of X2MORF uses an algorithm oriented on the ideas of
Shieber et al. (1990). It is based on the notion of heads. To be compatible with
that algorithm the word formation grammars must fulfil the following
requirements:

- Structure is defined via head daughters and complement daughters, i.e.
every non-lexical item consists of a mother, a head daughter and (one or
more) complement daughters.

- Head Feature Convention must be obeyed, i.e. head information is shared by
the mother and their head daughter, and

- all complements are defined via a subcategorization list (in particular, there
are no optional elements like modifiers).

These requirements led to an HPSG-style (Pollard & Sag 1987) grammar.
Other grammatical theories are also possible of course as long as the above

 12

requirements are met.

The algorithm maps internal structures (lexemes plus morphosyntactic
information) to the feature structures associated to a list of morphs. In the
process of this mapping a complex feature structure is created where the
morphs form the leaves and the internal structure the root of the tree created
by the head and complement daughter structure.

In the case of parsing the internal structure (i.e. the root node) comes with
only those features shared by all word forms. The morphs (i.e. the set of
possible leaves) on the other hand are fully determined and already ordered,
i.e. boundary information is present. Therefore we have one additional
constraint for parsing: The final structure is legal only if it spans the whole
length of the morph list as specified by the boundary information.
Accordingly, the left boundary of the root node is set to zero and the right
boundary to the maximal value occurring in the morph boundaries.

In case of generation the internal structure is fully specified, while every
lexical entry is a potential leaf of the final structure. For efficiency reasons a
necessary first step is the collection of only the relevant lexical entries. Here
we make use of the fact that all lexical entries have a feature root containing
their root form. Its value is a canonical form standing for the morpheme, e.g.
all allomorphs of a verb stem would share the same root. Only inflectional
endings have an empty root feature because they do not contribute to the root
form of a particular word form.

Because of compounding and derivation the root feature of word forms may
be a list of entries. All lexical entries whose root form contains a member of
that list or whose root form is empty are collected. They make up the set of
relevant morphs in the case of generation.

Of course, a number of intermediate possibilities for specifying the arguments
of the algorithm exist. If more specific information is available as to which
word form to expect7 the analysis can be restrained. If on the other hand the
internal structure is not fully specified when generating, the algorithm will
produce all the corresponding morph lists. This can be very useful in testing a
certain set of linguistic data.

Let's now turn to the description of the core algorithm. Its task is to create a
feature structure which combines root element and (a subset of) the lexical

7 If X2MORF is embedded in a full-fledged system then the sentence level parser e.g.,
could provide for expectations concerning morphosyntax.

 13

elements. This is accomplished by applying a mixed-mode approach. First,
head information of the mother is projected onto the lexical elements to find
potential heads. Every element thus selected is taken as a potential candidate.

PARSE-GENERATE (mother-of-tree, list-of-morphs)
FOR-EVERY morph OF list-of-morphs:

search for lexical heads by using head-info from mother-of -tree;
heads-list := list of potential heads;

FOR-EVERY head OF heads-list:
max-structure := project head up to maximal structure;
unfilled-complements := collect all open complement positions in max-structure;
results-list := MAKE-LIST (UNIFY (max-structure, mother-of-tree));
IF results-list = FAIL return failure.
FOR-EVERY complement OF unfilled-complements:

complements-list := PARSE-GENERATE (complement, list-of-morphs)

IF EMPTY (complements-list)
return failure
ELSE return results-list := combine every element of results-list

with every element of complements-list;

Figure 5: Algorithm of the parser-generator

The next step is performed in a bottom-up manner. The lexical element is
projected up to its maximal projection (where its subcategorization list is
empty). Places in the tree where complement daughters are to be added are
collected. The created structure is unified with the root.

We then recursively apply the algorithm to fill in the complements.
Whenever the algorithm fails to return a complement structure the whole
structure has to be discarded. More than one returned complement structure
means an ambiguity (figure 5 gives a descrition of the algorithm).

6 Partial compilation of the grammar to increase efficiency

While the algorithm described so far is very general and powerful its
expressive power is greater than what is needed for describing morphology.
At least most of the data could be expressed by means of a regular grammar (or
a finite state automaton) which would lead to a much more efficient
implementation.

On the other hand we want to keep the possibility of describing word
formation in the elegant and adequate way offered by unification grammar.
And--for ease of interaction with other parts of a complete natural language
processing system--the description in the form of feature structures is
desirable.

 14

It would lead to a great enhancement if it was possible to compile a finite state
automaton from the word formation grammar which can then be used as a
filter to rule out most of the possible combinations before the unification
grammar is actually applied.

The word formation grammar G works on the alphabet of morphs Σ
producing a language L. Of course, there is a set of regular grammars GR

producing languages LR such that the following holds:

Σ* ⊃ ␣LR ⊇ L

The task is to find such a grammar GR which in the best case would be
equivalent to G. But it suffices that LR is at least much smaller than Σ*. How
can one arrive at such a grammar?

The grammar writer must define a relevant subset of features. This subset is
used to split up the lexicon into equivalence classes. On the basis of these
classes and the grammar rules a regular grammar GR is constructed which
accepts at least all the legal words in L. At the moment this compilation
process is done by hand, but work on such a compiler is in progress.

As a next step an automaton equivlalent to GR is built. This automaton is
then used as a filter. In parsing it is applied to the morphs found in the
lexicon weeding out most of the spurious readings. In generation it is applied
to the original set of lexical entries proposed and thereafter again in any
recursive step of the algorithm.

This filtering speeds up processing considerably because most of the
unifications which would eventually lead to failure anyway do not come up
in the first place because the terminal feature structures standing for morphs
have been eliminated by the filtering process.

7 Interaction with the word formation part

We are now in the position to take a close look at the interaction between
parser-generator and two-level rules. What makes this interaction complex is
the fact that the morphological context must be tested against a feature
structure which might still be incomplete.

To make things easier to understand I will start with generation where the the
feature structures associated to the morphs are already fully specified by the
parser-generator before the two-level rules are applied. The algorithm
consists of the following steps:

 15

 GENERATE (lexical-string)
 1) Activate all rules which are associated to any of the occurring lexical characters.
 2) FOR-EVERY position:

enter all surface characters which are potential mappings for the lexical character.
 3) Initialize the transition tables of all active rules.
 4) FOR-EVERY position i:

FOR-EVERY pair with an associated rule:
Unify morphological context of rule and feature structure of the morph

IF unification succeds: OK
ELSE remove arc for that pair at position i

enter the same arc for all alternative pairs at position i.
 5) Apply local constraint algorithm.

Let's now consider an example: The alphabet shall consist of the obvious pairs
and the only two-level rule is (2b). The list of morphs created by the word
formation grammar is (sand +t +t). After initialization of the transition table
of (2b) we encounter the following situation: ␣␣␣

0
1
3

0 0-0
1-0
3-0

0-1
1-1
2-1

0-1
1-1
2-1

0-0 1-2
1-3
3-0

0-0 1-2
1-3
3-0

0-0
1-0
2-0

0-0
1-0
3-0

0-1
1-1
3-1

0-0
1-0
3-0

0-0
1-0
3-0

$ s a n d + t + t $
0 s a n d 0 e t 0 e t 0

Testing of the morphological context will then take place at positions where
+:e is found. In the first case the test fails, the arc is removed and inserted for
+:0 the alternative at the position. In the second case the test succeeds. ␣␣␣

$ s a n d + t + t $
0 s a n d 0 e t 0 e t 0

0
1
3

0 0-0
1-0
3-0

0-1
1-1
2-1

0-1
1-1
2-1

0-0 -
1-3
3-0
1-2

0-0 1-2
1-3
3-0

0-0
1-0
2-0

0-0
1-0
3-0

0-1
1-1
3-1

0-0
1-0
3-0

0-0
1-0
3-0

Next the local constraint algorithm is applied leading to the final situation
from which the surface word sandtet can be generated. ␣␣␣

$ s a n d + t + t $
0 s a n d 0 e t 0 e t 0

00 1-02-1 2-11-2 - - 1-20-0 0-0 0-10-00-0

Let's now turn to analysis8. There we make use of the morph lexicon to
constrain the possibilities for lexical mappings of surface characters. If
ambigous mappings remain we split up the resulting pairings in step 3) in

8 For sake of simplicity we assume that all the null characters are already inserted in the
surface string when we start the algorithm.

 16

such a way that every different list of morphs is processed seperately.

ANALYZE (surface-string)
1) FOR-EVERY surface character: enter all potentially mapping lexicical characters.
2) Check with lexicon to eliminate all pairs which do not lead to a string of morphs.
3) word-forms := a list of all possible pairings (one pair at every position).
4) FOR-EVERY word-form OF word-forms:

 Activate all rules which are associated to any of the occurring lexical characters.
 Initialize the transition tables of all active rules.
 FOR-EVERY pair x:y1 where a rule is associated to a pair x:y2 with y1 <> y2:

insert the tested arcs.
 Apply local constraint algorithm.
 FOR-EVERY position j: TEST-MORPH-CONTEXT (pair, morph, j, rules).
 IF an arc has been removed because of failed test: apply local constraint algorithm.

Why are tested arcs inserted in step 4) of the algorithm? One can assume an
alternative pair only under the hypothesis that the rule does not apply at this
position. This holds if either the phonological context does not apply: Then
the local constraint algorithm will remove the newly inserted arc anyway in
step 5). Or the morphological context does not apply: In that case we need the
corresponding arc for MORPH-TEST to decide.

The testing of the morphological context consists of the following steps:

 TEST-MORPH-CONTEXT (x:y, morph, arc-sets, rules)
 FOR-EVERY rule i:
 1) arc-set := all arcs of rule i for x:y at position j:
 2) test-structure := disjunction of all tests associated to arcs in arc-set;
 3) IF y of pair <> y of rule-pair: test-structure := negated test-structure;
 4) result := UNIFY (test-structure, feature of morph)
 5) IF result = FAIL: remove pair x:y at position j in all rules;

ELSE: feature structure of morph := result;

In step 5) there are two different possibilities for success. If the test structure
subsumes the morph's feature structure, the morphological context is granted.
Otherwise, grammar processing might add information which proves the
morphological context wrong. Since the test structure is unified into the
morph's feature structure this will correctly lead to failure.

One can easily understand that behaviour when looking at the semantics of
feature structures. Every feature structure denotes a set of elements. Further
specification of a feature structure narrows down that set. Unification yields
the intersection of two sets. Therefore it may happen that further specification
of a morph's feature structure yields a subset which is disjoint to the
intersection. On the other hand, subsumption denotes a subset relation and
intersection would therefore yield the whole subset as result.

I will demonstrate the algorithm using the same example. Now we start from

 17

the surface form sandtet (you sent). After the initialization of the transition
tables we encounter the following situation: ␣␣␣

$ s a n d + t e + t $
0 s a n d 0 t e t 0

0
1
3

0 0-0
1-0
3-0

0-1
1-1
2-1

0-1
1-1
2-1

0-0
1-3
3-0

0-0 1-2
1-0
3-0

0-0
1-0
2-0

0-0
1-0
3-0

0-1
1-1
3-1

0-0
1-0
3-0

0-0
1-0
3-0

Now the lexicon has to be consulted. It will rule out the pair e:e because no
morph +tet is found. We are therefore left with a single list of morphs,
namely (sand +t +t). As a next step tested arcs are inserted at +:0 positions
because a rule is associated with lexical +: ␣␣␣

$ s a n d + t + t $
0 s a n d 0 t e t 0

0
1
3

0 0-0
1-0
3-0

0-1
1-1
2-1

0-1
1-1
2-1

0-0
1-3
3-0
1-2

1-20-0
1-0
2-0

0-0
1-0
3-0

0-1
1-1
3-1

0-0
1-0
3-0

0-0
1-0
3-0

As a next step the local constraint algorithm is applied. The result is a single
continous path:

 ␣␣␣

$ s a n d + t + t $
0 s a n d 0 t e t 0

00 1-02-1 2-11-2 1-20-0 0-0 0-10-00-0

Now the tests have to be performed. Both tests succed, i.e. unification yields a
result different from FAIL. The feature structures associated to the morphs
sand +t +t (including the information transferred by filter testing) are input to
the word formation grammar which will eventually come up with a feature
structure comprising the information:

[[root: send] [morph [head [cat: verb, tense: past, num: plural, person: 2]]]]

8 Conclusion and further work

I have presented the system X2MORF, a morphological component based on
two-level morphology. In contrast to the standard two-level model, X2MORF
provides for interaction between the word formation part and the two-level
rules. I have shown that such an interaction provides for a linguistically
more adequate and a computationally feasible description of morphology.

Interaction is realized in the form of feature structures associated with the

 18

two-level rules. Unification of these feature structures with the feature
structures of the morphs of which the pair associated to the rule is a part is
used as a test to restrict the application of the two-level rules on
morphological grounds.

With that augmentation X2MORF can provide two-level rules with an extra
morphological context. This context is used for two different purposes:

- non-concatenative morphological phenomena like German umlaut can be
expressed by two-level rules, inducing the necessary information transfer
between two-level rules and word formation, and

- the morphological context can restrict the application of morpho-
phonological rules.

I have shown an efficient implementation of X2MORF by compiling the two-
level rules into finite state automata and by extracting a regular grammar
from the feature-based unification grammar which is used as a filter sharply
reducing the inherent combinatorial complexity of the unification grammar.

The system is implemented in the form described in this paper. It is
programmed in CommonLisp currently running on a Mac II fx. Work on the
compiler for the automated extraction of a finite state automaton from the
feature-based unification grammar is currently in progress.

X2MORF has been applied to German morphology. The fragment used at the
moment covers all of inflectional morphology and parts of derivation. It will
be extended deal with composition as well. The system is currently integrated
into the core natural language system developed in the project DISCO.

References:

Barton G. (1986): Constraint Propagation in KIMMO Systems, ACL-86, New York.

Bear J. (1986): A Morphological Recognizer with Syntactic and Phonological Rules,
COLING-86, Bonn, BRD.

Bear J. (1988): Morphology and Two-level Rules and Negative Rule Features, COLING-
88, Budapest, 28-32.

Carson J. (1988): Unification and transduction in Computational Phonology, COLING-
88, Budapest, 106-111.

Dalrymple M., Kaplan R.M., Karttunen L., Koskenniemi K., Shaio S., Wescoat M.
(1987): Tools for Morphological Analysis, Stanford Univ., Report No. CSLI-87-103,
Stanford, Calif.

Emele M. (1988): Überlegungen zu einer Two-Level Morphologie für das Deutsche, in
Trost H.(ed.), Proceedings 4. Oesterreichische Artificial-Intelligence-Tagung, 156-

163, Berlin: Springer.

 19

Görz G., Paulus D. (1988): A Finite State Approach to German Verb Morphology,
COLING-88, Budapest, 212-215.

Karttunen L. (1983): KIMMO: A General Morphological Processor, Texas Linguistic
Forum 22, 167-186.

Koskenniemi K. (1983): Two-level Model for Morphological Analysis, IJCAI-83,
Karlsruhe, BRD, 683-685.

Pollard C.J., Sag I.A. (1987): Information-Based Syntax and Semantics, Vol. 1:
Fundamentals, CSLI Lecture Notes No.13, Chicago: Univ. of Chicago Press.

Shieber S., Noord G. van, Pereira F., Moore R. (1990): Semantic-Head-Driven
Generation, Computational Linguistics 16(1)1990, 30-42.

Trost H. (1990a): The application of two-level morphology to non-concatenative German
morphology, COLING-90, Helsinki, Vol.II 371-376.

Trost H. (1990b): Recognition and Generation of Word Forms for Natural Language
Understanding Systems: Integrating Two-Level Morphology and Feature Unification,
Applied Artificial Intelligence 4(4)1990 (in print).

Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

DFKI
-Bibliothek-
PF 2080
67608 Kaiserslautern
FRG

DFKI Publikationen

Die folgenden DFKI Veröffentlichungen sowie
die aktuelle Liste von allen bisher erschienenen
Publikationen können von der oben
angegebenen Adresse oder per anonymem ftp
von ftp.dfki.uni-kl.de (131.246.241.100) unter
pub/Publications bezogen werden.
Die Berichte werden, wenn nicht anders gekenn-
zeichnet, kostenlos abgegeben.

DFKI Publications

The following DFKI publications or the list of all
published papers so far are obtainable from the
above address or per anonymous ftp from
ftp.dfki.uni-kl.de (131.246.241.100) under
pub/Publications.
The reports are distributed free of charge except
if otherwise indicated.

DFKI Research Reports

RR-92-43
Christoph Klauck, Jakob Mauss: A Heuristic
driven Parser for Attributed Node Labeled
Graph Grammars and its Application to Feature
Recognition in CIM
17 pages

RR-92-44
Thomas Rist, Elisabeth André: Incorporating
Graphics Design and Realization into the
Multimodal Presentation System WIP
15 pages

RR-92-45
Elisabeth André, Thomas Rist: The Design of
Illustrated Documents as a Planning Task
21 pages

RR-92-46
Elisabeth André, Wolfgang Finkler, Winfried
Graf, Thomas Rist, Anne Schauder, Wolfgang
Wahlster: WIP: The Automatic Synthesis of
Multimodal Presentations
19 pages

RR-92-47
Frank Bomarius: A Multi-Agent Approach
towards Modeling Urban Traffic Scenarios
24 pages

RR-92-48
Bernhard Nebel, Jana Koehler:
Plan Modifications versus Plan Generation:
A Complexity-Theoretic Perspective
15 pages

RR-92-49
Christoph Klauck, Ralf Legleitner, Ansgar
Bernardi:
Heuristic Classification for Automated CAPP
15 pages

RR-92-50
Stephan Busemann:
Generierung natürlicher Sprache
61 Seiten

RR-92-51
Hans-Jürgen Bürckert, Werner Nutt:
On Abduction and Answer Generation through
Constrained Resolution
20 pages

RR-92-52
Mathias Bauer, Susanne Biundo, Dietmar
Dengler, Jana Koehler, Gabriele Paul: PHI - A
Logic-Based Tool for Intelligent Help Systems
14 pages

RR-92-53
Werner Stephan, Susanne Biundo:
A New Logical Framework for Deductive
Planning
15 pages

RR-92-54
Harold Boley: A Direkt Semantic
Characterization of RELFUN
30 pages

RR-92-55
John Nerbonne, Joachim Laubsch, Abdel Kader
Diagne, Stephan Oepen: Natural Language
Semantics and Compiler Technology
17 pages

RR-92-56
Armin Laux: Integrating a Modal Logic of
Knowledge into Terminological Logics
34 pages

RR-92-58
Franz Baader, Bernhard Hollunder:
How to Prefer More Specific Defaults in
Terminological Default Logic
31 pages

RR-92-59
Karl Schlechta and David Makinson: On
Principles and Problems of Defeasible Inheritance
13 pages

RR-92-60
Karl Schlechta: Defaults, Preorder Semantics and
Circumscription
19 pages

2 1

RR-93-02
Wolfgang Wahlster, Elisabeth André, Wolfgang
Finkler, Hans-Jürgen Profitlich, Thomas Rist:
Plan-based Integration of Natural Language and
Graphics Generation
50 pages

RR-93-03
Franz Baader, Berhard Hollunder, Bernhard
Nebel, Hans-Jürgen Profitlich, Enrico Franconi:
An Empirical Analysis of Optimization Techniques
for Terminological Representation Systems
28 pages

RR-93-04
Christoph Klauck, Johannes Schwagereit:
GGD: Graph Grammar Developer for features in
CAD/CAM
13 pages

RR-93-05
Franz Baader, Klaus Schulz: Combination Tech-
niques and Decision Problems for Disunification
29 pages

RR-93-06
Hans-Jürgen Bürckert, Bernhard Hollunder,
Armin Laux: On Skolemization in Constrained
Logics
40 pages

RR-93-07
Hans-Jürgen Bürckert, Bernhard Hollunder,
Armin Laux: Concept Logics with Function
Symbols
36 pages

RR-93-08
Harold Boley, Philipp Hanschke, Knut
Hinkelmann, Manfred Meyer: COLAB: A Hybrid
Knowledge Representation and Compilation
Laboratory
64 pages

RR-93-09
Philipp Hanschke, Jörg Würtz:
Satisfiability of the Smallest Binary Program
8 Seiten

RR-93-10
Martin Buchheit, Francesco M. Donini, Andrea
Schaerf: Decidable Reasoning in Terminological
Knowledge Representation Systems
35 pages

RR-93-11
Bernhard Nebel, Hans-Juergen Buerckert:
Reasoning about Temporal Relations:
A Maximal Tractable Subclass of Allen's Interval
Algebra
28 pages

RR-93-12
Pierre Sablayrolles: A Two-Level Semantics for
French Expressions of Motion
51 pages

RR-93-13
Franz Baader, Karl Schlechta:
A Semantics for Open Normal Defaults via a
Modified Preferential Approach
25 pages

RR-93-14
Joachim Niehren, Andreas Podelski,Ralf
Treinen: Equational and Membership Constraints
for Infinite Trees
33 pages

RR-93-15
Frank Berger, Thomas Fehrle, Kristof Klöckner,
Volker Schölles, Markus A. Thies, Wolfgang
Wahlster: PLUS - Plan-based User Support
Final Project Report
33 pages

RR-93-16
Gert Smolka, Martin Henz, Jörg Würtz: Object-
Oriented Concurrent Constraint Programming in
Oz
17 pages

RR-93-17
Rolf Backofen:
Regular Path Expressions in Feature Logic
37 pages

RR-93-18
Klaus Schild: Terminological Cycles and the
Propositional -Calculus
32 pages

RR-93-20
Franz Baader, Bernhard Hollunder:
Embedding Defaults into Terminological
Knowledge Representation Formalisms
34 pages

RR-93-22
Manfred Meyer, Jörg Müller:
Weak Looking-Ahead and its Application in
Computer-Aided Process Planning
17 pages

RR-93-23
Andreas Dengel, Ottmar Lutzy:
Comparative Study of Connectionist Simulators
20 pages

RR-93-24
Rainer Hoch, Andreas Dengel:
Document Highlighting —
Message Classification in Printed Business
Letters
17 pages

RR-93-25
Klaus Fischer, Norbert Kuhn: A DAI Approach
to Modeling the Transportation Domain
93 pages

RR-93-26
Jörg P. Müller, Markus Pischel: The Agent
Architecture InteRRaP: Concept and Application
99 pages

2 2

RR-93-27
Hans-Ulrich Krieger:
Derivation Without Lexical Rules
33 pages

RR-93-28
Hans-Ulrich Krieger, John Nerbonne,
Hannes Pirker: Feature-Based Allomorphy
8 pages

RR-93-29
Armin Laux: Representing Belief in Multi-Agent
Worlds viaTerminological Logics
35 pages

RR-93-33
Bernhard Nebel, Jana Koehler:
Plan Reuse versus Plan Generation: A
Theoretical and Empirical Analysis
33 pages

RR-93-34
Wolfgang Wahlster:
Verbmobil Translation of Face-To-Face Dialogs
10 pages

RR-93-35
Harold Boley, François Bry, Ulrich Geske (Eds.):
Neuere Entwicklungen der deklarativen KI-
Programmierung — Proceedings
150 Seiten
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

RR-93-36
Michael M. Richter, Bernd Bachmann, Ansgar
Bernardi, Christoph Klauck, Ralf Legleitner,
Gabriele Schmidt: Von IDA bis IMCOD:
Expertensysteme im CIM-Umfeld
13 Seiten

RR-93-38
Stephan Baumann: Document Recognition of
Printed Scores and Transformation into MIDI
24 pages

RR-93-40
Francesco M. Donini, Maurizio Lenzerini,
Daniele Nardi, Werner Nutt, Andrea Schaerf:
Queries, Rules and Definitions as Epistemic
Statements in Concept Languages
23 pages

RR-93-41
Winfried H. Graf: LAYLAB: A Constraint-
Based Layout Manager for Multimedia
Presentations
9 pages

RR-93-42
Hubert Comon, Ralf Treinen:
The First-Order Theory of Lexicographic Path
Orderings is Undecidable
9 pages

RR-93-45
Rainer Hoch: On Virtual Partitioning of Large
Dictionaries for Contextual Post-Processing to
Improve Character Recognition
21 pages

DFKI Technical Memos

TM-91-14
Rainer Bleisinger, Rainer Hoch, Andreas Dengel:
ODA-based modeling for document analysis
14 pages

TM-91-15
Stefan Busemann: Prototypical Concept
Formation An Alternative Approach to Knowledge
Representation
28 pages

TM-92-01
Lijuan Zhang: Entwurf und Implementierung
eines Compilers zur Transformation von
Werkstückrepräsentationen
34 Seiten

TM-92-02
Achim Schupeta: Organizing Communication
and Introspection in a Multi-Agent Blocksworld
32 pages

TM-92-03
Mona Singh:
A Cognitiv Analysis of Event Structure
21 pages

TM-92-04
Jürgen Müller, Jörg Müller, Markus Pischel,
Ralf Scheidhauer:
On the Representation of Temporal Knowledge
61 pages

TM-92-05
Franz Schmalhofer, Christoph Globig, Jörg
Thoben:
The refitting of plans by a human expert
10 pages

TM-92-06
Otto Kühn, Franz Schmalhofer: Hierarchical
skeletal plan refinement: Task- and inference
structures
14 pages

TM-92-08
Anne Kilger: Realization of Tree Adjoining
Grammars with Unification
27 pages

TM-93-01
Otto Kühn, Andreas Birk: Reconstructive
Integrated Explanation of Lathe Production
Plans
20 pages

TM-93-02
Pierre Sablayrolles, Achim Schupeta:
Conlfict Resolving Negotiation for COoperative
Schedule Management
21 pages

TM-93-03
Harold Boley, Ulrich Buhrmann, Christof
Kremer:
Konzeption einer deklarativen Wissensbasis über
recyclingrelevante Materialien
11 pages

2 3

DFKI Documents

D-92-19
Stefan Dittrich, Rainer Hoch: Automatische,
Deskriptor-basierte Unterstützung der
Dokument-analyse zur Fokussierung und
Klassifizierung von Geschäftsbriefen
107 Seiten

D-92-21
Anne Schauder: Incremental Syntactic
Generation of Natural Language with Tree
Adjoining Grammars
57 pages

D-92-22
Werner Stein: Indexing Principles for Relational
Languages Applied to PROLOG Code
Generation
80 pages

D-92-23
Michael Herfert: Parsen und Generieren der
Prolog-artigen Syntax von RELFUN
51 Seiten

D-92-24
Jürgen Müller, Donald Steiner (Hrsg.):
Kooperierende Agenten
78 Seiten

D-92-25
Martin Buchheit: Klassische Kommunikations-
und Koordinationsmodelle
31 Seiten

D-92-26
Enno Tolzmann:
Realisierung eines Werkzeugauswahlmoduls mit
Hilfe des Constraint-Systems CONTAX
28 Seiten

D-92-27
Martin Harm, Knut Hinkelmann, Thomas
Labisch: Integrating Top-down and Bottom-up
Reasoning in COLAB
40 pages

D-92-28
Klaus-Peter Gores, Rainer Bleisinger: Ein Modell
zur Repräsentation von Nachrichtentypen
56 Seiten

D-93-01
Philipp Hanschke, Thom Frühwirth:
Terminological Reasoning with Constraint
Handling Rules
12 pages

D-93-02
Gabriele Schmidt, Frank Peters,
Gernod Laufkötter: User Manual of COKAM+
23 pages

D-93-03
Stephan Busemann, Karin Harbusch(Eds.):
DFKI Workshop on Natural Language Systems:
Reusability and Modularity - Proceedings
74 pages

D-93-04
DFKI Wissenschaftlich-Technischer
Jahresbericht 1992
194 Seiten

D-93-05
Elisabeth André, Winfried Graf, Jochen
Heinsohn, Bernhard Nebel, Hans-Jürgen
Profitlich, Thomas Rist, Wolfgang Wahlster:
PPP: Personalized Plan-Based Presenter
70 pages

D-93-06
Jürgen Müller (Hrsg.):
Beiträge zum Gründungsworkshop der
Fachgruppe Verteilte Künstliche Intelligenz
Saarbrücken 29.-30. April 1993
235 Seiten
Note: This document is available only for a
nominal charge of 25 DM (or 15 US-$).

D-93-07
Klaus-Peter Gores, Rainer Bleisinger:
Ein erwartungsgesteuerter Koordinator zur
partiellen Textanalyse
53 Seiten

D-93-08
Thomas Kieninger, Rainer Hoch: Ein Generator
mit Anfragesystem für strukturierte
Wörterbücher zur Unterstützung von
Texterkennung und Textanalyse
125 Seiten

D-93-09
Hans-Ulrich Krieger, Ulrich Schäfer:
TDL ExtraLight User's Guide
35 pages

D-93-10
Elizabeth Hinkelman, Markus
Vonerden,Christoph Jung: Natural Language
Software Registry
(Second Edition)
174 pages

D-93-11
Knut Hinkelmann, Armin Laux (Eds.):
DFKI Workshop on Knowledge Representation
Techniques — Proceedings
88 pages

D-93-12
Harold Boley, Klaus Elsbernd, Michael Herfert,
Michael Sintek, Werner Stein:
RELFUN Guide: Programming with Relations
and Functions Made Easy
86 pages

D-93-14
Manfred Meyer (Ed.): Constraint Processing –
Proceedings of the International Workshop at
CSAM'93, July 20-21, 1993
264 pages
Note: This document is available only for a nominal
charge of 25 DM (or 15 US-$).

