
Parsing Non-Recursive Context-Free Grammars

Mark-Jan Nederhof
�

Faculty of Arts
University of Groningen

P.O. Box 716
NL-9700 AS Groningen, The Netherlands

markjan@let.rug.nl

Giorgio Satta
Dip. di Elettronica e Informatica

Università di Padova
via Gradenigo, 6/A

I-35131 Padova, Italy
satta@dei.unipd.it

Abstract

We consider the problem of parsing
non-recursive context-free grammars, i.e.,
context-free grammars that generate finite
languages. In natural language process-
ing, this problem arises in several areas
of application, including natural language
generation, speech recognition and ma-
chine translation. We present two tabu-
lar algorithms for parsing of non-recursive
context-free grammars, and show that they
perform well in practical settings, despite
the fact that this problem is PSPACE-
complete.

1 Introduction

Several applications in natural language processing
require “parsing” of a large but finite set of candidate
strings. Here parsing means some computation that
selects those strings out of the finite set that are well-
formed according to some grammar, or that are most
likely according to some language model. In these
applications, the finite set is typically encoded in a
compact way as a context-free grammar (CFG) that
is non-recursive. This is motivated by the fact that
non-recursive CFGs allow very compact represen-
tations for finite languages, since the strings deriv-
able from single nonterminals may be substrings of
many different strings in the language. Unfolding
such a grammar and parsing the generated strings

�
Secondary affiliation is the German Research Center for

Artificial Intelligence (DFKI).

one by one then leads to an unnecessary duplica-
tion of subcomputations, since each occurrence of
a repeated substring has to be independently parsed.
As this approach may be prohibitively expensive, it
is preferable to find a parsing algorithm that shares
subcomputations among different strings by work-
ing directly on the nonterminals and the rules of the
non-recursive CFG. In this way, “parsing” a nonter-
minal of the grammar amounts to shared parsing of
all the substrings encoded by that nonterminal.

To give a few examples, in some natural lan-
guage generation systems (Langkilde, 2000) non-
recursive CFGs are used to encode very large sets
of candidate sentences realizing some input con-
ceptual representation (Langkilde calls such gram-
mars forests). Each CFG is later “parsed” using a
language model, in order to rank the sentences in
the set according to their likelyhood. Similarly, in
some approaches to automatic speech understand-
ing (Corazza and Lavelli, 1994) the

�
-best sen-

tences obtained from the speech recognition module
are “compressed” into a non-recursive CFG gram-
mar, which is later provided as input to a parser. Fi-
nally, in some machine translation applications re-
lated techniques are exploited to obtain sentences
that simultaneously realize two different conceptual
representations (Knight and Langkilde, 2000). This
is done in order to produce translations that preserve
syntactic or semantic ambiguity in cases where the
ambiguity could not be resolved when processing
the source sentence.

To be able to describe the above applications in an
abstract way, let us first fix some terminology. The
term “recognition” refers to the process of deciding

whether an input string is in the language described
by a grammar, the parsing grammar ��� . We will
generalize this notion in a natural way to input rep-
resenting a set of strings, and here the goal of recog-
nition is to decide whether at least one of the strings
in the set is in the language described by ��� . If the
input is itself given in the form of a grammar, the
input grammar ��� , then recognition amounts to de-
termining whether the intersection of the languages
described by ��� and ��� is non-empty. In this paper
we use the term parsing as synonymous to recog-
nition, since the recognition algorithms we present
can be easily extended to yield parse trees (with as-
sociated probabilities if either ��� or ��� or both are
probabilistic).

In what follows we consider the case where both
��� and ��� are CFGs. General CFGs have un-
favourable computational properties with respect to
intersection. In particular, the problem of deciding
whether the intersection of two CFGs is non-empty
is undecidable (Harrison, 1978). Following the ter-
minology adopted above, this means that parsing
a context-free input grammar ��� on the basis of a
context-free parsing grammar ��� is not possible in
general.

One way to make the parsing problem decidable
is to place some additional restrictions on ��� or
��� . This direction is taken by Langkilde (2000),
where � � is a non-recursive CFG and � � repre-
sents a regular language, more precisely an

�
-gram

model. In this way the problem can be solved us-
ing a stochastic variant of an algorithm presented
by Bar-Hillel et al. (1964), where it is shown that the
intersection of a general context-free language and a
regular language is still context-free.

In the present paper we leave the theoretical
framework of Bar-Hillel et al. (1964), and consider
parsing grammars ��� that are unrestricted CFGs,
and input grammars ��� that are non-recursive
context-free grammars. In this case the parsing (in-
tersection) problem becomes PSPACE-complete.1

Despite of this unfavourable theoretical result, algo-
rithms for the problem at hand have been proposed
in the literature and are currently used in practical
applications. In (Knight and Langkilde, 2000) ��� is

1The PSPACE-hardness result has been shown by Harry B.
Hunt III and Dan Rosenkrantz (Harry B. Hunt III, p.c.). Mem-
bership in PSPACE is shown by Nederhof and Satta (2002).

unfolded into a lattice (acyclic finite automaton) and
later parsed with ��� using an algorithm close to the
one by Bar-Hillel et al. (1964). The algorithm pro-
posed by Corazza and Lavelli (1994) involves copy-
ing of charts, and this makes it very similar in be-
haviour to the former approach. Thus in both al-
gorithms parts of the input grammar ��� are copied
where a nonterminal occurs more than once, which
destroys the compactness of the representation. In
this paper we propose two alternative tabular algo-
rithms that exploit the compactness of ��� as much
as possible. Although a limited amount of copying
is also done by our algorithms, this never happens in
cases where the resulting structure is ungrammatical
with respect to the parsing grammar � � .

The structure of this paper is as follows. In Sec-
tion 2 we introduce some preliminary definitions,
followed in Section 3 by a first algorithm based on
CKY parsing. A more sophisticated algorithm, sat-
isfying the equivalent of the correct-prefix property
and based on Earley’s algorithm, is presented in Sec-
tion 4. Section 5 presents our experimental results
and Section 6 closes with some discussion.

2 Preliminaries

In this section we briefly recall some standard no-
tions from formal language theory. For more details
we refer the reader to textbooks such as (Harrison,
1978).

A context-free grammar is a 4-tuple 	�
������������
, where
 is a finite set of terminals, called the

alphabet, � is a finite set of nonterminals, including
the start symbol � , and

�
is a finite set of rules hav-

ing the form ����� with ����� and ��� 	!
#"$� � �
.

Throughout the paper we assume the following con-
ventions: � , %&�(')'(' denote nonterminals, * , +,�(')')' de-
note terminals, - , . , � are strings in 	!
/"�� � �

and0 �21 are strings in
 �
. We also assume that each

CFG is reduced, i.e., no CFG contains nonterminals
that do not occur in any derivation of a string in the
language. Furthermore, we assume that the input
grammars do not contain epsilon rules and that there
is only one rule �3�4� defining the start symbol � .2

Finally, in Section 3 we will consider parsing gram-

2Strictly speaking, the assumption about the absence of ep-
silon rules is not without loss of generality, since without ep-
silon rules the language cannot contain the empty string. How-
ever, this has no practical consequence.

mars in Chomsky normal form (CNF), i.e., gram-
mars with rules of the form ��� % � or ���4* .

Instead of working with non-recursive CFGs, it
will be more convenient in the specification of our
algorithms to encode ��� as a push-down automaton
(PDA) with stack size bounded by some constant.
Unlike many text-books, we assume PDAs do not
have states; this is without loss of generality, since
states can be encoded in the symbols that occur top-
most on the stack. Thus, a PDA is a 5-tuple 	�
��� ������	��
 � �� ����� ��� � , where
 is the alphabet as above,
� is a finite set of stack symbols including the initial
stack symbol

� ���	��

and the final stack symbol

�� �����
,

and � is the set of transitions, having one of the fol-
lowing three forms:

���� ���
(a push transition),������ � (a pop transition), or
� ��� �

(a scan
transition, scanning symbol *). Throughout this pa-
per we use the following conventions: ��� � � � ���
denote stack symbols and �$��� �! are strings in � �

representing stacks. We remark that in our notation
stacks grow from left to right, i.e., the top-most stack
symbol will be found at the right end.

Configurations of the PDA have the form 	"�$�21 � ,
where � ��� �

is a stack and 1 �
 �
is the remain-

ing input. We let the binary relation # be defined by:
	$ %�$� 0 1 � # 	& '�$� 1 � if and only if there is a transi-
tion in � of the form � ��(� , where 0*),+ , or of
the form � ��� � , where 0-) * . The relation # �

denotes the reflexive and transitive closure of # . An
input string 1 is recognized by the PDA if and only
if 	 �.�/�	��
 �21 � # � 	 �� ����� � + � .
3 The CKY algorithm

In this section we present our first parsing algorithm,
based on the so-called CKY algorithm (Harrison,
1978) and exploiting a decomposition of computa-
tions of PDAs cast in a specific form. We start with
a construction that translates the non-recursive input
CFG ��� into a PDA accepting the same language.

Let ���) 	!
&����� ��� ��� . The PDA associated
with ��� is specified as

	�
&�!� �10 �#�32���4��10 �3���52�4��6� � �
where � consists of symbols of the form 0 � � -72
.84 for 	 ����- . � � � , and � contains the following
transitions:

2 For each pair of rules � � - % . and % � � ,
� contains:
0 ���4-92�% .84 �� 0 ���4-92�% .84:0 % �;2��14
and
0 ���4-92�% .84<0 % ���=2>4 ���0 ���4- %?2�.84 .

2 For each rule � � - * . , � contains:
0 ���4-92�* .84 ���@0 ���4- *A2�.84 .

Observe that for all PDAs constructed as above,
no push transition can be immediately followed by
a pop transition, i.e., there are no stack symbols

�
,�

and � such that
�B�� ���

and
���3�� � . As

a consequence of this, a computation 	 �C���	��
 � 1 � # �

	 �=� ����� � + � of the PDA can always and uniquely
be decomposed into consecutive subcomputations,
which we call segments, each starting with zero or
more push transitions, followed by a single scan
transition and by zero or more pop transitions. In
what follows, we will formalize this basic idea and
exploit it within our parsing algorithm.

We write � �)<D � to indicate that there is a com-
putation 	"�$�2* � # � 	&�$� + � of the PDA such that all of
the following three conditions hold:

(i) either E �FE)HG or E �IE)?G ;
(ii) the computation starts with zero or more push

transitions, followed by one scan transition
reading * and by zero or more pop transitions;

(iii) if E �FEKJ G then the top-most symbol of � must
be in the right-hand side of a pop or scan tran-
sition (i.e., top-most in the stack at the end of a
previous segment) and if E �FE8J G , then the top-
most symbol of � must be the left-hand side of
a push or scan transition (i.e., top-most in the
stack at the beginning of a following segment).

Let LNMPORQ$S)?T �����	��
�U " T �VEXW � � � 0 ���Y��Z�[4 U "T � E\W � �2*]0 � ��� � 4 U , and ^_Sa`)bT �� ����� U "T � EcW � 0 ���� ��� 4 U " T � EdW � � *<0 � ��� � 4 U . A
formal definition of relation D above is provided in
Figure 1 by means of a deduction system. We assign
a procedural interpretation to such a system follow-
ing Shieber et al. (1995), resulting in an algorithm
for the computation of the relation.

We now turn to an important property of seg-
ments. Any computation 	 � �/�	��
 �2*'e<f	fgf *dh � # �

	 �=� ����� � + � , ikj G , can be computed by combining

� �)<D ��� � ��� �
(1)

� �)<D �
� �)]D �

� � �� � �
� �?�� � (2)

� � �)]D �
� � � �)<D �

� � � �� �� ��LNMPO�Q&S (3)

� �)]D � �
� �)]D � � �

� � �� � �� � ^_Sa` (4)

Figure 1: Inference rules for the computation of re-
lation D .

� � �)<D�� � �
� � � �)]D � �� � LNMPORQ$S�� � � ^ S ` (5)

� �)<D�� K�
�	�)<D���

����)]D �
 (6)

���)]D � �
 K�	�)]D���

 %�����)<D���
 (7)

Figure 2: Inference rules for combining segments
� � ���)]D � � .

i segments represented by ��� ���)<D � � , G������ i ,
with � e) �����	��

, � h) �� �����
, and for G������ i ,

� � is a suffix of ��� � e or ��� � e is a suffix of � � . This
is done by the deduction system given in Figure 2,
which defines the relation)<D � . The second side-
condition of inference rule (5) checks whether a seg-
ment � � �)<D � � may border on other segments, or
may be the first or last segment in a computation.

Figure 3 illustrates a computation of a PDA rec-
ognizing a string * e *�� * � *"! . A horizontal line seg-
ment in the curve represents a scan transition, an up-
ward line segment represents a push transition, and a
downward line segment a pop transition. The shaded
areas represent segments � � ���)]D � � . As an example,
the area labelled I represents

�C���	��
 �$#)]D �����	��
 � e � � ,

for certain stack symbols
� e and

� � , where the left
edge of the shaded area represents

�C���	��

and the

right edge represents
� �/�	��
 � e � � . Note that seg-

ments ��� ���)<D � � abstract away from the stack sym-
bols that are pushed and then popped again. Fur-
thermore, in the context of the whole computation,
segments abstract away from stack symbols that are
not accessed during a subcomputation. As an exam-
ple, the shaded area labelled III represents segment� e � � �&%)<D � , for certain stack symbols

� e , � � and
� , and this abstracts away from the stack symbols
that may occur below

� e and � .

Figure 4 illustrates how two adjacent segments are
combined. The dashed box in the left-hand side of
the picture represents stack symbols from the right
edge of segment II that need not be explicitly repre-
sented by segment III, as discussed above. We may
assume that these symbols exist, so that II and III
can be combined into the larger computation in the
right-hand side of the picture. Note that if a com-

putation � �)<D�� � is obtained as the combination
of two segments as in Figure 4, then some internal
details of these segments are abstracted away, i.e.,
stack elements that were pushed and again popped in
the combined computation are no longer recorded.
This abstraction is a key feature of the parsing al-
gorithm to be presented next, in that it considerably
reduces the time complexity as compared with that
of an algorithm that investigates all computations of
the PDA in isolation.

We are now ready to present our parsing algo-
rithm, which is the main result of this section. The
algorithm combines the deduction system in Fig-
ure 2, as applied to the PDA encoding the input
grammar � � , with the CKY algorithm as applied to
the parsing grammar ��� . (We assume that ��� is
in CNF.) The parsing algorithm may rule out many
combinations of segments from Figure 2 that are in-
consistent with the language generated by ��� . Also
ruled out are structural compositions of segments
that are inconsistent with the structure that � � as-
signs to the corresponding substrings.

The parsing algorithm is again specified as a de-
duction system, presented in Figure 5. The algo-
rithm manipulates items of the form 0 � �!� � � 4 , where
� is a nonterminal of � � and � , � are stacks of the
PDA encoding ��� . Such an item indicates that there

stack
hight

time

I

II
III

IV

Figure 3: A computation of a PDA divided into segments.

II
III

combined into:

II + III

Figure 4: Combining two segments using rule (6) from Figure 2.

0 � �!� � � � � 4��
�� �� �

� �)<D � �� � LNMPORQ$S�� � � ^ S `
���4*

(8)

0 %����$�! K� 4
0 � � �$�
 4
0 � ���$�!
 4 � � � % � (9)

0 %����$��� 4
0 � �! K�$�
 4
0 � �! %� �
 4 � � � % � (10)

Figure 5: Inference rules that simultaneously derive
strings generated by ��� and accepted by the PDA
encoding � � .

is some terminal string 1 that is derivable from �
in � � , and such that 	"�$� 1 � # � 	 �$� + � . If the item
0 ��� �����	��
 � �=� ����� 4 can be derived by the algorithm,
then the intersection of the language generated by
��� and the language accepted by the PDA (gener-
ated by ���) is non-empty.

4 Earley’s algorithm

The CKY algorithm from Figure 5 can be seen to
filter out a selection of the computations that may be
derived by the deduction system from Figure 2. One
may however be even more selective in determining

which computations of the PDA to consider. The ba-
sis for the algorithm in this section is Earley’s algo-
rithm (Earley, 1970). This algorithm differs from the
CKY algorithm in that it satisfies the correct-prefix
property (Harrison, 1978).

The new algorithm is presented by Figure 6.
There are now two types of item involved. The first
item has the form 0 ��� - 2 . E �� �$�� �� � 4 ,
where � � - 2 . has the same role as the dot-
ted rules in Earley’s original algorithm. The sec-
ond and third components are stacks of the PDA
as before, but these stacks now contain a distin-
guished position, indicated by � . The existence of
an item 0 � � - 2 .7Ec �� �$�! ��C� 4 implies that
	$ %�$� 0 � # � 	$ K�$� + � , where 0 is now a string deriv-
able from - . This is quite similar to the meaning we
assigned to the items of the CKY algorithm, but here
not all stack symbols in a� and K� are involved in
this computation: only the symbols in � and � are
now accessed, while all symbols in remain unaf-
fected. The portion of the stack represented by is
needed to ensure the correct-prefix property in sub-
sequent computations following from this item, in
case all of the symbols in � are popped.

The correct-prefix property is ensured in the fol-
lowing sense. The existence of an item 0 � � - 2
. E	 ��N� �� 	�F� 4 implies that (i) there is a string 1 0
that is both a prefix of a string accepted by the PDA
and of a string generated by the CFG such that after

0 �3�;2�� E � �.�/�	��
 � � �.�/�	��
 4 � � �4� (11)

0 ���4-92�* . E �I�$� �I K� 4
0 ���4- *A2�. E �F�$� �[
 4 � � �)]D �
 (12)

0 ���4-92�* . E �I�$�! ��I�:4
0 ���4- *A2�. E �[a�$� �
 4 � K� �)]D �
 (13)

0 ���4-92�* . E �I�$� �[� 4
0 � ��-92�* . E �I�$� �[�*E�� � 4 � <� � �)<D��
 (14)

0 � ��-92�% . E �F�$� � � � 4
0 % �32�� E � � � � � 4 � % �4� (15)

0 ���4-92�% . E �I�$� �I K� 4
0 % ���=2?E �[�$� �
 4
0 � ��- %?2�. E �F�$� �[
 4 (16)

0 � ��-92�% . E �I� �� �[� 4
0 % �4�2?E �I K�$� �
 4
0 � ��- %?2�. E �I %� � �
 4 (17)

0 ���4-92�. E	� � ���*E>� � 4
0 � �;2�- .CE	� � � ��� � � E�� � 4 (18)

0 ���4-92�% . E �$��� � 4
0 % �32 �AE6� � � � � � � E>� � 4
0 ���4-92�% . E	�$� � � E�� � 4 (19)

0 ���4-92�% . E �$�!]�N� � 4
0 % �32 �AE6� � � � � � � E>� � 4
0 % �32 � E�� � � � �6�N� � � 4 (20)

0 � �;2 - . E>� � e � � � � �6� � e � � � � 4
0 � �4-92�. E � e �I� � � ��� e � � E�� � 4
0 ���4-92�. E�� � e �I� � � ��� � e �I�:4 (21)

Figure 6: Inference rules based on Earley’s algo-
rithm.

processing 1 , � is expanded in a left-most deriva-
tion and some stack can be obtained of which a�
represent the top-most elements, and (ii) - is rewrit-
ten to 0 and while processing 0 the PDA replaces the

stack elements � by � .3

The second type of item has the form 0 � � - 2
. E% � �$�! � � E:� � 4 . The first three compo-
nents are the same as before, and � indicates that we
wish to know whether a stack with top-most symbols
�N a� may arise after reading a prefix of a string that
may also lead to expansion of nonterminal � in a
left-most derivation. Such an item results if it is de-
tected that the existence of � below %� needs to be
ensured in order to continue the computation under
the constraint of the correct-prefix property.

Our algorithm also makes use of segments, as
computed by the algorithm from Figure 1. Con-
sistently with rule (5) from Figure 2, we write

� � �)]D�� � � to represent a segment � � �)<D � �
such that

� � LNMPO�Q&S�� � � ^_Sa` . The use of seg-
ments that were computed bottom-up is a departure
from pure left-to-right processing in the spirit of Ear-
ley’s original algorithm. The motivation is that we
have found empirically that the use of rule (2) was
essential for avoiding a large part of the exponen-
tial behaviour; note that that rule considers at most a
number of stacks that is quadratic in the size of the
PDA.

The first inference rule (11) can be easily justified:
we want to investigate strings that are both generated
by the grammar and recognized by the PDA, so we
begin by combining the start symbol and a match-
ing right-hand side from the grammar with the initial
stack for the PDA.

Segments are incorporated into the left-to-right
computation by rules (12) and (13). These two rules
are the equivalents of (9) and (10) from Figure 5.
Note that in the case of (13) we require the presence
of below the marker in the antecedent. This indi-
cates that a stack with top-most symbols %� and a
dotted rule ���4-92�* . can be obtained by simulta-
neously processing a string from left to right by the
grammar and the PDA. Thereby, we may continue
the derivation with the item in the consequent with-
out violating the correct-prefix property.

Rule (14) states that if a segment presupposes the
existence of stack elements that are not yet available,
we produce an item that starts a backward computa-
tion. We do this one symbol at a time, starting with

3We naturally assume that the PDA itself satisfies the
correct-prefix property, which is guaranteed by the construction
from Section 3 and the fact that � � is reduced.

the symbol � just beneath the part of the stack that is
already available. This will be discussed more care-
fully below.

The predictor step of Earley’s algorithm is repre-
sented by (15), and the completer step by rules (16)
and (17). These latter two are very similar to (12)
and (13) in that they incorporate a smaller derivation
in a larger derivation.

Rules (18) and (19) repeat computations that have
been done before, but in a backward manner, in or-
der to propagate the information that deeper stack
symbols are needed than those currently available,
in particular that we want to know whether a certain
stack symbol � may occur below the currently avail-
able parts of the stack. In (18) this query is passed on
to the beginning of the context-free rule, and in (19)
this query is passed on backwards through a predic-
tor step. In the antecedent of rule (18) the position of
the marker is irrelevant, and is not indicated explic-
itly. Similarly, for rule (19) we assume the position
of the marker is copied unaltered from the first an-
tecedent to the consequent.

If we find the required stack symbol � , we prop-
agate the information forward that this symbol may
indeed occur at the specified position in the stack.
This is implemented by rules (20) and (21). Rule
(20) corresponds to the predictor step (15), but (20)
passes on a larger portion of the stack than (20).
Rule (15) only transfers the top-most symbol

�
to

the consequent, in order to keep the stacks as shal-
low as possible and to achieve a high degree of shar-
ing of computation.

5 Empirical results

We have implemented the two algorithms and tested
them on non-recursive input CFGs and a parsing
CFG. We have had access to six input CFGs of the
form described by Langkilde (2000). As parsing
CFG we have taken a small hand-written grammar
of about 100 rules. While this small size is not at all
typical of practical grammars, it suffices to demon-
strate the applicability of our algorithms.

The results of the experiments are reported in Fig-
ure 1. We have ordered the input grammars by
size, according to the number of nonterminals (or
the number of nodes in the forest, following the ter-
minology by Langkilde (2000)).

The second column presents the number of strings
generated by the input CFG, or more accurately,
the number of derivations, as the grammars contain
some ambiguity. The high numbers show that with-
out a doubt the naive solution of processing the input
grammars by enumerating individual strings (deriva-
tions) is not a viable option.

The third column shows the size, expressed as
number of states, of a lattice (acyclic finite au-
tomaton) that would result by unfolding the gram-
mar (Knight and Langkilde, 2000). Although this
approach could be of more practical interest than
the naive approach of enumerating all strings, it still
leads to large intermediate results. In fact, practical
context-free parsing algorithms for finite automata
have cubic time complexity in the number of states,
and derive a number of items that is quadratic in the
number of states.

The next column presents the number of segments
� �)<D � . These apply to both algorithm. We only
compute segments � �)<D � for terminals * that also
occur in the parsing grammar. (Further obvious op-
timizations in the case of Earley’s algorithm were
found to lead to no more than a slight reduction of
produced segments.) The last two columns present
the number of items specific to the two algorithms
in Figures 5 and 6, respectively. Although our two
algorithms are exponential in the number of stack
symbols in the worst case, just as approaches that
enumerate all strings or that unfold ��� into a lattice,
we see that the numbers of items are relatively mod-
erate if we compare them to the number of strings
generated by the input grammars.

Earley’s algorithm generally produces more items
than the CKY algorithm. An exception is the last in-
put CFG; it seems that the number of items that Ear-
ley’s algorithm needs to consider in order to main-
tain the correct-prefix property is very sensitive to
qualities of the particular input CFG.

The present implementations use a trie to store
stacks; the arcs in the trie closest to the root rep-
resent stack symbols closest to the top of the stacks.
For example, for storing � �)]D � , the algorithm rep-
resents � and � by their corresponding nodes in the
trie, and it indexes � �)]D � twice, once through
each associated node. Since the trie is doubly linked
(i.e. we may traverse the trie upwards as well as
downwards), we can always reconstruct the stacks

Table 1: Empirical results.

nonts # strings # states # segments # items CKY # items Earley
168 � '�� � G���� 2643 1437 1252 6969
248 � '�� � G���� 21984 3542 4430 40568
259 � ' � � G���	 6528 957 1314 29925
361 G '�
 � G�� e�e 77198 7824 14627 14907
586 � '�� � G�� e � 45713 8832 5608 8611
869
 '�
 � G�� e � 63851 15679 5709 3781

from the corresponding nodes. This structure is also
convenient for finding pairs of matching stacks, one
of which may be deeper than the other, as required
by the inference rules from e.g. Figure 5, since given
the first stack in such a pair, the second can be found
by traversing the trie either upwards or downwards.

6 Discussion

It is straightforward to give an algorithm for parsing
a finite language: we may trivially parse each string
in the language in isolation. However, this is not a
practical solution when the number of strings in the
language exceeds all reasonable bounds.

Some algorithms have been described in the exist-
ing literature that parse sets of strings of exponential
size in the length of the input description. These so-
lutions have not considered context-free parsing of
finite languages encoded by non-recursive CFGs, in
a way that takes full advantage of the compactness
of the representation. Our algorithms make this pos-
sible, relying on the compactness of the input gram-
mars for efficiency in practical cases, and on the ab-
sence of recursion for guaranteeing termination. Our
experiments also show that these algorithms are of
practical interest.

Acknowledgements

We are indebted to Irene Langkilde for putting to our
disposal the non-recursive CFGs on which we have
based our empirical evaluation.

References

Y. Bar-Hillel, M. Perles, and E. Shamir. 1964. On formal
properties of simple phrase structure grammars. In
Y. Bar-Hillel, editor, Language and Information: Se-

lected Essays on their Theory and Application, chap-
ter 9, pages 116–150. Addison-Wesley.

A. Corazza and A. Lavelli. 1994. An � -best represen-
tation for bidirectional parsing strategies. In Working
Notes of the AAAI’94 Workshop on Integration of Nat-
ural Language and Speech Processing, pages 7–14,
Seattle, WA.

J. Earley. 1970. An efficient context-free parsing algo-
rithm. Communications of the ACM, 13(2):94–102,
February.

M.A. Harrison. 1978. Introduction to Formal Language
Theory. Addison-Wesley.

K. Knight and I. Langkilde. 2000. Preserving ambigu-
ities in generation via automata intersection. In Pro-
ceedings of the Seventeenth National Conference on
Artificial Intelligence and Twelfth Conference on In-
novative Applications of Artificial Intelligence, pages
697–702, Austin, Texas, USA, July–August.

I. Langkilde. 2000. Forest-based statistical sentence gen-
eration. In 6th Applied Natural Language Processing
Conference and 1st Meeting of the North American
Chapter of the Association for Computational Linguis-
tics, pages Section 2, 170–177, Seattle, Washington,
USA, April–May.

M.-J. Nederhof and G. Satta. 2002. The emptiness prob-
lem for intersection of a CFG and a nonrecursive CFG
is PSPACE-complete. In preparation.

S.M. Shieber, Y. Schabes, and F.C.N. Pereira. 1995.
Principles and implementation of deductive parsing.
Journal of Logic Programming, 24:3–36.

