
Deutsches
Forschungszentrum
für Künstliche
Intelligenz GmbH

Research
Report

RR-03-01

SDL—A System Description Language

Hans-Ulrich Krieger

March 2003

Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH

Postfach 20 80
67608 Kaiserslautern, FRG
Tel.: + 49 (631) 205-3211
Fax: + 49 (631) 205-3210
E-Mail: info@dfki.uni-kl.de

Stuhlsatzenhausweg 3
66123 Saarbrücken, FRG
Tel.: + 49 (681) 302-5252
Fax: + 49 (681) 302-5341
E-Mail: info@dfki.de

WWW: http://www.dfki.de

Deutsches Forschungszentrum für Künstliche Intelligenz

DFKI GmbH
German Research Center for Artificial Intelligence

Founded in 1988, DFKI today is one of the largest nonprofit contract research institutes in
the field of innovative software technology based on Artificial Intelligence (AI) methods. DFKI
is focusing on the complete cycle of innovation — from world-class basic research and tech-
nology development through leading-edge demonstrators and prototypes to product functions
and commercialization.

Based in Kaiserslautern and Saarbrücken, the German Research Center for Artificial Intelli-
gence ranks among the important “Centers of Excellence” worldwide.

An important element of DFKI’s mission is to move innovations as quickly as possible from the
lab into the marketplace. Only by maintaining research projects at the forefront of science can
DFKI have the strength to meet its technology transfer goals.

DFKI has about 165 full-time employees, including 141 research scientists with advanced de-
grees. There are also around 95 part-time research assistants.

Revenues for DFKI were about 30 million DM in 2000, half from government contract work and
half from commercial clients. The annual increase in contracts from commercial clients was
greater than 20% during the last three years.

At DFKI, all work is organized in the form of clearly focused research or development projects
with planned deliverables, various milestones, and a duration from several months up to three
years.

DFKI benefits from interaction with the faculty of the Universities of Saarbrücken and Kaisers-
lautern and in turn provides opportunities for research and Ph.D. thesis supervision to students
from these universities, which have an outstanding reputation in Computer Science.

The key directors of DFKI are Prof. Wolfgang Wahlster (CEO) and Dr. Walter Olthoff (CFO).

DFKI’s five research departments are directed by internationally recognized research scien-
tists:

Knowledge Management (Director: Prof. A. Dengel)
Intelligent Visualization and Simulation Systems (Director: Prof. H. Hagen)
Deduction and Multiagent Systems (Director: Prof. J. Siekmann)
Language Technology (Director: Prof. H. Uszkoreit)
Intelligent User Interfaces (Director: Prof. W. Wahlster)

In this series, DFKI publishes research reports, technical memos, documents (eg. workshop
proceedings), and final project reports. The aim is to make new results, ideas, and software
available as quickly as possible.

Prof. Wolfgang Wahlster
Director

SDL—A System Description Language

Hans-Ulrich Krieger

DFKI-RR-03-01

I am grateful to my colleagues from the SProUT group, viz., Markus Becker,
Witold Drożdżyński, Jakub Piskorski, Ulrich Schäfer, and Feiyu Xu who provide
an excellent environment for testing SDL. The discussions with Bernd Kiefer,
Markus Pilzecker, and Jörg Steffen have helped me to make things clear—
thank you guys! The feedback from Hans Uszkoreit and Anette Frank made
me realize that there is a need for such a specification language. The following
people have read earlier versions of this report and I greatly appreciate their
comments: Mark-Jan Nederhof, Hans Uszkoreit, and Feiyu Xu. Parts of this
work were supported by the German Federal Ministry for Education, Science,
Research, and Technology under grant no. 01 IN A01 (Collate) and by an EU
grant under no. IST 12179 (Airforce).

c© Deutsches Forschungszentrum für Künstliche Intelligenz 2003

This work may not be copied or reproduced in whole or part for any commercial purpose. Permission to
copy in whole or part without payment of fee is granted for nonprofit educational and research purposes
provided that all such whole or partial copies include the following: a notice that such copying is by per-
mission of the Deutsche Forschungszentrum für Künstliche Intelligenz, Kaiserslautern, Federal Republic
of Germany; an acknowledgement of the authors and individual contributors to the work; all applicable
portions of this copyright notice. Copying, reproducing, or republishing for any other purpose shall require
a licence with payment of fee to Deutsches Forschungszentrum für Künstliche Intelligenz.

ISSN 0946-008X

SDL—A System Description Language

Hans-Ulrich Krieger
German Research Center for Artificial Intelligence (DFKI)

Stuhlsatzenhausweg 3, D-66123 Saarbrücken, Germany
krieger@dfki.de

Abstract

We present the system description language SDL that offers a declarative
way of specifying new complex systems from already existing modules with
the help of three operators: sequence, parallelism, and unrestricted itera-
tion. Given a system description and modules that implement a minimal
interface, the SDL compiler returns a running Java program which realizes
exactly the desired behavior of the original specification. The execution
semantics of SDL is complemented by a precise formal semantics, defined
in terms of concepts of function theory. The SDL compiler is part of the
SProUT shallow language platform, a system for the development and pro-
cessing of multilingual resources. We believe that the application of SDL
is not only limited to the construction of pure NLP systems, but can also
be employed in the definition of general software systems.

1

1 Introduction

In this report, we motivate the development of a general system description lan-
guage, called SDL, which allows the declarative specification of software systems
from a set of already existing modules. Assuming that each initial module imple-
ments a minimal interface of methods, a new complex system is composed with the
help of three operators that realize a sequence of two modules, a (quasi-)parallel
execution of several modules, and a potentially unrestricted self-application of a
single module. Communication between independent modules is decoupled by a
mediator which is sensitive to the operators connecting the modules and to the
modules themselves.
This means that new complex systems can be defined by simply putting together
existing independent modules, sharing a common interface. The interface as-
sumes functionality which modules usually already provide, such as set input ,
clear internal state, start computation, etc. It is clear that such an approach al-
lows to flexibly experiment with different software architectures during the set up
of a new (NLP) system. The use of mediators furthermore guarantees that an in-
dependently developed module will stay independent when integrated into a new
system. In the worst case, only the mediator needs to be modified or upgraded,
resp. In many cases, not even a modification of the mediator is necessary.
Contrary to an interpreted approach to system specification, our approach com-
piles a syntactically well-formed SDL expression into a Java program (aka a Java
class). This code might then be incorporated into a larger system or might be
directly compiled by the Java compiler, resulting in an executable file. This
strategy has two advantages: firstly, the compiled Java code is faster than an
interpretation of the corresponding SDL expression, and secondly, the generated
Java code can be modified or even extended by additional software.
The structure of this report is as follows. In the next section, we motivate the
development of SDL and give a flavor of how the implementation is realized. We
then come up with an EBNF specification of the concrete syntax for SDL and
explain SDL with the help of an example. Since modules can be seen as functions
in the mathematical sense, we argue that a system specification can be given a
formal semantics. The following section specifies the interface every single mod-
ule must fulfill. The section also specifies the mediator interface. After that, we
inspect the default implementation for the module methods, look at the mediator
code, and finally describe how the SDL compiler transforms arbitrary SDL expres-
sions into a set of Java classes. We close this report by putting our approach into
a larger context and by indicating our next steps. The final appendix presents a
running example of a system of simple modules which embodies a complex flow
of control.

2 Motivation

The shallow text processing system SProUT (Becker et al. 2002) developed at
DFKI is a complex platform for the development and processing of multilingual
resources. SProUT arranges processing components (e.g., tokenizer, gazetteer,

2

named entity recognition) in a strictly sequential fashion, as is known from stan-
dard cascaded finite-state devices (e.g., Abney 1996 or Hobbs et al. 1997).
In order to connect such components, one must look at the application program-
mer interface (API) of each module, hoping that there are API methods which
allow, e.g., to call a module with a specific input, to obtain the result value, etc.
In the best case, API methods from different modules can be used directly with-
out much programming overhead. In the worst case, however, there is no API
available, meaning that we have to inspect the programming code of a module
and have to write additional code to realize interfaces between modules (e.g.,
data transformation). Even more demanding, recent hybrid NLP systems (e.g.,
Crysmann et al. 2002) implement more complex interactions and loops instead
of using a simple pipeline of modules.
We have overcome this inflexible behavior by implementing the following idea.
Since we use typed feature structures (Carpenter 1992) in SProUT as the sole
data interchange format between processing modules, the construction of a new
system can be reduced to the interpretation of a regular expression of modules.
Because the ◦ sign for concatenation can not be found on a keyboard, we have
given the three characters +, |, and ∗ the following meaning:

• sequence or concatenation
m1 +m2 expresses the fact that (1) the input to m1 +m2 is the input given
to m1, (2) the output of module m1 serves as the input to m2, and (3) that
the final output of m1 +m2 is equal to the output of m2. This is the usual
flow of information in a sequential cascaded shallow architecture.

• concurrency or parallelism
| denotes a quasi-parallel computation of independent modules, where the
final output of each module serves as the input to a subsequent module
(perhaps grouped in a structured object; we do this!). This operator has
a far reaching potential. We envisage, e.g., the parallel computation of
several morphological analyzers with different coverage. In a programming
language such as Java (Arnold et al. 2000), the execution of modules can
even be realized by independently running threads (see next section on how
to specify this).

• unrestricted iteration or fixpoint computation
m∗ has the following interpretation. Module m feeds its output back into
itself, until no more changes occur, thus implementing a kind of a fixpoint
computation (Davey and Priestley 1990). It is clear that such a fixpoint
might not be reached in finite time, i.e., the computation must not stop.
A possible application was envisaged in Braun 1999, where an iterative
application of a base clause module was necessary to model recursive em-
bedding of subordinate clauses in a system for parsing German clause sen-
tential structures. Unrestricted iteration would even allow us to simulate
an all-paths context-free parsing behavior, since such a feedback loop can
in principle realize an unbounded number of cascade stages in a finite-state
device.

3

We have defined a Java interface of methods which each module must fulfill that
will be incorporated in the construction of a new system (see section 5). Imple-
menting such an interface means that a module must provide an implementation
for all methods specified in the interface with exactly the same method name and
method signature, e.g., setInput(), clear(), or run(). To ease this implemen-
tation, we have also implemented an abstract Java class that provides a default
implementation for all these methods with the exception of run(), the method
which starts the computation of the module and which delivers the final result.
The interesting point now is that a new system, declaratively specified by means of
the above apparatus, can be automatically compiled into a single Java program,
i.e., a Java class (see section 6). This Java code can then be compiled by the
Java compiler into a running program (a class file for Java’s VM) which realizes
exactly the intended behavior of the original system specification. Obtaining a
module instance from a module name (i.e., a Java class) is achieved by importing
the corresponding Java class in the compiled code and by applying new to the
class name. Contrary to the compilation method described here, an interpreted
approach to system description must refer to a new module at run time through
Java’s reflection API by using forName() and newInstance() which allows for
dynamic loading of classes into the Java virtual machine (Arnold et al. 2000).
At this point, we can only outline the basic idea and present a simplified version
of the compiled code for a sequence of two module instances m1 + m2, for the
independent concurrent computation m1 | m2, and for the unbounded iteration
of a single module instance m∗. The notation m.method() is the Java notation for
executing the method method() from class (or as we say here: module) m.

(m1 +m2)(input) ≡
m1.clear();

m1.setInput(input);

m1.setOutput(m1.run(m1.getInput()));

m2.clear();

m2.setInput(seq(m1, m2));

m2.setOutput(m2.run(m2.getInput()));

return m2.getOutput();

(m1 | m2)(input) ≡
m1.clear();

m1.setInput(input);

m1.setOutput(m1.run(m1.getInput()));

m2.clear();

m2.setInput(input);

m2.setOutput(m2.run(m2.getInput()));

return par(m1, m2);

(m∗)(input) ≡
m.clear();

m.setInput(input);

m.setOutput(fix(m));

return m.getOutput();

4

The pseudo code above contains three methods, seq(), par(), and fix(), methods
which mediate between the output of one module and the input of a succeeding
module. Clearly, such functionality should not be squeezed into independently
developed modules, since otherwise a module m must have a notion of a fixpoint
during the execution of m∗ or must be sensitive to the output of every other
module, e.g., during the processing of (m1 | m2) + m. Note that the mediators
take modules as input, and so having access to their internal information via the
public methods specified in the module interface.
The default implementation for seq is of course the identity function (speak-
ing in terms of functional composition). par wraps the two results in a struc-
tured object (default implementation: a Java array). fix() implements a fixpoint
computation. These mediators can be made specific to special module-module
combinations and are an implementation of the mediator pattern, which loosely
couples independent modules by encapsulating their interaction in a new object;
see Gamma et al. 1995, pp. 273. I.e., these mediators do not modify the origi-
nal modules and only have read access to input and output via getInput() and
getOutput().
The need for the mediators originally arose when we tried to display module com-
binations as pictures. Furthermore, from the standpoint of symmetry, we thought
that for each operator a corresponding mediator method could be useful, and so
must exist. Let us give a few examples to see how this basic idea progressed.
Depicting a sequence of two modules is, at first sight, not hard.

m1 m2

Now, if the input format of m2 is not compatible with the output of m1, must
we change the programming code for m2? Even more serious, if we would have
another expression m3 + m2, must m2 also be sensitive to the output format of
m3? In order to avoid these and other cases, we decouple the interaction between
modules and introduce a special mediator method for the sequence operator (seq
in the above code), depicted by ⊕.

m1 + m2

⊕ connects two modules. This fact is reflected by making seq a binary method
which takes m1 and m2 as input parameters (see example code).
Let us now move to the parallel execution of several modules (not necessarily
two, as in the above example).

mk

m1

...

5

There is one problem here. What happens to the output of each module when
the lines come together, meeting in the outgoing arrow? The next section has a
few words on this and presents a solution. We only note here that there exists
a mediator method par, which, by default, groups the output in a structured
object. Since par does not know the number of modules in advance, it takes as
its parameter an array of modules. Note that the input arrows are fine—every
module gets the same data. Hence, we have the following modified picture.

mk

m1

... |

Now comes the ∗ operator. As we already said, the module feeds itself with its
own output, until a fixpoint has been reached. Instead of writing

m

we make the mediator method for ∗ explicit, since it embodies the knowledge
about fixpoints (and not the module):

m ∗

3 Syntax

A new system is built from an initial set of already existing modules M with the
help of the three operators +, |, and ∗. The set of all syntactically well-formed
module descriptions D in SDL is inductively defined as follows:

• m ∈M ⇒ m ∈ D

• m1,m2 ∈ D ⇒ m1 +m2 ∈ D

• m1, . . . ,mk ∈ D ⇒ (| m1 . . . mk) ∈ D

• m ∈ D ⇒ (∗ m) ∈ D

Examples in the concrete syntax are written using the typewriter font, e.g.,
module. All operators have the same priority. Succeeding modules are written
from left to right, using infix notation, e.g., m1 + m2.
Parallel executed modules must be put in parentheses with the | operator first,
for instance (| m1 m2). Note that we use the prefix notation for the concurrency
operator | to allow for an arbitrary number of arguments, e.g., (| m1 m2 m3).
This technique furthermore circumvents notorious grouping ambiguities which

6

might lead to different results when executing the modules. Notice that since
| must neither be commutative nor must it be associative, the result of (| m1

m2 m3) might be different to (| m1 (| m2 m3)), to (| (| m1 m2) m3), or even to
(| m2 (| m1 m3)), etc. Whether | is commutative or associative is determined
by the implementation of concurrency mediator par (see last section for the mo-
tivation). Let us give an example. Assume, for instance, that m1, m2, and m3

would return typed feature structures and that par() would join the results by
using unification. In this case, | is clearly commutative and associative, since
unification is commutative and associative (and idempotent).
Finally, the unrestricted self-application of a module should be expressed by using
the module name, prefixed by the asterisk sign, and grouped using parentheses,
e.g., (* module). module here might represent a single module or a complex
expression (which itself must be put in parentheses).
Making | and ∗ prefix operators (in contrast to +) ease the work of the syntactical
analysis of an SDL expression. The EBNF for a complete system description
system is given by figure 1.

system → definition {command}∗ variables
definition→module "=" regexpr newline
module → a fully qualified Java class name
regexpr → var |

"(" regexpr ")" |
regexpr "+" regexpr |
"(" "|" {regexpr}+ ")" |
"(" "*" regexpr ")"

newline → the newline character
command→mediator | threaded
mediator → "Mediator =" med newline
med → a fully qualified Java class name
threaded → "Threaded =" {"yes" | "no"} newline
variables →{vareq newline}+

vareq → var "=" module [initexpr]
var → a lowercase symbol
initexpr → "(" string {"," string}∗ ")"
string → a Java string

Figure 1: The EBNF for the syntax of SDL.

A concrete, although unrealistic example is shown in figure 2.
We have tried to define a syntax which employs only a small number of reserved
words, viz., =, (,), +, |, and *. The example system from figure 2 should be read
as define a new module de.dfki.lt.system.S as a + b + ..., variables a, b, and d

refer to instances of module de.dfki.lt.system.A, module de.dfki.lt.system.A

belongs to package de.dfki.lt.system, the value of c should be initialized with
("foo", "bar", "baz"), etc. Every single line must be separated by the newline
character.

7

de.dfki.lt.system.S = a + b + (| (c + a) d) + d + (* (a + b)) + e

a = de.dfki.lt.system.A

b = de.dfki.lt.system.A

c = C ("foo", "bar", "baz")

d = de.dfki.lt.system.A

e = de.dfki.lt.system.test.E ("../test/corpus.txt")

Figure 2: An example in the concrete syntax of SDL.

Note that the package specification and the initialization arguments are optional
(see figure 1). In our case, packages are specified for module A and E. Module C

thus belongs to what Java calls the unnamed (or sometimes the default) package
(Arnold et al. 2000, p. 32). Furthermore, only c and e are initialized, using
method init() from the module interface (see next section).
The use of variables (instead of using directly module names = Java classes)
has one important advantage: variables can be reused (e.g., a in the example),
meaning that the same instance is used at several places throughout the sys-
tem description, instead of using several instances of the same module (which,
of course, can also be achieved; cf. a, b, and d which are instances of module
de.dfki.lt.system.A). Notice that the value of a variable can not be redefined
during the course of a system description.
The above example as well as the EBNF of SDL make use of the Java package
concept. We assume a basic familiarity with this fundamental notion; see, e.g.,
Arnold et al. 2000 or Flanagan 2002.

4 Modules as Functions

Before we start the description of the implementation in the next section, we will
argue that a system description can be given a precise formal semantics, assuming
that the initial modules, which we call base modules are well defined. First of all,
we only need some basic mathematical knowledge from secondary school, viz.,
the concept of a function.
A function f (sometimes called a mapping) from S to T , written as f : S −→ T ,
can be seen as a special kind of relation, where the domain of f is S (written
as dom(f) = S), and for each element in the domain of f , there is at most one
element in the range (or codomain) rng(f).
If there always exists an element in the range, we say that f is a total function
(or well defined) and write f ↓. Otherwise, f is said to be a partial function, and
for an s ∈ S for which f is not defined, we then write f(s)↑.
Since S itself might consist of ordered n-tuples and thus is the Cartesian product
of S1, . . . , Sn, depicted as ×ni=1Si, we use the vector notation and write f(~s)
instead of f(s).
The n-fold functional composition of f : S −→ T (n ≥ 0) is written as fn and
has the following inductive definition: f 0(~s) := ~s and f i+1(~s) := f(f i(~s)).
s ∈ S is said to be a fixpoint of f : S −→ S iff f(f(s)) =S f(s) (we use =S to
denote the equality relation in S).

8

Assuming that m is a module for which a proper run() method has been defined,
we will, from now on, refer to the function m as abbreviating m.run(), the execu-
tion of method run() from module m. Hence, we define the execution semantics
of m to be equivalent to m.run().

4.1 Sequence

Let us start with the sequence m1 +m2 of two modules, regarded as two function
m1 : S1 −→ T1 and m2 : S2 −→ T2. + here is the analogue to functional
composition ◦, and so we define the meaning (or abstract semantics) [[·]] of (m1 +
m2) as

[[(m1 +m2)]](~s) := (m2 ◦m1)(~s) = m2(m1(~s))

m1 + m2 then is well-defined if m1 ↓, m2 ↓, and T1 ⊆ S2 is the case, due to the
following biconditional:

m1 ↓, m2 ↓, T1 ⊆ S2 ⇐⇒ ((m1 ◦m2) : S1 −→ T2)↓

4.2 Parallelism

We now come to the parallel execution of k modules mi : Si −→ Ti (1 ≤ i ≤ k),
operating on the same input. As already said, the default mediator for | returns
an ordered sequence of the results of m1, . . . ,mk, hence is similar to the Cartesian
product ×:

[[(| m1 . . . mk)]](~s) := 〈m1(~s), . . . ,mk(~s) 〉

(| m1 . . . mk) is well-defined if each module is well defined and the domain of
each module is a superset of the domain of the new composite module:

m1 ↓, . . . ,mk ↓ =⇒ ((m1 × . . .×mk) : (S1 ∩ . . . ∩ Sk)k −→ T1 × . . .× Tk)↓

4.3 Iteration

A proper definition of unrestricted iteration, however, deserves more attention
and a bit more work. Since a module m feeds its output back into itself, it is clear
that the iteration (∗ m)(~s) must not terminate. I.e., the question whether (∗ m)↓
holds, is undecidable in general. Obviously, a necessary condition for (∗ m) ↓ is
that S ⊇ T , and so if m : S −→ T and m ↓ holds, we have (∗ m) : S −→ S.
Since m is usually not a monotonic function, it must not be the case that m has
a least and a greatest fixpoint. Of course, m might not possess any fixpoint at
all.
Within our very practical context, we are interested in finitely-reachable fixpoints.
From the above remarks, it is clear that given ~s ∈ S, (∗ m)(~s) terminates in finite
time iff no more changes occur during the iteration process, i.e.,

∃n ∈ N . mn(~s) =S m
n−1(~s)

9

We can formalize the meaning of ∗ with the help of the µ operator, known from
recursive function theory and introduced by Stephen C. Kleene in 1936 (Hermes
1978). µ is a functional and so, given a function f as its input, returns a new
function µ(f), the unbounded minimization of f . Originally employed to precisely
define (partial) recursive functions of natural numbers, we need a slight general-
ization, so that we can apply µ to functions, not necessarily operating on natural
numbers. We start with the original formulation and then adapt this framework
to our needs.
Let f : Nk+1 −→ N (k ∈ N). µ(f) : Nk −→ N is given by

µ(f)(~x) :=

{
n if f(~x, n) = 0 and f(~x, i) > 0, for all 0 ≤ i ≤ n− 1
↑ otherwise

I.e., µ(f)(~x) returns the least n for which f(~x, n) = 0. Such an n, of course, must
not exist.
We now move from the natural numbers N to an arbitrary (structured) set S with
equality relation =S. The task of µ here is to return the number of iteration steps
n for which a self-application of module m no longer changes the output, when
applied to the original input ~s ∈ S. And so, we have the following definitional
equation for the meaning of (∗ m).

[[(∗ m)]](~s) := mµ(m)(~s)(~s)

Obviously, the number of iteration steps needed to obtain a fixpoint is given by
µ(m)(~s), where µ : (S −→ S) −→ N. Given m, we define µ(m) as

µ(m)(~s) :=

n if mn(~s) =S m
n−1(~s)

and mi(~s) 6=S m
i−1(~s), for all 0 ≤ i ≤ n− 1

↑ otherwise

Compare this definition with the original µ(f)(~x) on natural numbers above.
Testing for zero is replaced here by testing for equality in S. This last definition
completes the semantics for (∗ m).

4.4 Incorporating Mediators

The above formalization does not include the use of mediators. The effects the
mediators have on the input/output of modules are an integral part of the defini-
tion for the meaning of m1 +m2, (| m1 . . . mk), and (∗ m). In case we explicitly
want to represent (the default implementation of) the mediators in the above
definitions, we must, first of all, clarify their status.
Let us focus, for instance, on the mediator for the sequence operator +. We
already said that the mediator for + uses the output of m1 to feed m2, thus can
be seen as the identity function id, speaking in terms of functional composition.
Hence, we might redefine [[(m1 +m2)]](~s) as

[[(m1 +m2)]](~s) := (m2 ◦ id ◦m1)(~s) = m2(id(m1(~s))) = m2(m1(~s))

10

If so, mediators were functions and would have the same status as modules.
Clearly, they pragmatically differ from modules in that they coordinate the inter-
action between independent modules (remember the mediator metaphor). How-
ever, we have also said that the mediator methods take modules as input. When
adopting this view, a mediator is different from a module: it is a functional (as
is, e.g., µ), taking functions as arguments (the modules) and returning a func-
tion. Now, let S be the mediator for the + operator. We then obtain a different
semantics for m1 +m2.

[[(m1 +m2)]](~s) := (m2 ◦ S(m1,m2) ◦m1)(~s)

where

S(m1,m2) := id

is the case in the default implementation for +. This view, in fact, precisely
corresponds to the implementation.
Let us quickly make the two other definitions reflect this new view and let P and
F be the functionals for | and ∗, resp. For |, we now have

[[(| m1 . . . mk)]](~s) := (P(m1, . . . ,mk) ◦ (×ki=1mi))(~s
k)

I.e., (×ki=1mi)(~s
k) returns an ordered sequence 〈m1(~s), . . . ,mk(~s) 〉 to which the

function P(m1, . . . ,mk) is applied. At the moment,

P(m1, . . . ,mk) := ×ki=1id

i.e., the identity function is applied to the result of each mi(si), and so in the
end, we still obtain 〈m1(~s), . . . ,mk(~s) 〉.
The adaption of (∗ m) is also not hard: F is exactly the µ(m)(~x)-fold compo-
sition of m, given value ~x. Since ~x are free variables, we use Church’s Lambda
abstraction (Barendregt 1984), make them bound, and write

F(m) := λ~x .mµ(m)(~x)(~x)

Thus

[[(∗ m)]](~s) := (F(m))(~s)

It is clear that the above set of definitions is still not complete, since it does not
cover the cases where a module m consists of several submodules, as does the
syntax of SDL clearly admit (see example in the appendix). This leads us to the
final four inductive definitions which conclude this section.

• [[m]](~s) := m(~s) iff m is a base module

• [[(m1 +m2)]](~s) := ([[m2]] ◦ S([[m1]], [[m2]]) ◦ [[m1]])(~s)

• [[(| m1 . . . mk)]](~s) := (P([[m1]], . . . , [[mk]]) ◦ (×ki=1[[mi]]))(~s
k)

• [[(∗ m)]](~s) := (F([[m]]))(~s), whereas F([[m]]) := λ~x . [[m]]µ([[m]])(~x)(~x)

Recall that the execution semantics of m(~s) has not changed after all and is still
m.run(s), whereas s abbreviates the Java notation for the k-tuple ~s.

11

5 Interfaces

This section deals with interfaces, the Java IModule interface which each module
must fulfill, and the Java IMediator interface that enforces methods for each
system-building operator. In addition, we repeat the standard Java interface
Runnable due to the fact that we allow concurrently executed modules to run as
true Java threads. Note that we assume a basic familiarity with the syntax of
Java and its exception/error concept.

5.1 Module Interface IModule

The following seven methods must be implemented by a module which should
contribute to a new system. Section 6 provides a default implementation for six
of them. The exception is the one-argument method run() which is assumed to
execute a module.

• public void clear() throws ModuleClearError;

clear() clears the internal state of the module it is applied to. clear() is
useful when a module instance is reused during the execution of a system
(see, e.g., variable a in figure 2). In the simplified compiled code earlier,
clear() is always executed before the input to a module is stored. clear()

might throw a ModuleClearError in case something goes wrong during the
clearing phase.

• public void init(String[] initArgs) throws ModuleInitError;

init() initializes a given module by providing an array of init strings. The
instances of module de.dfki.lt.system.test.E and C in figure 2 are exam-
ples of such an initialization. Init strings in the concrete syntax are enclosed
in parentheses and separated by a comma. During the compilation of an
SDL expression, this init list then is translated into an Java array of strings.
init() might throw an ModuleInitError.

• public Object run(Object input) throws ModuleRunError;

run() starts the execution of the module to which it belongs and returns the
result of this computation. As already said, the default implementation of
the module methods in class Modules (see section 6) does not provide a use-
ful implementation for run()—instead an UnsupportedOperationException

object is thrown. An implementation of run() might throw a ModuleRunError.
It is worth noting that run() should not store the input nor the output of
the computation. This is supposed to be done independently by using
setInput() and setOutput() (see below).

• public Object setInput(Object input);

setInput() stores the value of parameter input and returns this value.

• public Object getInput();

getInput() returns the input originally given to setInput().

• public Object setOutput(Object output);

setOutput() stores the value of parameter output and returns this value.

12

• public Object getOutput();

getOutput() returns the output originally given to setOutput().

5.2 Mediator Interface IMediator

We noted already before that every system operator has a corresponding mediator
method: + is associated with seq(), | with par(), and ∗ with fix(). A useful
default implementation is provided by class Mediators (see section 6). We demand
that a mediator does not modify the internal state of a module, e.g., it should
not use any destructive public methods provided by the module. Especially, a
mediator should neither execute setInput() nor setOutput(). However, it is
desirable to read out input and output using getInput() and getOutput().

• public Object seq(IModule module1, IModule module2);

seq() connects two modules, specified as input parameters module1 and
module2. seq() returns the proper input for module2, computed from the
output of module1.

• public Object par(IModule[] modules);

par() provides a mechanism for combining the output of several modules,
indirectly given by the module array modules. Conceivable possibilities
include the grouping of output results in a new structured object or the
computation of a single non-structured value (for instance, an integer num-
ber).

• public Object fix(IModule module);

Given a module module, fix() is intended to iteratively apply the one-
argument version of run() to the module, until a fixpoint has been reached.

5.3 Interface Runnable

The option Threaded = yes in the concrete syntax of SDL states that concurrently
executed modules have their own computation space and should be realized as
Java threads. On a multi-processor system, this option can, in fact, raise the
efficiency of the whole system. To inform the Java compiler, such modules must
implement the Runnable interface, meaning that they must provide an implemen-
tation for the zero-argument method run()—remember, there already exists a
one-argument method of the same name in interface IModule (see above).

• public abstract void run();

run() starts the execution of the module in a new thread inside the Java
virtual machine. Since this nullary version of run() neither takes an argu-
ment nor does it returns a value, we advise an implementor of the zero-arg
run() method to memorize the input value via setInput() and to store the
computed result using setOutput().

13

6 Implementation

We now come to the default implementation of the methods which fulfill the
requirements of interface IModule and IMediator.

6.1 Module Methods

The public abstract class Modules implements interface IModule. Modules might
inherit from Modules (Java terminology: extends), so that only run() must be
implemented. Input and output is memorized by introducing the two additional
private instance (or member) fields, input and output.

package de.dfki.lt.sdl;

public abstract class Modules implements IModule {

private Object input;

private Object output;

protected Modules() {

this.input = null;

this.output = null;

}

public Object run(Object input) throws UnsupportedOperationException {

throw new UnsupportedOperationException("run(_) is NOT implemented!");

}

public void clear() {

this.input = null;

this.output = null;

}

public void init(String[] initArgs) {

// no effects

}

public Object setInput(Object input) {

return (this.input = input);

}

public Object getInput() {

return this.input;

}

public Object setOutput(Object output) {

return (this.output = output);

}

public Object getOutput() {

return this.output;

}

}

14

6.2 Mediator Methods

The public class Mediators provides a default implementation for the three me-
diator methods, specified in interface IMediator. seq() returns the (unmodified)
output of module1, whereas par() groups the output of each module from modules

in an array. fix() returns the fixpoint, but relocates its computation into an aux-
iliary method fixpoint (see below), due to the fact that mediators are not allowed
to change the internal state of a module. And thus, the input field still contains
the original input, whereas the output field refers to the fixpoint, at last.

package de.dfki.lt.sdl;

import java.util.*;

public class Mediators implements IMediator {

public Mediators() {

}

public Object seq(IModule module1, IModule module2) {

return module1.getOutput();

}

public Object par(IModule[] modules) {

Object[] result = new Object[modules.length];

for (int i = 0; i < modules.length; i++)

result[i] = modules[i].getOutput();

return result;

}

public Object fix(IModule module) {

return fixpoint(module, module.getInput());

}

private Object fixpoint(IModule module, Object input) {

Object output = module.run(input);

if (output.equals(input))

return output;

else

return fixpoint(module, output);

}

}

We note here that depending on the structure of input and output in method
fixpoint, it is important to have proper implemented equals() methods.

6.3 SDL Compiler

The SDL compiler can be activated by calling the public synchronized class
method Sdl.compile(). The method takes an SDL system description, repre-
sented as a Java string, and generates a new Java class, whose name is identical
to the system name. This Java code can (be edited and) then be compiled by the
Java compiler javac and the resulting class file can be executed using java.

15

We will now come to the example system from appendix A and utilize it to go
into the details of the compilation process. The system has the following form
(we omit the Java package names here in the description):

System = (| rnd1 rnd2 rnd3) + inc1 + inc2 + (* i5ut42) + (* (| rnd3 rnd2))

Mediator = MaxMediator

Threaded = Yes

rnd1 = Randomize("first", "second", "third")

rnd2 = Randomize("second", "third")

rnd3 = Randomize("third")

inc1 = Increment

inc2 = Increment

i5ut42 = Incr5UpTo42

At this point, it is not important to know what the intention of each single module
is. First of all, we see that the above expression consists of six variables, some of
them reused, viz., rnd2 and rnd3.
These variables are realized in the Java code as private instance fields of class
System (= name of the new module). The instance fields are prefixed by the
dollar sign $ in order to visually differentiate them from ordinary local variables
(marked with the low line character). The fields are typed to their corresponding
classes. These classes are imported, so that they can be directly used without
repeating their package prefix. In addition, the above system description requires
not to use the standard mediator, instead MaxMediator should be employed. Since
System demands multi-threaded processing (Threaded = yes), the class is marked
as Runnable. When a new instance of System is generated, the instance fields are
assigned their proper values in the constructor. Some of the modules must also
be initialized, viz., rnd1, rnd2, and rnd3.

package de.dfki.lt.test;

import java.util.*;

import de.dfki.lt.sdl.*;

import de.dfki.lt.sdl.test.MaxMediator;

import de.dfki.lt.sdl.test.Randomize;

... // further import statements

public class System extends Modules implements IModule, Runnable {

private Randomize $rnd1;

private Randomize $rnd2;

... // further declaration of instance fields

... // a huuuuuge amount of other code

// the constructor for class System

public System() throws ModuleInitError {

super();

this.$rnd1 = new Randomize();

this.$rnd2 = new Randomize();

// further assignments to instance fields (variables)

...

this.$1 = new _Class1();

16

this.$2 = new _Class2();

// further assignments to instance fields (locally generated classes)

...

String[] _13 = {"first", "second", "third"};

this.$rnd1.init(_13);

// further initialization calls

...

}

// code for the run() method of class System

public Object run(Object input) throws ModuleClearError, ModuleRunError {

... // code follows later

}

// empty run() for Runnable is based on the unary run() directly above

public void run() throws ModuleClearError, ModuleRunError {

this.run(this.getInput());

}

}

The above generated code refers to instance fields not mentioned in the original
specification, viz., $1 and $2 (plus two additional fields). Since instance fields
represent variables in the system description, we might be surprised to which
objects $1 and $2 refer to. Obviously, they are assigned instances of class Class1

and Class2, resp., classes which we have also not introduced (directly).
The solution is quite easy. The above system description is a structured expres-
sion, consisting of several subexpressions from which one is even further struc-
tured: (| rnd1 rnd2 rnd3), (* i5ut42), (| rnd3 rnd2), and (* (| rnd3 rnd2)).
The SDL compiler automatically introduces so-called member classes (Flanagan
2002, pp. 125) for such subexpressions and locates them in the same package to
which System belongs. Since $1 and $2 operate on the same level than the original
variables/instance fields, they are also prefixed with $. And because new member
classes are local to System, we consequently prefix them with (as we do for local
variables).
The decomposition process always leads to flat expressions of the form x1 + ...

+ xk, (| x1 ... xk), or (* x), resp. x, x1, . . ., xk are variables which refer
to instances of module classes (see section 3). This decomposition technique is
related to what Krieger 1995 calls normalized type systems: arbitrary boolean
type expressions are decomposed into simpler units which are merely of the form
t1∧ . . .∧tk, t1∨ . . .∨tk, or ¬t. t, t1, . . . , tk are either base types or new types which
refer to already introduced new type expressions, the analogue to new member
classes in our system building approach.
In the above example, we have the following four substitutions (we already use
the dollar sign here which the SDL compiler has introduced): $1 = (| $rnd1

$rnd2 $rnd3), $2 = (* $i5ut42), $3 = (| $rnd3 $rnd2), and $4 = (* $3). As a
result, the original system description reduces to $1 + $inc1 + $inc2 + $2 + $4

and thus is normalized as $1, . . ., $4 are.
We have now completed the presentation of the very basic idea behind the SDL
compiler. What comes next is the description of the main run() method, the
usage of the mediator methods, and the generation of member classes (which

17

must also implement interface IModule). At the end, we also show how to cast
the parallel execution of modules in Java code. Appendix A shows several runs
of the generated code.

public Object run(Object input) throws ModuleClearError, ModuleRunError {

this.clear();

this.setInput(input);

IMediator _med = new MaxMediator();

this.$1.clear();

this.$1.setInput(input);

Object _14 = this.$1.run(input);

this.$1.setOutput(_14);

Object _15 = _med.seq(this.$1, this.$inc1);

this.$inc1.clear();

this.$inc1.setInput(_15);

Object _16 = this.$inc1.run(_15);

this.$inc1.setOutput(_16);

Object _17 = _med.seq(this.$inc1, this.$inc2);

this.$inc2.clear();

this.$inc2.setInput(_17);

Object _18 = this.$inc2.run(_17);

this.$inc2.setOutput(_18);

Object _19 = _med.seq(this.$inc2, this.$2);

this.$2.clear();

this.$2.setInput(_19);

Object _20 = this.$2.run(_19);

this.$2.setOutput(_20);

Object _21 = _med.seq(this.$2, this.$4);

this.$4.clear();

this.$4.setInput(_21);

Object _22 = this.$4.run(_21);

this.$4.setOutput(_22);

return this.setOutput(_22);

}

At this point, the understanding of the above piece of code for run() should not
be hard when knowing to what $1, . . ., $4 refer to. Note that the sequence media-
tor med.seq() is called four times due to the fact that + occurs four times in the
top-level system specification. It always takes two modules as input (the private
$ fields). The results of the mediator calls (15, 17, 19, 21) serve as input to in-
stances of the individual (sub-)modules (e.g., this.$inc1.setInput(15)). Local
variables are also introduced for the return values of the calls to the individual
run() methods (14, 16, 18, 20, 22). These local variables are introduced by
the SDL compiler to serve as handles (or anchors) to already evaluated subex-
pression, helping to establish a proper flow of control during the compilation
process.
The specification notes Mediator = de.dfki.lt.sdl.test.MaxMediator which is
reflected by the above code in that the mediator object med is bound to an
instance of MaxMediator. Notice that the sequence of calls moves from $1, to
$inc1, to $inc2, to $2, and finally to $4, exactly the flow of control as specified
in the normalized system description before. There is, however, no $3 here, since
$3, which is an instance of Class3, refers to an expression that is used inside $4.

18

When $4 is executed (this.$4.run(21)), the fixpoint iteration calls $3 during
each iteration step.
Let us now have a look on the generated local class Class4 to see how the run()

method for $4 works.

private class _Class4 implements IModule, Runnable {

private Object input;

private Object output;

private _Class4() {

this.input = null;

this.output = null;

}

public void clear() {

}

... // further interface methods from IModule

public Object run(Object input) throws ModuleClearError, ModuleRunError {

this.setInput(input);

IMediator _med = new MaxMediator();

System.this.$3.clear();

System.this.$3.setInput(input);

Object _7 = _med.fix(System.this.$3);

System.this.$3.setOutput(_7);

return this.setOutput(_7);

}

public void run() throws ModuleClearError, ModuleRunError {

this.run(this.getInput());

}

}

The above code clearly shows that each local class has to provide code for the
methods specified in interface IModule. And so it specifies in the class header
that it implements IModule. Since the original system specification also says that
parallel executed modules should be executed as Java threads (Threaded = Yes),
Class4 also makes the nullary run() method available. It highlights this in the

(local) class header and let us know that it implements Runnable.
The run() method above is quite easy, since the fixpoint mediator fix() encapsu-
lates the code for the fixpoint iteration. The final result is bound to 7 and to the
output field of $3 (System.this.$3.setOutput(7)) and $4 (this.setOutput(7)),
which is finally returned. The input (and the output) fields of both $3 and $4 are
not changed during the iteration—the computation of the fixpoint is completely
decoupled from the modules (see section 6.2 on how the fixpoint mediator imple-
ments this). I.e., even if a fixpoint is reached, the input field still refers to the
original input, whereas the output slot memorizes the fixpoint.
Note that we always generate a new mediator object (med) for each local class
in order to make the parallel execution of modules thread-safe. The local class

19

Class4 refers in the run() method to $3 (the instance which undergoes the itera-
tion). However, $3 is an instance field of the top-level class System. Java provides
a construct to cleanly refer to $3: System.this.$3.
We close this section with the presentation of the code for the generated local
class Class3 which concurrently executes $rnd3 and $rnd2 ((| $rnd3 $rnd2)).

private class _Class3 implements IModule, Runnable {

private Object input;

private Object output;

private _Class3() {

this.input = null;

this.output = null;

}

... // interface methods from IModule

public Object run(Object input) throws ModuleClearError, ModuleRunError {

this.setInput(input);

IMediator _med = new MaxMediator();

Thread thread;

ArrayList threads = new ArrayList();

System.this.$rnd3.clear();

System.this.$rnd3.setInput(input);

thread = new Thread(System.this.$rnd3);

threads.add(thread);

thread.start();

System.this.$rnd2.clear();

System.this.$rnd2.setInput(input);

thread = new Thread(System.this.$rnd2);

threads.add(thread);

thread.start();

int pos = -1;

while (!threads.isEmpty()) {

for (int i = 0; i < threads.size(); i++) {

if (!((Thread)(threads.get(i))).isAlive()) {

pos = i;

break;

}

}

if (pos != -1) {

threads.remove(pos);

pos = -1;

}

}

IModule[] _8 = {System.this.$rnd3, System.this.$rnd2};

Object _9 = _med.par(_8);

return this.setOutput(_9);

}

public void run() throws ModuleClearError, ModuleRunError {

this.run(this.getInput());

}

20

}

As we see from the code above , the two module instances are initialized first
(clear(), setInput(input)) and then executed as independently running threads
(new Thread(...)). Within a thread, the zero-argument version of the run()

method is called. Each thread is added to the local list threads which is per-
manently under inspection. When this list gets empty (i.e., all threads have
stopped), the module instances $rnd3 and $rnd2 are grouped in an array (8),
which is given to the concurrency mediator (med.par(8)). The result of this
mediation then is the final output of calling $3.

7 Conclusion & Future Work

We have presented the system description language SDL in which complex new
processing systems can be specified by means of a regular expression of already
existing modules. At the moment, SDL provides three operators for expressing
a sequence of two modules, a parallel independent execution of arbitrary many
modules, and an unrestricted iteration of a single module. Communication be-
tween modules is realized by mediators. Given a system description and modules
that implement a minimal interface, the SDL compiler returns a running Java
program which realizes exactly the desired behavior of the original specification.
The execution semantics for the original system specification is defined as the
execution of the run() method of the generated new Java class.
We have also given a precise formal semantics for syntactically well-formed SDL
expressions which is based on the intuition that modules are functions, whereas
meditors correspond to functionals, i.e., functions taking functions as arguments
and returning a new function. Composition of modules is defined in terms of
mathematical concepts of function theory: Cartesian product, functional compo-
sition & application, Lambda abstraction, and unbounded minimization.
Although SDL has been developed in the context of the shallow language plat-
form SProUT, we believe that it can be fruitfully employed in the definition of
general software systems. Since the execution semantics is coupled with a precise
formal semantics, we think that our approach might be of interest to areas where
semantic perspicuity of software systems plays a big role. Related to this is the
field of secure software: given a set of secure modules and well-defined combina-
tors, we obtain a well-defined semantics for a new composite module which can
perhaps be shown to be secure either. This is clearly future state-of-the-art work.
The approach has been fully implemented in Java, but it should be easy to have a
similar system in another language, such as C, C++, or Common Lisp. Moreover,
minimal modifications to the SDL compiler should make it possible not to return
Java code, but also programs in other languages which have a notion of either an
object, a function, or a function pointer (together with recursion, of course).
There is still room for further improvement. In a complex grown system, it is
not unusual that we have modules in different programming languages. The SDL
compiler can only generate a properly running system if it has access to these
modules. Since the compiler is programmed in Java, we can make use of the
Java Native Interface (JNI; see, e.g., Gordon 1998) and write a specialized Java

21

class for the external module that implements interface IModule. This class would
merely consist of native methods which call their corresponding counterparts in
the original programming language.
Having only +, |, and ∗ as operators (plus the corresponding mediator methods)
might not suffice at all. By adding more and more such concepts to SDL, we will
end in a generalized programming language which has modules and operators as
building blocks. We can envisage additional useful constructs:

• assignment
Non-linear processing systems might find it interesting to have a built-in
mechanism for storing information obtained so far, viz., variables:

m1 + var:=m2 + m3 + (| var m4)

Read this example as if var:=m2 is put in parentheses, i.e., := has a higher
priority than +. var here serves as a constant function (return value equals
to the output of m2) which is executed in parallel to m5.

• if-then-else
It is conceivable that depending on the form of the output of a certain
module m, either module m1 or module m2 should be executed:

... var:=m ... if (pred(var)) then m1 else m2

In the above example, it is important to have both variables (var) and
predicates (pred(...)) which return Boolean values. A conditional, such
as if can, of course, be realized as a variant of the | operator, together with
a specialized mediator, thus being only syntactic sugar in most cases.

• distributor
It is not unlikely that results produced by several modules m1, ..., mj need
to be rated according to a given measure and distributed to succeeding
modules n1, ..., nk (j ≥ k), whereas the best-ranked result is given to the
first module, the second-best to the second module, and so on. The syntax
could be

... (| m1 ... mj) + (< n1 ... nk) + ...

and < indicates that n1, ..., nk get the ranked results from m1, ..., mj.
(Thanks Anette for the example.)

• first come wins
Instead of executing modules in parallel under | and collecting their results
in a structured object, we might relocate their execution in a specialized
mediator ! and let the fastest module win:

... (! m1 ... mj) + n ...

(Thanks Feiyu.)

Contrary to dynamic object-oriented programming languages such as CLOS (Keene
1989), Java enforce classes which implements a certain interface to have methods
that exactly match the corresponding header in the interface. I.e., if a module is
guaranteed to read and return only, say, Integer objects, we still have to use (and
perhaps implement) the interface methods getInput(), setInput(), getOutput(),
setOutput(), and run() which operate on the most general class Object.

22

Thus, the Java compiler can not statically check at compile time if a system
description is valid in terms of the domain and range of each individual module.
Assume, for instance, that square reads and returns floats and that duplicate maps
from strings onto strings. In the current system, we can neither determine that
square ◦ duplicate nor duplicate ◦ square is an invalid function, since the interface
methods are typed to Object which will always result in a proper description.
Due to this fact, it seems adequate to implement a proper domain/range check.
This implementation, however, has to make use of Java’s reflection API, since in-
formation concerning the sub-/supertype relationship between classes/interfaces
must be obtained. This check is assumed to be part of the next major release of
SDL.

A Example

This appendix presents several runs of the example system which we have already
studied in the previous sections. Its definition is

System = (| rnd1 rnd2 rnd3) + inc1 + inc2 + (* i5ut42) + (* (| rnd3 rnd2))

Mediator = MaxMediator

Threaded = Yes

rnd1 = Randomize("first", "second", "third")

rnd2 = Randomize("second", "third")

rnd3 = Randomize("third")

inc1 = Increment

inc2 = Increment

i5ut42 = Incr5UpTo42

The intention behind the individual modules is as follows:

• Randomize returns natural random numbers between 0 and n − 1, where
n is the input given to the randomizer; in case that the input is zero, the
output is defined to be zero; the init strings given to Randomize are printed
to System.out one after another;

• Increment increments the input (a number) by one;

• Incr5UpTo42 increments the input by five for numbers less than 42; an input
greater or equal than 42 is always mapped onto 42.

Let us have a look on the definition of the last module:

public class Incr5UpTo42 extends Modules {

public Incr5UpTo42() {

super();

}

public Object run(Object obj) {

if (obj instanceof Integer) {

int i = ((Integer)obj).intValue();

if (i < 42) {

23

System.out.println(i + " --> Incr5UpTo42 --> " + (i + 5));

return new Integer(i + 5);

}

else {

System.out.println(i + " --> Incr5UpTo42 --> 42");

return new Integer(42);

}

}

else

throw new ModuleRunError("Module Incr5UpTo42 is given a wrong class");

}

}

Since the interface methods are typed to Object and since integer numbers are
only a primitive data type in Java, we employ the corresponding wrapper class
Integer here. The default mediator object is replaced in the above definition
by MaxMediator, which computes the maximum number from the output of an
arbitrary number of modules, instead of grouping the output in an array:

public class MaxMediator extends Mediators {

public MaxMediator() {

super();

}

public Object par(IModule[] modules) {

int[] outs = new int[modules.length];

int i;

for (i = 0; i < modules.length; i++)

outs[i] = ((Integer)(modules[i].getOutput())).intValue();

int max = outs[0];

for (i = 0; i < outs.length; i++)

if (outs[i] > max)

max = outs[i];

System.out.print("<");

for (i = 0; i < outs.length; i++){

System.out.print(outs[i]);

if ((i + 1) != outs.length)

System.out.print(", ");

}

System.out.print(">");

System.out.println(" --> MaxMediator --> " + max);

return new Integer(max);

}

}

Let us now finish this paper and have a look on two successive runs of the Java
code of the above system. The output of both runs clearly differ due to the use
of the randomizers.

0 krieger@leitwort (~/Java/java) 576 $ java de/dfki/lt/test/System 10

third

second

24

first

10 --> Randomize --> 1

10 --> Randomize --> 4

10 --> Randomize --> 3

<1, 4, 3> --> MaxMediator --> 4

4 --> Increment --> 5

5 --> Increment --> 6

6 --> Incr5UpTo42 --> 11

11 --> Incr5UpTo42 --> 16

16 --> Incr5UpTo42 --> 21

21 --> Incr5UpTo42 --> 26

26 --> Incr5UpTo42 --> 31

31 --> Incr5UpTo42 --> 36

36 --> Incr5UpTo42 --> 41

41 --> Incr5UpTo42 --> 46

46 --> Incr5UpTo42 --> 42

42 --> Incr5UpTo42 --> 42

42 --> Randomize --> 28

42 --> Randomize --> 5

<28, 5> --> MaxMediator --> 28

28 --> Randomize --> 2

28 --> Randomize --> 6

<2, 6> --> MaxMediator --> 6

6 --> Randomize --> 1

6 --> Randomize --> 3

<3, 1> --> MaxMediator --> 3

3 --> Randomize --> 1

3 --> Randomize --> 2

<1, 2> --> MaxMediator --> 2

2 --> Randomize --> 1

2 --> Randomize --> 0

<1, 0> --> MaxMediator --> 1

1 --> Randomize --> 0

1 --> Randomize --> 0

<0, 0> --> MaxMediator --> 0

0 --> Randomize --> 0

0 --> Randomize --> 0

<0, 0> --> MaxMediator --> 0

And now the next run.

0 krieger@leitwort (~/Java/java) 577 $ java de/dfki/lt/test/System 10

third

second

first

10 --> Randomize --> 3

10 --> Randomize --> 6

10 --> Randomize --> 5

<3, 6, 5> --> MaxMediator --> 6

6 --> Increment --> 7

7 --> Increment --> 8

8 --> Incr5UpTo42 --> 13

13 --> Incr5UpTo42 --> 18

18 --> Incr5UpTo42 --> 23

23 --> Incr5UpTo42 --> 28

28 --> Incr5UpTo42 --> 33

33 --> Incr5UpTo42 --> 38

25

38 --> Incr5UpTo42 --> 43

43 --> Incr5UpTo42 --> 42

42 --> Incr5UpTo42 --> 42

42 --> Randomize --> 29

42 --> Randomize --> 5

<29, 5> --> MaxMediator --> 29

29 --> Randomize --> 1

29 --> Randomize --> 2

<1, 2> --> MaxMediator --> 2

2 --> Randomize --> 0

2 --> Randomize --> 1

<0, 1> --> MaxMediator --> 1

1 --> Randomize --> 0

1 --> Randomize --> 0

<0, 0> --> MaxMediator --> 0

0 --> Randomize --> 0

0 --> Randomize --> 0

<0, 0> --> MaxMediator --> 0

References

Abney, S. 1996. Partial Parsing via Finite-State Cascades. Natural Language Engi-
neering 2(4):337–344.

Arnold, K., J. Gosling, and D. Holmes. 2000. The Java Programming Language. Boston:
Addison-Wesley. 3rd edition.

Barendregt, H. 1984. The Lambda Calculus, its Syntax and Semantics. Amsterdam:
North-Holland.

Becker, M., W. Drożdżyński, H.-U. Krieger, J. Piskorski, U. Schäfer, and F. Xu. 2002.
SProUT—Shallow Processing with Unification and Typed Feature Structures. In Pro-
ceeding of the International Conference on Natural Language Processing, ICON-2002.

Braun, C. 1999. Flaches und robustes Parsen Deutscher Satzgefüge. Master’s thesis,
Universität des Saarlandes. In German.

Carpenter, B. 1992. The Logic of Typed Feature Structures. Tracts in Theoretical
Computer Science. Cambridge: Cambridge University Press.

Crysmann, B., A. Frank, B. Kiefer, S. Müller, G. Neumann, J. Piskorski, U. Schäfer,
M. Siegel, H. Uszkoreit, F. Xu, M. Becker, and H.-U. Krieger. 2002. An Integrated
Architecture for Shallow and Deep Processing. In Proceedings of the 40th Annual
Meeting of the Association for Computational Linguistics, ACL-2002, 441–448.

Davey, B. A., and H. A. Priestley. 1990. Introduction to Lattices and Order. Cambridge:
Cambridge University Press.

Flanagan, D. 2002. Java in a Nutshell. Beijing: O’Reilly. 4th edition.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1995. Design Patterns. Elements
of Reusable Object-Oriented Software. Boston: Addison-Wesley.

26

Gordon, R. 1998. Essential JNI: Java Native Interface. Upper Saddle River, NJ:
Prentice Hall.

Hermes, H. 1978. Aufzählbarkeit, Entscheidbarkeit, Berechenbarkeit: Einführung in die
Theorie der rekursiven Funktionen. Vol. 87 of Heidelberger Taschenbücher. Berlin:
Springer. 3rd edition. In German. Also in English as Enumerability, Decidability,
Computability: An Introduction to the Theory of Recursive Functions.

Hobbs, J., D. Appelt, J. Bear, D. Israel, M. Kameyama, M. Stickel, and M. Tyson.
1997. FASTUS: A Cascaded Finite-State Transducer for Extracting Information from
Natural-Language Text. In Finite State Devices for Natural Language Processing, ed.
E. Roche and Y. Schabes. MIT Press.

Keene, S. E. 1989. Object-Oriented Programming in Common Lisp. A Programmer’s
Guide to CLOS. Reading, MA: Addison-Wesley.

Krieger, H.-U. 1995. TDL—A Type Description Language for Constraint-Based Gram-
mars. Foundations, Implementation, and Applications. PhD thesis, Universität des
Saarlandes, Department of Computer Science, September.

27

SDL—A System Description Language

Hans-Ulrich Krieger

RR-03-01
Research Report

