
Error-tolerant finite-state lookup for trademark

search

Andreas Eisele1 and Tim vor der Brück2

1 Computational Linguistics, Saarland University, D-66123 Saarbrücken
eisele@coli.uni-sb.de

2 German Meteorological Service, Kaiserleistraße 35, D-63067 Offenbach
tim.brueck-vor-der@dwd.de

Abstract. Error-tolerant lookup of words in large vocabularies has
many potential uses, both within and beyond natural language process-
ing (NLP). This work3 describes a generic library for finite-state-based
lexical lookup, originally designed for NLP-related applications, that can
be adapted to application-specific error metrics. We show how this tool
can be used for searching existing trademarks in a database, using or-
thographic and phonetic similarity. We sketch a prototypical implemen-
tation of a trademark search engine and show results of a preliminary
evaluation of this system.

1 Introduction

Many applications of NLP have to deal with some kind of deviation of observed
input from the theoretically correct form. Sources for such deviations may in-
clude human performance (typing) and competence (spelling) errors as well as
technical inaccuracies of transmission and recognition, especially in cases involv-
ing speech or character recognition. An ideal NLP system should be able to guess
a correction of deviating parts of the input and find an interpretation that is
compatible with the user’s intent.

Besides correction of errors, there are many other applications where the
focus is to find terms that are similar to a given query. These include retrieval of
person or product names from databases, or documents from text repositories4 as
well as cross-lingual applications, e.g. for finding likely transcriptions of names in
different writing systems or for the alignment of words and phrases in translation
memories.

The concept of similarity depends strongly on the input modalities and other
properties of the application, as will be explained in more detail in Sect. 4. In

3 The work described here was done while the authors were at Language Technology
Lab, German Research Center for Artificial Intelligence (DFKI GmbH), Stuhlsatzen-
hausweg 3, D-66123 Saarbrücken, Germany

4 See http://www.google.com/jobs/britney.html for a list of 593 query types for
which the google search engine proposed “Britney Spears” as correction. More than
23% of the queries were misspelled.



2

order to be able to address the wide range of applications in a generic way, we
implemented a library, called SILO, for error-tolerant or similarity-based lookup
from a set of strings which is given in the form of a finite-state device.

This papers focuses on a innovative use of SILO in a specialized search engine
for trademarks, where the goal is to test whether a potential brand or product
name conflicts with existing trademarks that look or sound similar.

2 Requirements for trademark search

The main purpose of trademark law is to protect the public from being confused
or deceived about the origin and quality of a product. This is accomplished by the
trademark owner preventing competitors from using a mark that the consuming
public is likely to confuse with theirs, whether because it is identical (such as
another computer manufacturer calling themselves ”Apple”) or sufficiently sim-
ilar (such as a soft drink called ”Popsi”, to mimic ”Pepsi”). See [Wil98] for an
easy-to-read introduction to the subject.

When a company registers a new trademark at one of the national or inter-
national authorities, it must check whether this or a similar trademark already
exists in the same industry sector5. Infringement of an existing trademark may
cause very high costs, including the need to destroy products already manufac-
tured, or to suspend expensive marketing campaigns. Manual search for existing
trademarks has several obvious disadvantages, including the high cost of manual
labour, potential incompleteness of the results and the need to redo the search af-
ter a change in the database. Therefore an automatic approach would be much
preferable. Trademark search needs to be aware of several types of similarity,
which can be character-based, phonetic or semantic. The most obvious form of
similarity between two terms consists in the use of letters in a similar order.
Especially the insertion or omission of repeated characters is very hard to notice
(compare Alibert vs. Allibert) and therefore leads to a high confusability of the
names.

Two trademarks can be pronounced similarly even if the orthography is
quite different. For instance, the German optician Fielmann could be spelled as
Viehlman, Philmahn, etc. without noticeable difference in pronunciation. Given
our machinery for error-tolerant lookup, one might be tempted to translate
knowledge about phonetic similarity between strings of characters into substi-
tutions for the error metric. However, the large resulting number of substitu-
tions would be inconvenient to specify and would make lookup unnecessarily
slow. Instead, it appears much more adequate to transcribe strings into phonetic
representations and determine similarity scores on that level. Fortunately, we
could make use of existing software from the MARY project [ST01] for the tran-
scription into phonetic representations, assuming phonetic rules for German or

5 This is in contrast to the case of patents, where the authorities are responsible for
the evaluation of novelty before registration.



3

English.6 We can then look for similarities on the phonetic level, using a much
smaller set of possible confusions. Current leading trademark search engines like
Eucor [EUC04] or Compumark [Com04] also use orthographic and phonetical
similarity. However, technical information about the inner workings of these en-
gines is rather sparse.

Words can also be semantically similar, i.e. they can be near synonyms, one
can be a special case of the other, or they can be translations of each other. Al-
though one could try to tackle semantic similarity with a resource like Wordnet,
coverage may not be sufficient for the very large vocabulary used in the trade-
mark domain. The current implementation does not take semantic similarity
into account.

The proper treatment of trademarks composed of multiple words requires
the assignment of weights to the constituents. Ideally, one would like to give a
high weight to specific words and names, whereas generic or descriptive parts
of the names should have a lower weight. Attempts to infer good weights from
the frequencies of words in the database have had mixed results so far, so the
current implementation supports the interactive specification of weights for the
parts of multi-word trademarks.

3 Finite-state-based lexical lookup

Our implementation is based on a generic toolkit that aims at a much broader
scale of tasks related to robust and multilingual natural language processing.
Especially when languages are richly inflected or involve compositional mor-
phology, a full enumeration of all possible word forms gives rise to prohibitive
storage requirements or is plainly impossible.

In order to be useful even in these cases, the implementation of the lookup
is based on a representation of the relevant data in the form of finite-state ac-
ceptors (FSA) or transducers (FST) in the style of [KK94] and [Kar94]. FSAs
can be seen as improved versions of letter trees or tries [Fre60] to regular lan-
guages [HU79], in which the possibility to share trees of suffixes can make the
representation exponentially more compact and even encode infinite vocabular-
ies. FSTs describe regular relations between strings in a declarative way. Their
mathematical properties are simple and well understood, and they can be used
for generation of surface forms as easily as for morphological analysis. They gen-
eralize finite-state acceptors to multiple tapes, where transitions between states
simultaneously affect several levels of string representation. Applications for mor-
phological lookup use one of these tapes for the surface string, and another for
the underlying linguistic analysis. Since FSTs factor out independent sources
of variation, exponential or infinite numbers of forms with all morphological

6 A proper assessment of trademark similarity in a multilingual context needs to ad-
dress potential confusions of many different types, such as: “Does word X (which is
really from language Y), when pronounced in language Z, sound similar to word U
(which is really from language V),...”, which is further complicated by neologisms
and trademarks composed from multilingual pieces.



4

readings can be represented very compactly. The clear separation between com-
pilation of the FST and transduction of strings nicely accommodates different
requirements for off-line and on-line processing of the linguistic specification and
makes it easy to embed morphological processors for different natural languages
into larger systems.

The compiled FST representations can then be interpreted by existing im-
plementations of exact and error-tolerant finite-state lookup implemented at the
German Research Center for Artificial Intelligence (DFKI). In order to accommo-
date different requirements for functionality, speed and compatibility, there are
two implementations of the lookup routine that can work with the same binary
representations. The Java implementation focuses on simplicity and reliability
and can be included in multi-threaded applications. The C implementation is
significantly faster and allows for the search of a set of most similar strings
under a given distance metric, as described below. Programming interfaces to
several host languages exist. Using this generic framework, robust morphological
analysis and generation can be embedded quite flexibly into various platforms
for NLP and into other applications.

4 Lookup with application-specific error tolerance

The concept of similarity most suitable for robust lookup and error correction
depends strongly on the sources of deviations such as the modalities of textual
input. If text is typed, confusions of keys nearby on the keyboard are much
more likely than others, and the keyboard layout also influences the likelihood
of swapping adjacent characters. If text is decoded from document images by an
OCR system, similarities in visual appearance are important; typical confusions
involve the sets {I,l,1}, {e,c}, {m, rn}, {d,cl}, and so on. Phonetic sim-
ilarity plays a crucial role both for the correction of spelling errors and of errors
in the result of automated speech recognition.

For the application in trademark search, the latter two kinds of similarity
are also immediately applicable, as will be explained below. Keyboard layout,
however, does not matter in this case.

As we want to support cases where the vocabulary is specified as a finite-
state device, we needed a way to incorporate application-specific error tolerance
into a finite-state lookup algorithm. Such mechanisms have been described in
the literature [OG94,Ofl96,SM01], but these approaches are based on uniform
costs for all kinds of errors, i.e. the error model is built into the search algo-
rithm and cannot be parametrized according to the needs of the application.
[KCG90,BM00] describe the use of application-specific probability distributions
for the correction of typing and spelling errors, but the method they give for effi-
cient lookup does not seem to be immediately applicable to infinite vocabularies,
encoded in cyclic FSMs. Our error-tolerant lookup follows roughly the approach
of [Ofl96], but furthermore allows to specify the likelihood of deviations (such
as typing/spelling/OCR errors or phonetic similarity) in an application-specific
error metric.



5

Error metrics consist of parameters that specify the cost of generic edit op-
erations such as deletion, reversal, substitution, and insertion, where the latter
can be further differentiated according to the place of the insertion (initial vs.
inner vs. final position). Furthermore, we allow to list specific substitutions in
the form of 4-tuples 〈wi, wdi , wci , s〉 with wi, wdi , wci ∈ Σ∗, s ∈ R+, where Σ
is the set of characters, wi and wdi stand for possible substrings of the query
and the target string that are matched with error cost s, and where wci speci-
fies a (potentially empty) left context, to which this replacement is constrained.
Whereas this definition may not satisfy all wishes for generality or elegance, it
has proven flexible enough to deal with many important classes of phenomena.
For the trademark search, the possibility to make edit costs dependent on the
position within a word and to penalize the insertion of whitespace that would
break words have proven especially useful.

The lookup happens in two steps. In a preprocessing step, substrings of the
given query are enriched with potential alternatives according to the list of 4-
tuples, whenever the left context given in the substitution matches. Conceptually,
this transforms the given query into a weighted graph, specifying a set of variants
of the query modulo the substitutions. The main lookup routine now performs a
backtracking search for compatible paths through the expanded query graph and
the lexicon FSM, where the use of generic edit operations is taken into account
as well as the possibility and costs of picking variants of the query.

While traversing the pair of FSMs, costs for the edit operations or variant
branches are cumulated, and branches that exceed a given upper limit (tolerance)
are abandoned. In this way, the backtracking search enumerates all matches
that are possible within the initial tolerance. This limit is increased by iterative
deepening, until a pre-specified minimal number of matches has been found.

5 Trademark search algorithm

The following section specifies the principles discussed in the previous section in
a more formal and detailed manner.

5.1 Similarity comparison

The lexicon which is used for similarity comparison is stored in a finite state
machine, which is a popular, efficient and memory-saving mechanism to store
large numbers of strings. In order to simplify the presentation and because it
does not make a difference for the purpose of the paper, we restrict the examples
to the special case of letter trees, such as in Fig. 1, which are finite state machines
where each node has maximally one ingoing arc. The word entries of the lexicon
are the concatenation of the letters from the tree root to a leaf node.

In the example in Fig. 1 the lexicon would consists of the words

– ab
– au



6

a

b

b

u

Fig. 1. letter tree

– b

The input word consists of letters of some alphabet Σ such that w ∈ Σ∗. The
similarity algorithm now returns all entries of the lexicon d for which similarity
to some input w is below some given threshold t.

similar wordsd(w, t) = {(wd, sim)|wd ∈ d ∧ simtotal(wd, w) < t}

This is done by recursively examining all routes of the tree from the root until
it reaches a leaf node or the similarity is already higher than the given threshold
using a depth-first search. The search can be aborted if the threshold is exceeded
since the cost (similarity value) of choosing some arc depending of some letter
of the input w is always positive or zero. The similarity function is defined as
follows

sim : Σ∗ ×Σ∗ ×Σ∗ → <+0 : sim(wi, wdi , wci) = s

with

– wi: some part of the input
– wdi : concatenations of arcs in the tree
– wci : context: some part of the input directly in front of wi:
w = awciwib where a, b ∈ Σ∗.

This function is partial and does not have to be defined for all possible input
words. However it should at least be defined for all wi, wdi ∈ Σ. The similarity
for the whole word is the sum of the similarities for the word parts.

simtotal(w,wd) := min{
n∑

i=1

sim(wi, wdi , wci) | wd = wd1 • ... • wdn ∈ d∧

w = w1 • ... • wn∧
w = v • wci • wi • ... • wn}



7

This basic algorithm is already quite useful for similarity determination. But
there are also some cases where no comparison would be possible. Consider
the input string “Pateck Phillip” and the entry “Patek Phillip” in the database.
The algorithm described above could only determine the similarity between both
strings if the value of sim(ck, k, ε) (or alternatively sim(c, ε, ε)) would be explic-
itly defined.

Therefore additionally to the algorithm stated above we introduce the possi-
bility to leave out one character of the input string without changing the state
in the tree. Furthermore we have to define how much the costs determining the
similarity value between the input string and a tree node is raised by this action.
Especially in connection with trademark names it makes a difference whether
characters are left out at the beginning, in the middle or at the end of the input
sentence e.g. “Gosun” would be considered less similar to the mark name “SUN”
than “Sungo”.

Similar to this case it can also be useful to change the state in the tree
without going to another character in the input sentence. Generally we can
define a second similarity function as follows

sim′ : Op× Loc→ <0+

where

Op ∈ {Jump, Stay}, Loc ∈ {Beginning,Middle, End} .
So the first similarity function sim can be extended in the following way:

sim(w, ε, wc, loc) = sim′(Stay, loc)

sim(ε, wd, wc, loc) = sim′(Jump, loc) ∀w,wd, wc ∈ Σ∗

Note that the parameter list of simtotal has to be extended for an
additional parameter indicating the current location inside the query term.

5.2 Weighted Merge

The proposed algorithm tends to return too small similarity values when used
for trademarks which consists of several words. Consider the trademark SUN
and the two strings ”Gesund” and ”Ge sun d”. Although the latter two strings
both contain the word sun and are written using the same letters in the same
sequence only the last one would conflict with the trademark SUN because by
using a blanks before and after the substring ”sun” it becomes obvious that
”sun” is part of ”Ge sun d”.

Therefore the base algorithm was extended for multi-word trademarks to
compare not only the whole expression but also every word separately with the
words from the database. Now we use the individual rankings of the word for
word comparison to compute a global ranking. To do this we use the condition



8

that if every word-for-word similarity calculation for some search string would
result in the same similarity value then the global similarity should be equal to
this value.

Additionally there should be a possibility to use weights for the words of
the input strings, e.g. in the upper example string ”ge sun d”, ”sun” could be
weighted more (or less) important than the token ”ge”.

Let simi denote the similarity of the i’th token with some word wd from the
database. simi is constraint from 0 (total identical) to ∞ (maximal difference)
Let wi denote the weight of the i’th token in the input string w. For better
computation we first shift the rating simi in the interval from 0 (least similar)
to 1 (identical). The conversion formula is easily given by sim′i = 1/(simi + 1).
The global similarity is calculated by

g = (

]Tokens(s)∑

i=1

wi ∗ sim′i)/
]Tokens(s)∑

i=1

wi .

Afterwards the similarity must be reconverted to the scale from 0 to infinity
which is done by: g′ = (1/g)− 1.

5.3 Automatically determined weights

If some query term consists of more than one word, weights can be assigned
to each singular word. Sometimes such multi-word expressions includes class
names (e.g. “Cafe” in “Cafe Karlo”) or corporation abbreviations like (“Deutsche
Telekom AG” or “IBM Corp.”). A different trademark should not be considered
similar to IBM Corp. only because the other company trademark also includes
the word “Corp”. One approach we followed here is doing a frequency analysis to
count how often a word appears. The probability is high that a word like ’AG’,
’GmbH’ or ’Corp’ appears quite often. So if a word is appearing often, the weight
used for this word should be low (near to zero). Unfortunately, this approach
turned out to be too simple and leads to wrong results in some situations. So it
is assumed that also the position of the word should be considered, so ’AG’ or
’Corp’ should only be weighted low if it appears at the end of the expression.

6 Implementation and first results

The program for trademark comparison is implemented as a web server applica-
tion with Java Server Pages and Servlets. The trademarks are stored in a MySQL
database and are accessed via JDBC. The user can chose between different views,
including a compact view with only one score per result or a detailed view where
scores of textual similarity, phonetical similarity for English and German and
weighted combinations of metrics are given. Hyperlinks allow to obtain more
detailed information on each trademark in a separate frame (see Fig. 2 and 3).

During the construction of the trademark database, phonetic transcriptions
of the trademarks are generated according to German and English pronunciation



9

Fig. 2. Silo

Fig. 3. Silo - Detailed View



10

rules7, and the resulting strings are stored in additional fields of the trademark
database. Finite-state encodings are then generated both for the relevant ortho-
graphic and phonetic representations found in the database.

When a query is entered into the system, transcriptions are generated for
the query term in all relevant languages. For the set of representations obtained
in this way, similarity searches are performed in the respective parts of the
database, and the results are merged into one unified ranking according to the
lowest distance across all types of similarities that are computed.

The system also includes an interface to the MBROLA-based speech synthe-
sizer of the Mary system[ST01]. This was motivated by imperfections in the pho-
netic transcription for unknown words, which however constitute an important
subset of the trademark vocabulary. As the system can provide audible feed-
back, users who are not familiar with the encoding of the phonetic transcription
are still able to spot mistakes in the automatically computed transcriptions of
the query, and can alleviate these errors by entering “hints” in the form of vari-
ants of the query that lead to pronunciations that are closer to the intended
outcome.

A first round of evaluation has been performed by BOEHMERT &
BOEHMERT, a law firm specialized in trademarks and intellectual property
rights from which this project originated. Results of the search engine were com-
pared with the outcome of manual searches and of search engines by commercial
service providers. The recall of our implementation turned out to be very promis-
ing, compared to the alternatives. The precision of the results was a bit lower
than that of manual search agents, which apparently make use of certain “intu-
itive” notions of relevance that are difficult to capture formally. However, so far
the distance metrics used in the experiments have been rather simple, and we
hope to further improve the precision (i.e. shorten the result lists without losing
too many relevant hits) by a somewhat more careful design of the metrics. More
details of the evaluation are given in the following section.

7 Evaluation

Section 7.1 gives an evaluation of the basic algorithm which shows how the sys-
tem performed with respect to precision, recall and f-measure, which trademarks
were missing, and compares this with the performance of a human researcher,
and also gives an interpretation of the results. Section 7.2 shows results of the
weighted merge extension to the algorithm, which we did ourselves and also
discusses these findings.

7 Transcriptions for more languages are under preparation



11

7.1 Results of the basic algorithm

QUERY STRING: PERFECT FIT

Value Silo human researcher

Precision 0.02 0.125
Recall 1.0 1.0
F-Value 0.03 0.22

QUERY STRING: CREMISSIMA

Value Silo human researcher

Precision 0.31 0,5
Recall 1.0 0.33
F-Value 0.47 0.19
Missing trademark - KäsEmilia

Carnissimo
PETISSIMO
ledissimo

QUERY STRING: LAITANA

Value Silo human researcher

Precision 0.06 0.75
Recall 0.5 0.5
F-Value 0.1 0.6
Missing trademarks Lactina MULTANA

Lacsana altina

QUERY STRING: CURLIES

Value Silo human researcher

Precision 0.2 -
Recall 0.42 -
F-Value 0.15 -
Missing trademarks JERKIES

URVIS
Cultaris
LIS
Lis
ULIS
FORLYSE
CORALISE
BURGYS
CHRYSALIS
CEREALIS



12

These examples show that SILO had quite good results in the recall but some-
times poor results in precision. The fact that precision scores are not very good
is based partly on technical issues. SILO requires the user to select the number of
trademarks it should return and always returns that number of trademarks even
if only one single trademark in the database is really similar. To overcome this
problem one could only select trademarks up to a predefined maximal distance.
But such a limit would have to be determined using psychological experiments
to determine the level of similarity people consider as significant for this applica-
tion. Such data could in principle be collected using a suitable extension of the
system for collecting user feed-back. However, such a module has not yet been
implemented.

One can further see in the statistics that SILO sometimes does not recognize
words which appear in the middle of some trademark in the database. This
problem could be removed by finetuning or automatically learning the costs for
leaving out letters at the beginning or at the end.

7.2 Evaluation of Weighted Merge

This section describes how the evaluation for the “weighted merge”-algorithm
was done. First the 50 most similar words to the given query were retrieved
using both the “weighted merge” and the basic algorithm. Now we subjectively
selected from this set the 10 words most similar to the query and compared
how many of them were contained in the 10 topmost ranking entries of the
respective result lists found by either algorithm. To ensure that the selection
was not influenced by the initial ranking within the result lists, these lists were
first shuffled, which made sure that the similarity rating the algorithms assigned
to the terms were not visible. Since the number of terms found by the algorithm
used for the evaluation and of the manually selected terms are both 10, recall,
precision and f-measure all have the same value. Therefore only the value of the
recall is given in the tables.

QUERY STRING: High Meyer

Value Normal Weighted Merge

Recall 0.1 0.1
Missing trademarks HAI HAI

PRO-FIT Meyer PRO-FIT Meyer
MEYER FIG MEYER FIG
Heinrich Liesmeyer Heinrich Liesmeyer
Metzger Meier Fleischermeister Metzger Meier Fleischermeister
KEINE FEIER OHNE MEYER KEINE FEIER OHNE MEYER
High Tech mit gutem Gewissen High Tech mit gutem Gewissen
hy hy
Herrman Meyer Herrman Meyer



13

QUERY STRING: Maut Champion

Value Normal Weighted Merge

Recall 0.7 0.7
Missing trademarks HAI HAI

Frolic Champion FIG Frolic Champion FIG
Mr. Champ Mr. Champ
UEFA European Football Champion UEFA European Football Champion

QUERY STRING: Power Flip

Value Normal Weighted Merge

Recall 0.3 0.2
Missing trademarks Flip PowerVit

Preis Power FIG Preis Power FIG
STOPY FLIPS STOPY FLIPS
UEFA European Football Champion UEFA European Football Champion
POWER POWER
NP National Power FIG power POOL FIG
Power Pur FIG Power Pur FIG

PowerFlakes

This experiment shows that the “weighted merge”-algorithm can retrieve
terms that would not be found using only the standard algorithm (e.g. “Flip”
for the query term “Power Flip”. Actually this term does not even appear at
the first 50 terms found by the ordinary algorithm)). The “Weighted Merge”-
algorithm is especially useful if only one word of the query term is appearing
in the database. On the other hand the overall performance of the “weighted
merge”-algorithm is not significantly better than that of the ordinary algorithm.
We expect that the results can be improved by additional fine-tuning of the
weighting scheme.

8 Other applications of SILO

The advantages of FST-based morphology motivated the transformation of ex-
isting resources for 5 European languages [PR95,BLMP98] into FST represen-
tations, where e.g. over 6.5 million different analyses of German full forms could
be represented in only 1.2 MB. In the case of a resource currently under con-
struction for Arabic [SE04], the restoration of missing vowels, tightly integrated
into the lookup operation, comes as a free extra feature without additional im-
plementation work.8

8 As long as we want to have all readings. Selecting the correct interpretation in
ambiguous cases is of course much more difficult.



14

Using the generic framework on which SILO is built, robust morphologi-
cal analysis and generation can also be embedded quite flexibly into various
platforms for NLP. Several design studies and demonstrators have been built,
including on-line correction of typing errors in a dialogue system, OCR correc-
tion for financial documents transmitted via FAX, and the correction of typing
errors in a database of job offers. Current activities include the integration of
SILO into the platforms LKB [Cop01] or PET [Cal00] for deep, HPSG-based
syntactic analysis and generation, which are used in the project Deep Thought
[CESS04], and many related activities.

9 Conclusion and outlook

We have shown how a generic toolkit for similarity-based lookup of strings in
finite-state devices can be used for searching existing trademarks in a database,
using orthographic and phonetic similarity. First evaluation results of the system
look quite promising, but a lot of possibilities for fine-tuning the parameters
of the system have not yet been explored. In order to support this kind of
optimization, it would be very helpful if judgements of users about relevance or
similarity of the proposed trademarks could be collected in a lightweight, semi-
automatic way, so that machine learning methods could then turn the collected
judgements into optimal weights for a significant set of tunable parameters.

10 Acknowledgements

We would like to thank Dr. Detmar Schäfer from the law firm BOEHMERT &
BOEHMERT for the original idea, development data, and for valuable feed-back,
Marc Schröder for the transcription of words into phonetic representations and
many helpful advices, Stephan Busemann for keeping the project going and a
tremendous amount of supporting work, and an anonymous reviewer for spotting
errors in the draft version of this paper.

References

[BLMP98] P. Bouillon, S. Lehmann, S. Manzi, and D. Petitpierre. Développement de
lexiques à grande échelle. In Actes du Colloque des journées LTT de TUNIS,
pages 71–80, 1998.

[BM00] E. Brill and R. C. Moore. An improved error model for noisy channel spelling
correction. In Proceedings of the ACL. ACL, 2000.

[Cal00] U. Callmeier. PET — A platform for experimentation with efficient HPSG
processing techniques. Natural Language Engineering, 6 (1):99 – 108, 2000.

[CESS04] Ulrich Callmeier, Andreas Eisele, Ulrich Schäfer, and Melanie Siegel. The
DeepThought core architecture framework. In Proceedings of LREC, Lisbon,
Portugal, 2004.

[Com04] Compumark, 2004. http://www.compumark.com.



15

[Cop01] A. Copestake. Implementing Typed Feature Structure Grammars. CSLI
Lecture Notes. Center for the Study of Language and Information, Stanford,
2001.

[EUC04] Eucor, 2004. http://www.eucor.de.
[Fre60] E. Fredkin. Trie memory. Communications of the ACM, 3(9):490–499, 1960.
[HA01] V. J. Hodge and J. Austin. An evaluation of phonetic spell checkers. Tech-

nical report, Department of Computer Science, University of York, 2001.
Technical report YCS 338.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, Reading, MA, 1979.

[Kar94] L. Karttunen. Constructing lexical transducers. In COLING-94, pages 406–
411, Kyoto, Japan, 1994.

[KCG90] M. D. Kernighan, K. W. Church, and W. A. Gale. A spelling correction
program base on a noisy channel model. In COLING-90, volume II, pages
205–211, Helsinki, 1990.

[KK94] R. M. Kaplan and M. Kay. Regular models of phonological rule systems.
Computational Linguistics, 20(3):331–378, 1994.

[Ofl96] K. Oflazer. Error-tolerant finite state recognition with applications to
morphological analysis and spelling correction. Computational Linguistics,
22(1), 1996.

[OG94] K. Oflazer and C. Güzey. Spelling correction in agglutinative languages. In
4th ACL Conference on Applied NLP, Stuttgart, Stuttgart, Germany, 1994.
Association for Computational Linguistics.

[PR95] D. Petitpierre and G. Russell. MMORPH - the Multext morphology pro-
gram. Technical report, ISSCO, CH-1227 Carouge, Switzerland, October
1995.

[SE04] A. Soudi and A. Eisele. Generating an Arabic full-form lexicon for bidi-
rectional morphology lookup. In Proceedings of LREC, Lisbon, Portugal,
2004.

[SM01] K. U. Schulz and S. Mihov. Fast string correction with Levenshtein-
automata. Technical report, CIS, Universität München, 2001. CIS-Bericht-
01-127.

[ST01] M. Schröder and J. Trouvain. The german text-to-speech synthesis sys-
tem MARY: A tool for research, development and teaching. In 4th ISCA
Workshop on Speech Synthesis, Blair Atholl, Scotland, 2001.

[Wil98] L. Wilson. The Trademark Guide. Allworth Press, New York, 1998.
[ZD95] J. Zobel and P. Dart. Finding approximate matches in large lexicons. Soft-

ware - Practice & Experience, 25(3):331–345, March 1995.


