
XML Representation Languages as a Way of Interconnecting TTS Modules

Marc Schr̈oder

DFKI GmbH, Saarbr̈ucken, Germany
schroed@dfki.de

Stefan Breuer

IKP, University of Bonn, Germany
breuer@ikp.uni-bonn.de

Abstract

The present paper reports on a novel way of increas-
ing the modularity and pluggability of text-to-speech
(TTS) architectures. In a proof-of-concept study, two cur-
rent TTS systems, both using XML-based languages for
internal data representation, are plugged together using
XSLT transforms as a means of translating from one sys-
tem’s internal representation to the other’s. This method
allows one system to use modules from the other system.
The potential and the limitations of the approach are dis-
cussed.

1. Introduction

Current text-to-speech (TTS) systems are modular in
principle [1, 2] but monolithic in practice. Partial pro-
cessing results are stored in system-specific internal rep-
resentation formats that tend not to be easily exported
without loss of information, and often cannot be im-
ported back into the system. This makes partial process-
ing impracticable; in particular, the non-initial modules
of a TTS system cannot easily be driven by externally-
produced input.

The present paper explores the improvement on this
state of affairs that may arise from XML-based inter-
nal representation formats found in recent TTS systems
[3, 4]. Systems using XML internally can be made to
export or import intermediate processing results without
any loss of information. This means that one system’s
partial processing output can serve as another system’s
input at a corresponding processing step if a conversion
between the two formats is possible. It will be shown
that the syntactic conversion between two very different-
looking XML formats is easy to achieve, as long as the
information represented in the two is sufficiently similar.

The paper is organised as follows. First, the concept
of XML-based representation languages is defined. The
two systems used in this paper are introduced, including
the properties of the respective representation languages.
It is then demonstrated, using two examples, how a mod-
ule from one system can be used within the other system.
Finally, it is discussed what possibilities and limitations
can be foreseen for a wider application of the proposed
method.

2. Distinguishing markup and
representation languages

The present paper is concerned with XML-based repre-
sentation languages, a notion which is not yet well known
and easily confused with XML-based input markup lan-
guages, which serve a very different purpose.

2.1. XML-based markup languages

XML-based markup languages provide relatively high-
level markup functionality for speech synthesis input, and
are intended for the use of non-experts. This group in-
cludes the upcoming W3C standard SSML (speech syn-
thesis markup language, [5]) as well as its predecessor,
SABLE. These markup languages aim at giving a non-
expert user the possibility to add information to a text in
order to improve the way it is spoken. They are (at least
in principle) independent of any particular TTS system.
Systems are assumed to parse the markup enriching their
input and translate the information contained in it into a
system-internal data representation format which in most
cases is not XML-based.

A related markup language is VoiceXML [6], the
main focus of which is speech access to the internet.

2.2. XML-based representation languages

The purpose of an XML-based representation language
is to serve as the data representation formatinsidea TTS
system. For that reason, the concepts represented in it are
low-level, detailed, and specific to the design decisions,
modules, and scientific theories underlying the TTS sys-
tem. By means of the Document Object Model (DOM),
a standardised object-oriented representation of an XML
document, the TTS system modules can operate directly
on the XML document, interpreting and adding informa-
tion. The MARY [3] and BOSS [4] systems (see below)
each have their own XML-based representation language.

XML representations can easily be exported to a tex-
tual form at any state of processing. As the external XML
document contains the complete data, it can as easily be
read back into the system, and processing can continue
from that step onwards.



3. Systems overview

The present section gives a short summary of the two sys-
tems used in the current study. With some abstraction,
both systems can be conceived of as following the gen-
eral TTS architecture1 represented in Figure 1.

Text normalisation

Duration prediction

Intonation prediction

Synthesis

Phonemisation

Text or input markup

sound

Figure 1: A simplified general TTS architecture.

3.1. The MARY system

3.1.1. Overall architecture

The MARY system [3] is a TTS server written in Java,
created at DFKI with support from the Phonetics and
Computational Linguistics departments at Saarland Uni-
versity. It is a very flexible toolkit allowing for easy in-
tegration of modules from different origins. For German,
the general TTS architecture (Fig. 1) is instantiated in
MARY as follows.

Text normalisation consists of an optional input
markup parser converting SSML into MaryXML; a tok-
enizer; a preprocessing component converting numbers,
abbreviations etc. into pronouncable form; a part-of-
speech tagger and chunker (local syntactic parser); and
an information structure module recognising givenness
and contrast based on text structure, optionally using a
semantic database.

Phonemisation is performed using a custom DFKI
pronunciation lexicon compiled into a finite state trans-
ducer, complemented with letter-to-sound rules.

Duration prediction is carried out using a version of
the Klatt rules [7] manually adapted to German.

Intonation prediction is carried out in two rule-based
steps. First (actually before duration prediction), sym-
bolic GToBI labels [8] are predicted; second, these sym-
bolic labels are translated into frequency-time targets.

The synthesis module is instantiated using several
synthesis engines, among them MBROLA [9].

1The separation into modules is made in order to structure the fol-
lowing presentation. No claim is made that this Figure adequately de-
scribes all existing TTS systems.

For English, the Mary system uses a number of mod-
ules from the open-source FreeTTS system derived from
FESTIVAL [2]. Use of these modules is made possible
by mapping MaryXML to the multi-layered “Utterance”
structure used in FreeTTS and vice versa.

3.1.2. MaryXML syntax

The syntax of a MaryXML document reflects the infor-
mation required by the modules in the TTS system. Con-
cepts which can also be encoded in speech synthesis in-
put markup languages, such as sentence boundaries and
global prosodic settings, are represented by the same tags
as used in the W3C SSML specification [5].

Most of the information to be represented in
MaryXML, however, is too detailed to be expressed using
tags from input markup languages. Specific MaryXML
tags represent the low-level information required during
various processing steps.2

The MaryXML syntax was designed to maintain a
certain degree of readability for the human user, by keep-
ing information redundancy at a minimum.

3.2. The BOSS system

3.2.1. Overall architecture

The Bonn Open Synthesis System [4] is an open source
client/server architecture for non-uniform unit selection
synthesis implemented in C++ under Linux. BOSS was
designed at IKP with contributions from IPO, Eindhoven.
BOSS relates to the general TTS architecture as follows.

Text normalisation is performed by a user-supplied
client application, which also creates the BossXML struc-
ture from plain input text (TTS) or text enriched with
markup (CTS). Network-enabled demonstration clients
for TTS purposes exist for Windows and Linux.

Phonemisation is supplied by the bosstranscription
module, which uses the Bonn Machine-Readable Pro-
nunciation Dictionary (BOMP) [10] to generate the
syllabic and phonetic structure from input graphemes.
bosstranscription handles unknown words by attempting
morpheme decomposition, or, if this fails, by grapheme-
to-phoneme conversion using decision-trees. The latter
are also used for the assignment of lexical stress.

Duration prediction is done by means of Classifica-
tion and Regression Trees (CART).

The intonation module is based on the Fujisaki model
[11] for the parameterisation of F0 contours. These pa-
rameters are predicted by a neural network at syllable
level. An alternative module for F0 prediction is under
development at IKP.

The synthesis module in BOSS consists of two parts:
The unit selection module assigns costs to words, syl-
lables, phones and, if available, half-phones from the

2A full XML Schema-based definition of MaryXML is available on-
line athttp://mary.dfki.de/lib/MaryXML.xsd .



database and selects the segments; these are retrieved and
concatenated in the final module, which is also responsi-
ble for prosodic manipulation. At present, only boundary
smoothing is applied.

3.2.2. BossXML syntax

BossXML was designed for efficient processing at run
time. It maps the linguistic levels word, syllable and
phoneme onto a hierarchical element structure. In the
course of synthesis, these levels are added to the XML
structure, as soon as their contents are known. For words,
this is the case after text normalisation. Syllables and
phonemes are added by the transcription module. Every
node contains all the information pertaining to it, thus
no recourse to higher or lower levels has to be taken. In
contrast to MaryXML, redundancy is high in BossXML,
with the advantage that the programmer of a module only
has to care about adding the information generated by the
module, while the retrieval of pre-existing information is
straightforward.

4. Plugging system components together

In order to demonstrate the feasibility of the proposed
method, two use cases were implemented in which a
module from one system is used in the other system: a)
use of the BOSS phonemisation in MARY; and b) use of
the MARY duration prediction in BOSS.

4.1. BOSS phonemisation in MARY

In order to use the BOSS phonemisation in MARY,
the phonemisation input format must be translated from
MaryXML into BossXML, and the phonemisation out-
put format must be translated back from BossXML into
MaryXML. In the following, the output of the phonemi-
sation module corresponding to the word “Hallo” in the
sentence “Hallo Welt.” (engl. “Hello World.”) is shown
in MaryXML and in BossXML.3

BossXML (source):
<WORD Orth="Hallo" ExtInfo="pos:ITJ"...>
<SYLLABLE TKey="ha" Stress="1"...>...</SYLLABLE>
<SYLLABLE TKey="lo:" Stress="0"...>...</SYLLABLE>
</WORD>

MaryXML (target):
<t pos="ITJ" sampa="’ha-lo:">Hallo</t>

The conversion from the MaryXML to the BossXML
structure is performed using an XSLT stylesheet. As
MaryXML contains part-of-speech information that can-
not be represented in BossXML, theExtInfo attribute
is used as a simple feed-through mechanism to preserve
the external information (see also 5 below).

3most BossXML attributes and some substructure was omit-
ted for space reasons; the full documents can be found at
http://www.dfki.de/˜schroed/maryboss2004

After phonemisation, the BossXML<WORD> ele-
ment contains a substructure of syllables and phonemes,
richly annotated with features relevant for unit selec-
tion. In MaryXML, phonemiser output consists of a
compact “sampa” attribute added to the<t > element.
Again, an XSLT stylesheet performs the conversion from
BossXML back into MaryXML. Information about syl-
lable boundaries and stress, represented by the XML el-
ement structure and attributes in BossXML, is converted
into sampa diacritics for MaryXML. The part-of-speech
information transparently “fed through” the BOSS sys-
tem by means of theExtInfo attribute is converted
back into a MaryXML attribute.

4.2. MARY duration prediction in BOSS

Another example of XML-based module integration is
the use of the MARY duration prediction module in the
BOSS system. Again, two conversions are necessary:
The input to the duration prediction module must be
converted from BossXML to MaryXML, and the mod-
ule output must be converted back from MaryXML to
BossXML.

The latter step is somewhat more complicated than
the other conversions required so far because of the rich
sub-structure of<WORD> elements in BossXML. It pro-
vides information about the context explicitly which in
MaryXML must be deduced from the surrounding XML
structure. The following example shows the duration pre-
diction output for the syllable [lo:] of “Hallo Welt”.

MaryXML (source):
<syllable sampa="lo:">
<ph d="60" end="206" p="l"/>
<ph d="106" end="312" p="o:"/>
</syllable>

BossXML (target):
<SYLLABLE Stress="0" PMode="" PInt="0"

CCRight2="LAB" CCRight="v" CRight="v"
CCLeft2="CEN" CCLeft="a" CLeft="a"
TKey="lo:" Dur="166">

<PHONEME Stress="0" PMode="" PInt="0"
CCRight2="BAC" CCRight="o" CRight="o:"
CCLeft2="CEN" CCLeft="a" CLeft="a"
TKey="l" Dur="60"/>

<PHONEME Stress="0" PMode="" PInt="0"
CCRight2="LAB" CCRight="v" CRight="v"
CCLeft2="ALV" CCLeft="l" CLeft="l"
TKey="o:" Dur="106"/>

</SYLLABLE>

The XSLT stylesheet performing the conversion
needs to analyse the syllable and phoneme contexts in the
MaryXML document and add the information required.
Because of the flexibility of XSLT transforms, this can
be done with reasonable effort.

5. Discussion

The method proposed for converting one TTS system’s
internal data representation into another’s is powerful in-



sofar as syntactic conversion is concerned, which may
include complex inference algorithms. It allows re-
searchers and system developers to connect systems, pro-
vided that the information used in one system can either
be directly converted or at least be generated from the
information used in the other system.

A natural limitation of the method is the science un-
derlying the different TTS systems. If the approaches to
a given phenomenon pursued in the two systems are so
different that no mapping between them is known, then
all the syntactic power of XSLT will obviously not be
able to solve the underlying scientific question. For ex-
ample, if one system models prosody in terms of superim-
posed intonation contours [11] and the other uses a model
based on frequency-time targets [8], it will not sensibly
be possible to exchange prosody-related data between the
two systems. It may nevertheless be possible to intercon-
nect most of the modules from these systems: The mod-
ules prior to the “intonation prediction” module (see Fig.
1) are unaffected by the incompatibility, and subsequent
modules may be able to operate with an approximation of
the required information.

The second use case presented above (see 4.2) re-
quired such an approximation. The Klatt-rule-based
MARY duration module uses the concept of “accented
syllable”, in the sense of phrase accent as opposed to
word stress, in order to predict segment duration. This
information is not provided by the BOSS system. The
module must therefore run on limited information and
will predict shorter durations for “accented” syllables. In
the current use case, where the module output is fed into
the BOSS synthesis, this effect may not actually be very
damaging, given the fact that the BOSS modules do not
take “accent” into account.

On the other hand, if appropriate “feed-through”
mechanisms exist in an XML-based representation lan-
guage, it is possible to preserve information from one sys-
tem while processing data with another system in which
this information cannot be represented. A first crude ap-
proximation of such a mechanism is theExtInfo at-
tribute, available in BossXML, which may contain an ar-
bitrary string value. During XSLT transformation from
system A to system B, incompatible information can be
stored within such a tag, which is ignored by system B
but preserved in its output, so that it can be decoded by
the XSLT transformation of the processing result back
to system A. In the first use case (see 4.1) this method
was used for preserving part-of-speech information. In
the future, it may be necessary to devise more elaborate
feed-through mechanisms which can also represent the
sub-structure of words. In the second use-case (see 4.2),
such a mechanism would have made it possible to avoid
re-creating the complex BossXML structures.

6. Acknowledgements

Part of this research is supported by the EC Projects
NECA (IST-2000-28580) and HUMAINE (IST-507422).

7. References

[1] T. Dutoit, An Introduction to Text-to-Speech Synthe-
sis. Dordrecht: Kluwer Academic, 1997.

[2] A. Black, P. Taylor, and R. Caley, “Festival
speech synthesis system, edition 1.4,” CSTR,
University of Edinburgh, UK, Tech. Rep., 1999.
http://www.cstr.ed.ac.uk/projects/festival

[3] M. Schr̈oder and J. Trouvain, “The German
text-to-speech synthesis system MARY: A tool
for research, development and teaching,”Intl.
J. Speech Technol., vol. 6, pp. 365–377, 2003.
http://mary.dfki.de

[4] E. Klabbers, K. Sẗober, R. Veldhuis, P. Wagner,
and S. Breuer, “Speech synthesis development
made easy: The Bonn Open Synthesis System,” in
Proc. Eurospeech, Aalborg, Denmark, 2001, pp.
521–524. http://www.ikp.uni-bonn.de/boss

[5] M. R. Walker and A. Hunt, Speech Synthesis
Markup Language Specification, W3C, 2001.
http://www.w3.org/TR/speech-synthesis

[6] VoiceXML 2.0 Specification, VoiceXML Forum,
2004. http://www.voicexml.org

[7] D. H. Klatt, “Synthesis by rule of segmental dura-
tions in English sentences,” inFrontiers of Speech
Communication, B. Lindblom and S.Öhman, Eds.
New York: Academic, 1979, pp. 287–299.

[8] M. Grice, S. Baumann, and R. Benzmüller, “Ger-
man intonation in autosegmental-metrical phonol-
ogy,” in Prosodic Typology, S.-A. Jun, Ed. Oxford
University Press, 2002.

[9] T. Dutoit, V. Pagel, N. Pierret, F. Bataille, and
O. van der Vrecken, “The MBROLA project: To-
wards a set of high quality speech synthesisers free
of use for non commercial purposes,” inProc. 4th
ICSLP, Philadelphia, USA, 1996, pp. 1393–1396.

[10] “Bonn Machine-Readable Pronunciation
Dictionary (BOMP).” http://www.ikp.uni-
bonn.de/dt/forsch/phonetik/bomp/BOMP.en.html

[11] H. Mixdorff and H. Fujisaki, “The influence of fo-
cal condition, sentence mode and phrase boundary
location on syllable duration and the F0 contour
in German,” inProc. 14th ICPhS, San Francisco,
USA, 1999, pp. 1537–1540.


