
Ten Years After: An Update on TG/2 (and Friends)

Stephan Busemann
DFKI GmbH

Stuhlsatzenhausweg 3
D-66123 Saarbrücken
busemann@dfki.de

Abstract

Since its first implementation in 1995, the shallow
NLG system TG/2 has been used as a component in
many NLG applications that range from very shal-
low template systems to in-depth realization en-
gines. TG/2 has continuously been refined, the Java
brother implementation XtraGen has become avail-
able, and the grammar development environment
eGram today allows for designing grammars on a
more abstract level. Besides a better understanding
of the usability of shallow systems like TG/2 has
emerged. Time has come to summarize the devel-
opments and look forward to new borders.

1 Introduction
Shallow NLG is known as “quick and dirty” on the one hand,
and as a practical approach to implementing real-world ap-
plications on the other. Its legitimization stems from practi-
cal success rather than from theoretical advantages. As with
shallow analysis, methods have become acceptable that had
been rejected twentyfive years ago as linguistically unjusti-
fied. For instance, template-based NLG systems were known
to be unscalable and unflexible. Besides they were quite triv-
ial and did not contribute to solving any research questions
in the field. However, it became evident that many practical
applications involving NLG required limited linguistic cov-
erage, used canned text and/or templates, and badly needed
improvements to make the NLG systems more flexible. A
revival of template-based systems followed, and subsequent
scientific discussions clarified the relation to more advanced
NLG research themes. The papers in [Becker and Buse-
mann, 1999] nicely show a continuum between template- and
“plan”-based systems.

Since its first implementation in 1995, the shallow NLG
system TG/2 [Busemann, 1996] has been used as a compo-
nent in several diverse applications involving NLG. Imple-
mented in Common Lisp, TG/2 has continuously been re-
fined over the years; a Java brother implementation, called
XtraGen, has eventually become available, and the grammar
development environment eGram eventually allows the gram-
mar writer to design large-scale grammars.

Among the attractive properties of TG/2 is the quick de-
velopment of new NLG applications with limited require-

ments on linguistic expressiveness. Numerous implementa-
tions show that TG/2 is well suited for simple dialogues, re-
port generation (from database content), and even as a real-
izer for complex surface-semantic sentence representations.
Besides a better understanding of the pros and cons of TG/2
has emerged.

Time has come to summarize these developments and,
more generally, reassess the value of TG/2 as a framework
to specify generation systems.

In the following section, TG/2 is localized on the NLG
map, clarifying a few common misconceptions on what it can
be used for. In Section 3 we sketch major use cases involving
TG/2 that exhibit different degrees of “shallowness”. Sec-
tion 4 summarizes the major extensions and refinements that
have been implemented over the last decade, taking into ac-
count some critical comments from the literature. We then
describe in Section 5 the need for, and the benefits of, the ded-
icated grammar development environment eGram that sup-
ports the fast developments of large rule sets. The paper con-
cludes with an outlook to upcoming work.

2 What TG/2 is and What it isn’t
TG/2 has been described originally in [Busemann, 1996;
Busemann and Horacek, 1998] as a template-based gener-
ator. To remind the reader of the main points, TG/2 is a
flexible production system [Davis and King, 1977] that pro-
vides a generic interpreter to a separate set of user-defined
condition-action rules representing the generation grammar.
The generic task is to map a content representation, which
must be encoded as a feature structure1, onto a chain of ter-
minal elements as defined by the rule set. The rules have a
context-free categorial backbone used for standard top-down
derivation guided by the input representation. The rules spec-
ify conditions on the input – the so-called test predicates –
that determine their applicability. Due to the context-free
backbone each subtree of depth 1 in a derivation tree cor-
responds to the application of one rule. TG/2 is equipped
with a constraint propagation mechanism that supports the es-
tablishment of agreement relations across the derivation tree.
Figure 1 shows a sample rule.

1A feature structure is either an atomic value, or a pair
[feature-name feature-value], where feature-name
is a string and feature-value a feature structure.

Figure 2: TG/2-based NLG applications Arranged on a Scale
From Shallow to In-Depth Generation.

TG/2 production rules has a simple interpretation proce-
dure that corresponds to the classical three-step evaluation
cycle in production systems (matching, conflict resolution,
firing) [Davis and King, 1977]. The algorithm starts from
a (piece of the) input structure and a category.

1. Matching: Select all rules carrying the current category.
Execute the tests for each of these rules on the input
structure and add those passing their test to the conflict
set.

2. Conflict resolution: Select an element from the conflict
set, e.g. on the basis of some conflict resolution mecha-
nism.

3. Firing: Evaluate its constraints (if any). For each right-
hand side element, read the category, determine the sub-
structure of the input, and goto step 1.

The processing strategy is top-down and depth-first. The set
of actions is fired from left to right. Failure of executing some
action causes the rule to be backtracked.

The right-hand side of a rule can consist of any mixture of
terminal elements (canned text) and non-terminal categories,
as in Figure 1. The presence of canned text is useful if the
input does not express explicitly everything that should be
generated. The grammar thus adds text to the output that does
not have an explicit semantic basis in the input. With very
detailed input and hence less “implicit” semantics, only little
canned text will be needed in the grammar, and the terminal
elements of the grammar usually are word stems.

Canned parts of the grammar are “invented”. This gives
rise to the notion of “shallow generation”, as opposed to shal-
low analysis, where parts of the input text are ignored. TG/2
leaves complete freedom to using canned text, mixing it with
context free rules, or sticking to the more traditional distinc-
tion between (context-free) rules and the lexicon. [Busemann
and Horacek, 1998] refer to the former kind as shallow and to
the latter as in-depth generation. One may thus identify TG/2
applications on a scale ranging from more shallow to more
in-depth systems. Figure 2 attempts to compare some TG/2-
based NLG applications along this dimension. They will be
discussed in Section 3.

As mentioned above, there is no strict borderline between
template-based and plan-based generation systems. While
this insight resulted from comparing different systems, TG/2
implements this claim by forming a single framework that
may host any approach ranging from pure canned text to com-
pletely lexicon-based. As Section 3 demonstrates, TG/2 can
implement template-based systems and full-fledged realizers.

In an attempt to relate existing NLG systems to the RAGS
framework [Mellish et al., 2000], TG/2 was among the sys-
tems to look at. It turned out that TG/2 differs from the prin-
ciples underlying RAGS in that it does not support any of the
levels of conceptual, semantic, rhetoric, document or syntac-
tic representation, which were abstractly defined to capture
many (most) NLG approaches. Rather TG/2 entails a single
mapping from input to output, and any tasks generally as-
cribed to components delivering the above intermediate rep-
resentations must be encoded by one or several production
rules. There is no pipeline of modules with intermediate rep-
resentations, as ideally assumed in RAGS. Rather all tasks
need to be encoded within the production rules. During this
experiment it actually became evident that TG/2 isn’t a clas-
sical generation system at all.

In non-trivial NLG applications, TG/2 is complemented by
other components. On the output side it can be hooked up
to morphological inflection components using a shared rep-
resentation of word stems and morpho-syntactic features. On
the input side TG/2 has been combined with a text structuring
component in the TEMSIS application, with a context man-
agement system in COMET, and with a lexical choice com-
ponent in the MUSI system.

3 Major Use Cases
3.1 Template generation in the appointment

scheduling domain
Software agents communicated with human agents in order
to schedule appointments on behalf of their owners. Com-
municative goals to be verbalized as dialogue steps in the
COSMA system [Busemann et al., 1994] include just a few
speech acts for proposing, accepting, modifying, rejecting, or
confirming dates or date intervals. See [Busemann, 1996] for
a discussion and examples.

The event-oriented input is created by a non-linguistic
component, the scheduling agent system, and converted into a
surface-semantic representation, referred to as GIL in [Buse-
mann, 1996], which is verbalized by TG/2.

GIL was defined since the necessary distinctions at the lin-
guistic level are often based on information distributed all
over the input structure. For instance, the choice of prepo-
sitions depends on the choice of verbs, which is based on the
speech act. TG/2 can only access part of the input at a given
moment. Yet generating directly from event-oriented input
would have been possible at the cost of complex tests or con-
straints – thereby affecting the transparency of the grammar
– or of more backtracking.

The necessary restructuring was implemented by simply
exploiting the expressive power of the directed acyclic graphs
used for feature structure input representation in TG/2. Using
co-references, relations between the event-based IN and the
language-oriented OUT feature of a set of semantic templates
covering all possible inputs were defined. An input is unified
with the IN feature, and TG/2 generates from the associated
OUT value.

An additional, practical reason for adopting an “internal”
OUT representation is to encapsulate the generation gram-
mar, rendering it independent of external changes of the input

(defproduction "s2 top-subj.1"
(:PRECOND (:CAT DECL

:TEST ((sbp ’s2) (top-deep-subj ’y) (vc-voice ’active)))
:ACTIONS (:TEMPLATE (X1 :RULE ARG ’deep-subj)

(X2 :RULE FIN ’vc)
(X3 :RULE ARG ’deep-obj)
(X4 :OPTRULE INF ’verb-complex)

:CONSTRAINTS (X1.CASE := ’nom
X3.CASE := ’acc
X1.NUMBER = X2.NUMBER = X4.NUMBER
X1.PERSON = X2.PERSON = X4.PERSON))))

Figure 1: A rule for the German transitive main clause in the MUSI grammar in the format processed by TG/2. Tests specify
that this rule is applicable if the input suggests a certain syntactic structure called “s2”, the subject should be in topic position,
and active voice is called for. The context-free rule underlying the rule is DECL→ ARG FIN ARG {INF}. Path expressions
following the category such as deep-subj refer to substructures of the input, cf. Figure 3. Feature constraints assign nomina-
tive case to the first ARG and accusative case to the second; number and person are set to be equal on the first ARG and the verb
complex, thus establishing subject verb agreement. Notation: Constraint variables refer to right-hand side elements by virtue
of the indices Xi. The reserved index for the left-hand side is X0.

language, which are accommodated by the feature structure
mappings.

As was to be expected it turned out that GIL, as it stood,
was never reused. Instead other internal encodings were re-
quired, which could, however, be implemented straightfor-
wardly using the technique mentioned above.

3.2 Shallow multilingual generation from
non-linguistic input

Later projects required the verbalization of non-linguistic
domain-specific representations in multiple languages. In
Mietta, database content is verbalized in German, Finnish,
Italian and English as part of cross-language information re-
trieval [Xu et al., 2000]. A useful input representation is cre-
ated by applying a similar mechanism as in COSMA.

In COMET, TG/2 is used to generate personalized activity
recommendations in a conference scenario that differ with the
context consisting of interest and focus values, which form
part of the input [Geldof, 1999]. This application uses the
possibility of creating side-effects from applying a rule to
update a discourse memory whenever a discourse referent
is mentioned. It is indeed possible to create arbitrary side-
effects by function calls, but care has to be taken that these
functions can be called a second time during backtracking to
undo the side effects. As side-effects are rarely required, its
backtrack functionality is currently not supported and thus re-
quires explicit Lisp (and Java) programming.

In TEMSIS, air quality reports reports are generated from
a database containing measurement data [Busemann and Ho-
racek, 1998]. The communicative goal is interactively spec-
ified by the user: the type of report (time series, threshold
passing, etc.), the measuring station, the pollutant, a time in-
terval of interest, and some further options relating to con-
tent selection. The generated texts can include confirmations
about the user’s choices as well as canned paragraphs inform-
ing about the measuring station or the pollutant in question.
Corresponding views on previous periods are generated for
comparison. If the report is composed of multiple elements,
it is concluded by a summary that answers the key question

again.
A separate, language-independent component for text

structuring, accessing the database and calculating further
values (e.g., average values) was implemented. It produces
the actual inputs for TG/2, each corresponding to one para-
graph. All language-specific issues remained within the TG/2
grammar.

The TEMSIS project was designed to be used in a border
region of Germany and France. Thus the application initially
generated German and French texts. The grammars com-
prised about 120 and 100 rules, respectively. In order to find
out more details about the speed of grammar development
for such an application, and in particular the time it takes to
transport the application to a new language, native speakers
of English, Chinese, Japanese and Portuguese were asked to
produce a TG/2 grammar with the same coverage. Depending
on programming skills, it took between two and four person-
weeks to get acquainted with the system and to complete the
final tests set up. While this result was very encouraging, the
grammar writers stated that larger grammars would be less
easily developed and maintained.2

As [Busemann and Horacek, 1998] show, the input struc-
tures are non-linguistic, i.e., they do not uniquely deter-
mine the content-bearing linguistic elements and the sen-
tential structure to be used. These matters were defined in
co-operation with the users (cf. [Reiter et al., 1997]). The
agreed-upon pieces of text were entered as canned parts into
the grammar.

The grammars of Mietta, COMRIS and TEMSIS contain
much more canned parts than the COSMA grammar. This is
in direct correspondence to the nature of the respective input
representations (see Figure 2).

3.3 In-depth realization of surface-semantic
sentence representations

A much more in-depth use case for TG/2 is the generation
of German sentences that form part of cross-lingual sum-

2A demonstrator of the resulting multilingual system is online at
http://www.dfki.de/service/nlg-demo.

maries of scientific medical papers written in Italian or En-
glish (MUSI project, [Lenci et al., 2002]). The sentences ex-
hibit quite a complicated structure and much medical termi-
nology. Their average length in a sample corpus is 22 words.
The input structures (cf. Figure 3 for an example) are the re-
sults of a lexical and syntactic choice component [Busemann,
2002] that feeds TG/2. The structures contain specific refer-
ences to syntactic “plans” (features SBP and NR). Test pred-
icates in the rules check for these features, thus realizing the
corresponding structure (cf. Figure 1). The morpho-syntacic
features for inflecting the lexical stems are collected through
the constraint mechanism and made available to the separate
word inflection components MORPHIX-3 [Finkler and Neu-
mann, 1988].

The input is a rather typical for linguistic realization, a task
initially not deemed suitable for systems like TG/2. Previous
applications show that TG/2 grammars are domain-dependent
and must be replaced when a new task is at at stake. [Buse-
mann and Horacek, 1998] consider this lack of reuse a dis-
advantage, but state that it is nevertheless acceptable since
new grammars can be developed very quickly. For realiza-
tion, however, a linguistically justified, domain-independent
grammar is needed that is expensive to develop but can be
reused across applications.

The parts of a grammar rule depending on input elements
can be isolated and treated as an interface between the gram-
mar and any input language. If an input language changes, the
test predicates and the access to input substructures need to be
recoded.3 This interface allows us to develop generic gram-
mar knowledge that abstracts from specific semantics of test
predicates and access details. We call such a generic grammar
a protogrammar, as it is supposed to form the reusable basis
for different instances geared towards different applications.
Technically, a protogrammar can be instantiated by defining
the test predicates and access methods needed for the input
language in question.

The protogrammar developed covers the main types of sen-
tential structures, as specified by the Duden grammar [Du-
denredaktion, 1998]. The NP syntax comprises prenomi-
nal APs (on the basis of adjective subcategorization frames),
generic possessive constructions, a temporal, a locative and
an adverbial modifier and a relative clause. In addition, nouns
and adjectives can subcategorize for specific arguments.

How could a protogrammar be developed independently
of a particular input language, as it needs testing? An in-
tuitive, minimal input representation would need to deter-
mine the depth of the nesting of constituents (as to avoid
endless recursion), specify morpho-syntactic features such as
case, number, tense etc., indicate the prepositions and distin-
guish the syntactic adjuncts at the sentence and NP level. Af-
ter defining a corresponding language, grammar development
could proceed in a way independent of the MUSI application.
When the other parts of the MUSI system became stable and
well-defined, the necessary adaptation of the input language
and the grammar were made. It goes without saying that the

3Changes may include restructuring and recoding of information.
Obviously if the input language encodes different kinds of informa-
tion, the grammar possibly cannot be reused.

(defproduction "parser-grammar"
(:PRECOND (:CAT ANALYSIS

:TEST ((always-true))
:ACTIONS (

:TEMPLATE (X1 :RULE PARSER ’self)
(X2 :RULE GRAMMAR ’self)

:CONSTRAINTS (X0.LANG = X2.LANG
X1.API = X2.API))))

Figure 4: A rule linking a parser and a grammar with com-
patible interfaces. The parser is language-independent, the
grammar is not. The LANG feature is specified in the input,
whereas the API feature is specified in the rules representing
the individual grammars.

grammar had to be extended to cover linguistic structures not
foreseen explicitly in [Dudenredaktion, 1998], but the addi-
tional effort was surprisingly small.4

The MUSI grammar comprises about 950 rules with 135
categories, and 14 features for constraints. A sample rule
is shown in Figure 1. During the development of this large
grammar the use of standard text editors became a nuisance.
A grammar development environment was designed and im-
plemented that supports multi-format development of large
grammars (see Section 5). With this system, all practical
needs arising from using TG/2 as a syntactic realizer could
be fulfilled.

3.4 Other usage
TG/2 is general enough to be usable for other tasks than NLG.
A sample grammar for software configuration has been writ-
ten using the constraint mechanism to define API properties
of software components (the “lexicon”) and matching con-
ditions for components to be integrated into a larger piece
of software (the “grammar”). The input is a specification of
the desired system (e.g., machine translation from Spanish to
English), and the system would enumerate the possible spec-
ifications it can derive. A sample rule is shown in Figure 4.

4 Modifications and Extensions
The experience gained from the various applications sug-
gested some modifications and extensions to the system. Also
a closer look at comparable systems, most importantly YAG
[McRoy et al., 2003], revealed opportunities for improve-
ment. YAG differs from TG/2 in that it is deterministic and
thus does not search. Every next rule to be chosen is depicted
in the input or identified by a preceding table lookup. There-
fore YAG is probably faster than TG/2 since TG/2 lets the
interpreter select the next rule. On the other hand, as we will
see in Section 4.2, this gives TG/2 some flexibility YAG does
not exhibit: TG/2 output can vary according to non-linguistic
parameters.

The need for backtracking associated with search can be
kept small in practice. Moreover the costs are small since
TG/2 reuses previously generated substrings during back-
tracking, as described in [Busemann, 1996]. In practice an-

4The author’s guess is that adaptation work required about 20%
of the overall effort; unfortunately no reliable figures are available.

[(SENTENCE DECL)
(VC [(SBP S2) ;;name of sentence plan

(G AKTIV) ;;active voice
(STEM "verursach")])

(DEEP-OBJ [(DET DEMONST) (STEM "wirkung")])
(DEEP-SUBJ [(TOP Y) ;;this constituent to the fore-field

(DET INDEF) ;;indefinite article
(NR V2) ;;name of nominal plan
(STEM "antagonismus")
(PP-ATR [(MODALITY

[(PP-OBJ
[(TERM [(DET DEF) ;;definite article

(STEM "bindungsstelle")
(ADJ [(STEM "muskarinisch") (DEG POS)])
(TERM [(DET DEMONST1) ;;demonstrative

(STEM "substanz")])])
(STEM "Niveau") (DET DEF)
(PREP AUF-DAT)])]) ;;P governs dative NP here

(STEM "acetylcholin")
(DET WITHOUT) ;;no article
(PREP ZU)]) ;;this P always governs dative NP

(ADJ [(STEM "kompetitiv") (DEG POS)])])]

Figure 3: A TG/2 MUSI input for “Ein kompetitiver Antagonismus zu Acetylcholin auf dem Niveau der muskarinischen
Bindungsstellen dieser Substanzen verursacht diese Wirkungen.” [“These effects are caused by a competitive antagonism with
acetylcholine on the level of the muscarinic sights of these substances.”]. Comments are separated by semicolons. The structure
is simplified by omitting gender, number, mood and phrase type information.

other cost factor turned out to be sensible, namely the number
of rules to be checked in each cycle. In experiments with au-
tomatic rule generation using meta-rules in eGram, [Rinck,
2003] showed a linear increase of TG/2 runtime with the
number of rules per left-hand side category.

With large grammars such as in MUSI, which has about
950 rules, it is important to reduce the number of alterna-
tive rules. This can be achieved by using optional right-hand
side elements, thus covering many possible verbalizations by
a single rule. The semantics of optional right-hand side ele-
ments has been refined to capture this idea fully; they must be
verbalized if and only if there is input for them. A right-hand
side element failing on non-empty input causes the parent rule
to fail.

4.1 Reducing the need for programming
In comparing YAG and TG/2, [McRoy et al., 2003, p. 417]
observe that “YAGs template language is also more declara-
tive, yielding higher maintainability and comprehensibility”.
While they do not point out details, it is true that defining
TG/2 rules requires some Lisp programming. The test predi-
cates have to be defined and the defined ones have to be called
properly, and, in the version reviewed, the access functions to
relevant parts of the input have to be specified. Calling an
access function such as (theme) should return some part
of the input structure that is accessible at the current state of
processing. The function would encapsulate the way this is
achieved. Access functions may fail, in which case the parent
rule may fail.

A number of frequently used general test predicates such
as testing the presence of a feature at a certain location in the
input structure, equality of some feature value with a given

object, or a list element being the but last one in a list, can
be held on offer for grammar developers. Usually most tests
can be carried out using one of these, but new demands need
programming. Since the structure of the Boolean test predi-
cates is simple, such tasks are not difficult to solve. eGram
offers support as for Java all the embedding code such as ex-
ception handling is provided and only the core condition must
be written.

Access functions were met with some disgust by grammar
writers as new ones are required with the change of the input
language, i.e. with any new generation task. It turned out that
the advantage of having the access to input material encapsu-
lated did not pay off. The implied possibility of reorganizing
or renaming input was never used, as other ways to do this
were preferred (cf. [Busemann, 1999]). Instead just relative
path descriptions were implemented. The need to provide ac-
cess functions in both Lisp and Java eventually gave rise to
a uniform solution: now a single format for relative path de-
scriptions is used in eGram as a source code that is compiled
into Lisp and Java expressions to serve the runtime systems.
Hence the rule in Figure 1 now has a feature path on each
right-hand side element instead of function calls, as in [Buse-
mann, 1996].

4.2 Generating Personalized Text

Given a certain input, different outputs may well desirable for
different users. Some examples:

• A user may be an expert or a novice in the topic at stake.
Expert users will read terminology whereas novices
need explanations or circumscriptions.

• Depending on whether a user is interested in receiving

background information, relevant hyperlinks may be in-
serted into the text.

• When text is generated for display on a hand-held de-
vice, it must be organized and presented differently.

Sometimes the components producing input for the generator
are not capable of accounting for the respective linguistic dif-
ferences since they don’t have a model of the grammar at their
disposal. A mechanism is needed to feed the system with pa-
rameters corresponding to such distinctions and to translate
the parameter settings into appropriate decisions in the gen-
eration process. For this purpose the approach to parameteri-
zation introduced in [Busemann, 1996] has been refined.

First and foremost, all variations that could be generated
for a given input must be covered by the grammar. Then the
system would produce the complete set, one by one. The
grammar writer defines, in cooperation with the application
developer, parameters such as expertise, background, and de-
vice with appropriate values. She tags all rules that exhibit
properties of some parameter value. Then the system can se-
lect a rule according to a single parameter. But parameters
may be in conflict as well. TG/2 offers a linear preference
scheme for the defined parameters implemented in step 2 of
the basic algorithm. The grammar writer defines, in coopera-
tion with the application developer, a partial order describing
the relative importance of the parameters. With this scheme
the system can produce a text that conforms best to the user’s
preferences.

The scheme is best explained using an example of two
parameters. Let us assume that the user chooses “non-
expert” text with background information. Assume that
a conflict set contains the following tagged rules: {R1-
[expertise: expert, background: -], R2-
[expertise: non-expert, background: -],
R3-[expertise: expert, background: +]}.
None of the tags matches exactly the specifications. If the
parameter expertise is defined to be more important than
background, R2 will be selected. If, however, background is
preferred over expertise, R3 is applied. [Busemann, 1998]
has a more detailed description of this idea.

While subsequent experiments seem to show the viability
of this simple approach to let other components (or the user,
via a task interface) influence the system behavior5, a real
test will probably consist in its envisaged usage for answer
presentation in Semantic Web contexts.

5 Grammar Development
The development of small grammars with 100 to 200 rules
such as the ones underlying COSMA, TEMSIS, Mietta or
COMET could safely be developed with standard text edi-
tors using the syntax exemplified in Figure 1. However even
in this work, the difficulty of maintenance and a considerable
error-proneness were observed. With the MUSI grammar, a
dimension was reached that made a dedicated grammar devel-
opment environment necessary. While some abstraction from

5Parameters should not depend on each other to guarantee that
the best version is generated first, cf. the discussion in[Busemann,
1996, Section 5].

the Lisp-like rule format was desirable, the Java implemen-
tation XtraGen [Stenzhorn, 2002] required a different format
anyway, as it is consistently using XML to encode all objects.

eGram [Busemann, 2004] was hence designed to develop-
ing grammars without bothering about their syntax or size or
interpreting NLG system. Major benefits of eGram include
• a developer-friendly grammar format,

• syntactic and semantic checks of grammar knowledge,

• the option to derive additional grammar rules by meta-
rules, and

• integration with grammar testing in generation systems.
A major difficulty in the course of developing the MUSI

grammar was to maintain consistency. Features used are
sometimes not defined, values are not sufficiently restricted,
or certain categories do not occur in any other rule. When
such grammars are interpreted, errors occur that can be dif-
ficult and time-consuming to trace. eGram verifies that ev-
ery new piece of grammar knowledge is fully consistent with
what already exists, thus eliminating many obvious sources
of mistake.

eGram allows the definition of complex objects only after
all their elements are defined. Before a rule may be entered,
the categories, test predicates, access paths and constraints
used must be defined. The eGram GUI offers dynamically
generated menus for more complex elements in addition to
textual input windows, where these remain necessary. For the
definition of e.g. a constraint, a menu would offer all defined
features, and for the selected feature, all defined values.

Different working styles are supported: either the grammar
writer pro-actively plans her work by first defining all low-
level elements and then proceeding to higher-level ones, or
she prefers to add missing elements “on the fly”, i.e. when
eGram complains.

eGram’s main pane contains a set of tabs corresponding to
the different elements. Clicking on a tab opens a new screen
with all the tabs remaining available at any moment (see Fig-
ure 5). A set of tabs opens separate sub-panes allowing for
the definition of the tests, RHS elements, and constraints of
rules.

In MUSI the major disadvantage of context-free grammars
posed a problem. The rules cannot easily express certain lin-
guistic phenomena, such as word order variation, pronom-
inalization, voice, the relation between sentential structures
and relative clauses, or verb positions. To cover these phe-
nomena, several hundreds, if not thousands, of different rules
must be defined. Every-day practice involved copy-and-paste
approaches that are error-prone. Moreover such phenomena
are often captured only partially, leaving unknown gaps in the
coverage of the grammar.

eGram is equipped with a meta-rule mechanism that is
technically similar to that of Generalized Phrase Structure
Grammars [Gazdar et al., 1985]. Meta-rule expansion starts
with a set of base rules and then applies to the set of base
rules and derived rules. Meta-rules serve as an abbreviation
technique and do not affect the expressive power of the sys-
tem. The basic meta-rule mechanisms and their integration
into eGram are described in detail in [Rinck, 2003]. A re-
design of the MUSI grammar led to a reduction to 452 base

Figure 5: A Screenshot of eGram with the Rule Pane Active. It displays a simple NP rule for German. The feature constraints
express various agreement relations. The rule window can be dragged to some other location on the screen, allowing to view
multiple objects at the same time. The rules names shown on the left-hand side can be filtered by the elements contained in the
rules. For instance by selecting category NP, only the rules with NP as their LHS category are shown.

rules. Applying to these base rules 19 meta-rules modeling
the above phenomena resulted in 2.488 derived rules, demon-
strating that the original grammar did in fact not systemati-
cally cover all the phenomena represented by the meta-rules.

Integrating grammar development and grammar testing is
crucial to verify the effects of modifying a grammar. eGram
is implemented in Java and integrated with TG/2 via a client-
server interface. The integration with XtraGen is achieved via
a Java API. eGram provides suitable export formats for both.
Calls to the generators can be issued from within eGram. A
call to a running generation system consists of an input struc-
ture that can be defined within eGram, and the modifications
of the grammar since the last call. The generator either re-
turns the generated string or an error message.

6 Conclusions and Outlook
TG/2 has been used continuously for more than ten years.
From its first appearance as a “template generator” it has
evolved into a framework that accommodates both shallow
template-based generation and in-depth realization tasks. In
combination with the grammar development environment
eGram, large grammars can be developed and maintained.
They can be used by both TG/2 in Lisp and XtraGen in Java.

To take up the comparison with YAG again, the most im-
portant difference is perhaps the way the rules are defined.
YAG uses complex nested conditionals covering alternative
verbalizations, whereas TG/2 sticks to production rules based
on a context-free backbone that license local trees in a deriva-
tion.

The RAGS experiment showed that comparing TG/2 with
in-depth NLG systems proves difficult. TG/2 remains shal-
low in that it does not support complex interrelated NLG tasks
such as lexical choice, aggregation, or the generation of refer-
ring expressions.

Future applications of TG/2 are geared towards presenting
personalized summaries about multilingual results of ques-
tion answering, generating meaningful and consistent anno-
tations of objects in the process of modeling software, and
producing user manuals for technical devices in multiple lan-
guages.

Though (or because) it has matured for more than a decade,
TG/2 is alive and kicking.6

Acknowledgments
This work was partially supported by a research grant from
the German Bundesministerium für Bildung und Forschung to
the project COLLATE-II (contract 01 IN C02). I am indebted
to many people who have contributed to the different projects.
Space limitations permit only to list those who implemented
and/or documented major parts of the TG/2 and eGram sys-
tems, or of the grammars: Ana Água, Tim vor der Brück,
Matthias Großkloß, Eelco Mossel, Matthias Rinck, Joachim

6TG/2 has been licensed to more than 30 sites for commercial,
research and educational purposes. TG/2 and eGram are available
from DFKI GmbH. The licensed software includes a user manual
for TG/2 and a guidebook for writing grammars in eGram. XtraGen
can be licensed from XtraMind GmbH.

Sauer, Holger Stenzhorn and Michael Wein. Special thanks
go to Sabine Geldof, who was a patient and inspiring user
of TG/2 during the COMRIS project. Her feedback helped
making TG/2 usable.

References
[Becker and Busemann, 1999] Tilman Becker and Stephan

Busemann, editors. May I Speak Freely? Between Tem-
plates and Free Choice in Natural Language Generation.
Workshop at the 23rd German Annual Conference for Arti-
ficial Intelligence (KI ’99). Proceedings, Document D-99-
01, 1999.

[Busemann and Horacek, 1998] Stephan Busemann and
Helmut Horacek. A flexible shallow approach to text
generation. In Eduard Hovy, editor, Nineth International
Natural Language Generation Workshop. Proceedings,
pages 238–247, Niagara-on-the-Lake, Canada, 1998.

[Busemann et al., 1994] Stephan Busemann, Stephan
Oepen, Elizabeth Hinkelman, Günter Neumann, and Hans
Uszkoreit. COSMA–multi-participant NL interaction for
appointment scheduling. Technical Report RR-94-34,
DFKI, Saarbrücken, 1994.

[Busemann, 1996] Stephan Busemann. Best-first surface re-
alization. In Donia Scott, editor, Eighth International
Natural Language Generation Workshop. Proceedings,
pages 101–110, Herstmonceux, Univ. of Brighton, Eng-
land, 1996.

[Busemann, 1998] Stephan Busemann. A shallow formal-
ism for defining personalized text. In Proceedings
of Workshop Professionelle Erstellung von Papier- und
Online-Dokumenten: Perspektiven für die automatische
Textgenerierung. 22nd Annual German Conference on Ar-
tificial Intelligence (KI ’98), Bremen, Germany, 1998.

[Busemann, 1999] Stephan Busemann. Constraint-based
techniques for interfacing software modules. In Chris Mel-
lish and Donia Scott, editors, Proc. of the AISB’99 Work-
shop on Reference Architectures and Data Standards for
NLP, pages 48–54, University of Edinburgh, Scotland,
April 1999. The Society for the Study of Artificial Intel-
ligence and Simulation of Behgaviour.

[Busemann, 2002] Stephan Busemann. Language genera-
tion for cross-lingual document summarisation. In Huanye
Sheng, editor, International Workshop on Innovative Lan-
guage Technology and Chinese Information Processing
(ILT&CIP-2001), April 6-7, 2001, Shanghai, China, Bei-
jing, China, 2002. Science Press, Chinese Academy of Sci-
ences.

[Busemann, 2004] Stephan Busemann. eGram – a grammar
development environment and its usage for language gen-
eration. In Proc. Fourth International Conference on Lan-
guage Resources and Evaluation (LREC), Lisbon, Portu-
gal, May 2004.

[Davis and King, 1977] Randall Davis and Jonathan King.
An overview of production systems. In E. W. Elcock and
D. Michie, editors, Machine Intelligence 8, pages 300–
332. Ellis Horwood, Chichester, 1977.

[Dudenredaktion, 1998] Die Dudenredaktion. Duden.
Die Grammatik. Grammatik der deutschen Gegen-
wartssprache, volume 4 of Duden - Das Standardwerk
zur deutschen Sprache. Dudenverlag, Mannheim - Wien
- Zürich, 6. edition, 1998.

[Finkler and Neumann, 1988] Wolfgang Finkler and Günter
Neumann. Morphix: A fast realization of a classification–
based approach to morphology. In H. Trost, editor, Pro-
ceedings der 4. Österreichischen Artificial–Intelligence
Tagung, Wiener Workshop Wissensbasierte Sprachverar-
beitung, pages 11–19, Berlin, August 1988. Springer.

[Gazdar et al., 1985] Gerald Gazdar, Ewan Klein, Geoffrey
Pullum, and Ivan Sag. Generalized Phrase Structure
Grammar. Basil Blackwell, London, 1985.

[Geldof, 1999] Sabine Geldof. Templates for wearables in
context. In Becker and Busemann [1999], pages 48–51.

[Lenci et al., 2002] Alessandro Lenci, Ana Água, Roberto
Bartolini, Stephan Busemann, Nicoletta Calzolari, Em-
manuel Cartier, Karine Chevreau, and José Coch. Multi-
lingual summarization by integrating linguistic resources
in the MLIS-MUSI project. In Proc. Third Interna-
tional Conference on Language Resources and Evaluation
(LREC), pages 1464–1471, Las Palmas, Canary Islands,
Spain, May 2002.

[McRoy et al., 2003] Susan W. McRoy, Songsak Chan-
narukul, and Syed S. Ali. An augmented template-based
approach to text realization. Natural Language Engineer-
ing, 9(4):381–420, 2003.

[Mellish et al., 2000] Chris Mellish, Roger Evans, Lynne
Cahill, Christy Doran, Daniel Paiva, Mike Reape, Donia
Scott, and Neil Tipper. A representation for complex and
evolving data dependencies in generation. In Proceedings
of the Sixth Applied Natural Language Processing Confer-
ence (ANLP-NAACL), pages 119–126, Seattle, Washing-
ton, USA, 2000.

[Reiter et al., 1997] Ehud Reiter, Alison Cawsey, Liesl Os-
man, and Yvonne Roff. Knowledge acquisition for content
selection. In Proceedings of the 6th European Workshop
on Natural Language Generation (ENLGWS-97), pages
117–126, Duisburg, 1997.

[Rinck, 2003] Matthias Rinck. Ein Metaregelformalismus
für TG/2. Master’s thesis, Department for Computational
Linguistics, University of the Saarland, 2003.

[Stenzhorn, 2002] Holger Stenzhorn. XtraGen. A natural
language generation system using Java and XML tech-
nologies. In Proceedings of the Second Workshop on NLP
and XML, Taipeh, Taiwan, 2002.

[Xu et al., 2000] Feiyu Xu, Klaus Netter, and Holger Sten-
zhorn. MIETTA - a framework for uniform and multilin-
gual access to structured database and web information. In
Proceedings of the 5th International Workshop on Infor-
mation Retrieval with Asian Languages (IRAL’00), Hong
Kong, 2000.

