
Automatic Testing and Evaluation of Multilingual Language Technology
Resources and Components

Ulrich Schäfer, Daniel Beck

German Research Center for Artificial Intelligence (DFKI), Language Technology Lab
Stuhlsatzenhausweg 3, D-66123 Saarbrücken, Germany

email: {ulrich.schaefer,daniel.beck}@dfki.de

Abstract
We describe SProUTomat, a tool for daily building, testing and evaluating a complex general-purpose multilingual natural language text
processor including its linguistic resources (lingware). Software and lingware are developed, maintained and extended in a distributed
manner by multiple authors and projects, i.e., the source code stored in a version control system is modified frequently. The modular
design of different, dedicated lingware modules like tokenizers, morphology, gazetteers, type hierarchy, rule formalism on the one hand
increases flexibility and re-usability, but on the other hand may lead to fragility with respect to changes. Therefore, frequent testing as
known from software engineering is necessary also for lingware to warrant a high level of quality and overall stability of the system.
We describe the build, testing and evaluation methods for LT software and lingware we have developed on the basis of the open source,
platform-independent Apache Ant tool and the configurable evaluation tool JTaCo.

1. Introduction
The development of multilingual resources for language
technology (LT) components is a tedious and error-prone
task. Resources like tokenisers, morphologies, lexica,
grammars, gazetteers etc. for multiple languages can only
be developed in a distributed manner, i.e., many people
work on different resources.
However, the resulting systems are supposed to deliver the
same good recognition quality for each language. Depen-
dencies of resources and subsystems may lead to subopti-
mal functioning, e.g. reduced recognition rates, of the over-
all systems in case of errors creeping in during the develop-
ment process.
Hence, like in software engineering, testing and evaluation
of the developed lingware resources has to be performed on
a regular basis, both for quality assurance (QA) and com-
parability of results in different languages.
In this paper, we describe SProUTomat, a tool for daily
building, testing and evaluating the complex general-
purpose multilingual natural language text processor
SProUT, its software components and lingware resources.
Independently of the SProUT system, many of the concepts
and mechanisms described in the paper could be applied
to any other resource-intensive natural language processing
system.
After a brief introduction to SProUT and Apache Ant, we
describe the four main components of SProUTomat: the
build and compilation part, testing, evaluation and report
generation. We conclude with a short summary.

2. SProUT
SProUT (Drożdżyński et al., 2004) is a general, multilin-
gual multi-purpose natural language processor. SProUT
comes with a powerful, declarative grammar formalism
(XTDL) that combines finite-state techniques and typed
feature structures—with structure sharing and a fully-
fledged, efficiently encoded type hierarchy, in contrast to
systems like GATE (Cunningham et al., 2002) that support
only simple attribute-value pairs.

SProUT rules consist of regular expressions over typed fea-
ture structures1. A rule is matched against a sequence of in-
put feature structures, e.g. filled by basic components like
tokenizers, morphology or gazetteer lookup running on in-
put text or, in more complex cases, XML input or even out-
put from previous SProUT grammar stages.
The matching condition is unifiability of the input sequence
with the expanded regular expression of the left hand side
of a rule. In case of a match, unification is used to transport
information from the matching left hand side to the (single)
output feature structure on the right hand side of the rule.
The resulting feature structures generated by analysing a
text can e.g. be serialised to an XML document.
The SProUT system provides basic components such as to-
kenizers, morphologies, domain-specific gazetteers and a
common TDL type hierarchy for languages such as En-
glish, German, French, Spanish, Greek, Japanese, Italian,
Chinese, Polish and Czech. Moreover, named entity recog-
nition and information extraction grammars in XTDL exist
for most of these languages.
Each of the resources is maintained in source code checked
in a version control system, and compiled into a special-
ized, binary representation for efficient processing at run-
time.
SProUT has been used in many projects, e.g. for automatic
hyperlinking, opinion mining, question answering and text
mining for air traffic forecasts.
The main applications of SProUT are multilingual informa-
tion extraction and named entity recognition in closed do-
mains. However, the formalism can also be used to perform
different duties, e.g. rule-based transformation of typed
feature structures or XML objects, as described in (Frank
et al., 2004).

3. Motivation
The need for an automatic build, testing and evaluation sys-
tem became obvious when multiple projects became ‘cus-

1The acronym SProUT stands for Shallow Processing with
Unification and Typed feature structures.



tomers’ of the SProUT system. Both software (at least in
the early development phase) and lingware changed very
frequently (check-ins several times per day in hot phases),
which lead to frequent problems when compiling and run-
ning SProUT. Since that time and up today, multiple au-
thors are developing multiple components and lingware
in multiple projects on multiple domains in multiple lan-
guages.

4. Apache Ant
Apache Ant (http://ant.apache.org) is a standard open-
source tool for automatic building and packaging complex
software systems. On the basis of target descriptions in an
XML configuration file, ant automatically resolves a target
dependency graph and executes only the necessary targets.
The concept is similar to that of the Unix make tool. How-
ever, Ant inherits from Java (in which is implemented) the
advantage that it is platform-independent. Moreover, many
of the often-needed auxiliary tools e.g. zip, tar, gzip, bzip,
jar, ftp, SQL, SMTP, XSLT, scp and file/dir operations, are
built-in in Ant and work completely platform-independent.
From XML, Ant inherits Unicode and a highly structured
syntax, for which already nice tools exist, including Eclipse
support and visualisation of target dependency graphs (Fig-
ure 3).
Powerful mechanisms like patternset, fileset, filemapper,
filterset and filterchain allow to define re-usable sets of pat-
terns e.g. for bunches of source files.
Ant functionality can be extended by (1) defining targets in
the configuration file, (2) extending the ant syntax itself by
pluggable Java classes that can easily be written, (3) calling
external programs (processes) or BSF scripts.
Following is a small sample Ant build file containing a
single target illustrating the structure of a project defini-
tion. The depends attribute in the target definition for
runtimejar indicates that first the compile target (not
shown here) has to be successfully executed once before the
body of the target definition is executed.

<?xml version="1.0"?>
<project default="ide" name="SProUT">
<description>
This is the ant build file for SProUT.
</description>

<!-- load user-specific settings -->
<property file="user.properties"/>
...

<target name="runtimejar" depends="compile"
description="Build runtime jar.">
<jar jarfile="sprout-runtime.jar">
<fileset dir="${classes.dir}">
<patternset refid="jar.fileset"/>
</fileset>

</jar>
<echo>done.</echo>
</target>

</project>

5. SProUTomat
SProUTomat is an automatic build, testing and evaluation
tool for linguistic resources and components that has been
implemented for the SProUT system and its numerous mul-
tilingual resources. SProUTomat is used for daily building
and testing the development and runtime system from the
Java and lingware sources mainly for named entity and in-
formation extraction grammars from a version control sys-
tem.
SProUTomat is an extension of the build mechanism for
language technology components and resources we have
developed for the SProUT system using Apache ant

5.1. Build and Compilation
Before testing and evaluating, a system has to be built, i.e.
compiled from the sources checked out from the source
control system. The Java program code compilation of
SProUT is a straightforward task best supported by Ant.
The case is, however, different for lingware sources (type
hierarchy2, tokeniser, morphology, gazetteer, XTDL gram-
mars).
While the appropriate Java code compilation tasks know
what a compiled class file is and when it has to be re-
compiled (source code changes, dependencies), this has to
be defined explicitly for lingware resources which Ant na-
tively is not aware of. The uptodate task can be used to
compare source files (.tdl in the following example) against
their compiled version (.grm).

<uptodate property="tdl_input_is_uptodate"
srcfile="${typehierarchy}.tdl"

targetfile="${typehierarchy}.grm"/>

For each of the different lingware types, these source file
dependencies are defined as are the calls to the dedicated
SProUT compilers and parameters for their compilation.
Lingware-specific targets have common parameters and
properties like "lang", "project" or the lingware type
that are used to locate e.g. the source and compiled files in
the hierarchically defined directory trees or "charset"
to specify encodings for source files to read.
Dependencies between different lingware types are handled
by calls to defined sub-targets. Figure 1 shows the defini-
tion of the compile_ne target that calls four other compi-
lation sub-targets. Each subtarget compiles only when nec-
essary, and the compile_ne target itself depends on the
jar target that provides working and up-to-date SProUT
lingware compilers.
Besides the program and lingware compilation, many other
targets exist e.g. to generate documentation, package run-
time systems, start the integrated development environment
etc.
Thus, using a single command, it is possible to compile
the whole system including code and all dependent avail-
able linguistic resources, or to update it after changes in the
sources.

2The SProUT formalism uses a subset of TDL (Krieger and
Schäfer, 1994) that is compiled using the flop compiler of the PET
system (Callmeier, 2000).



<!--Compiles all named entity grammar resources for a given language.-->
<!--usage : ./ant compile_ne -Dlang=en -Dsubgrammar=ne -Dproject=xyz -->
<target name="compile_ne" depends="jar"
description="Compile all NE grammar resources for a given language.">
<!--Description: Compiles all NE grammar resources for a given language. -->
<!--Parameter: ${lang} : language code (ISO 639) of the ne grammar to compile.
<!--Parameter: ${charset} : encoding of the extended gazetteer input file -->
<!--Parameter: ${project} : name of the project. Default is "" -->
<!--Parameter: ${subgrammar} : name of the subgrammar to compile.-->

<!--default properties-->
<property name="lang" value="en"/> <!-- ISO 639 language code -->
<property name="project" value=""/> <!-- default named entity grammar -->
<property name="charset" value="ISO-8859-1"/> <!-- encoding -->

<antcall target="compile_tdl"/> <!-- common type hierarchy -->
<antcall target="compile_tokenclass"/> <!-- tokeniser -->
<antcall target="compile_extended_gazetteer"/>
<antcall target="compile_grammar"/> <!-- i.e., XTDL grammar -->

</target>

Figure 1: A sample target definition: general named entity grammar compilation.

A dependency graph of the defined targets for SProUTomat
is depicted in Figure 3.
An application of the built-in XSLT funtionality of Ant
is e.g. OntoNERdIE (Schäfer, 2006) that has been inte-
grated by simply applying three XSLT stylesheets for map-
ping instance and concept data from OWL ontologies to
SProUT named entity recognition and information extrac-
tion resources.

5.2. Testing

The daily automatic testing and evaluation mechanism is
an extension of the build procedure. SProUTomat first up-
dates all program sources and linguistic resources from the
version control system, and compiles them from scratch.
For each language resource to test, a reference text is then
analysed by the SProUT runtime system called through ap-
propriate Ant targets. This checks for consistency of the
sources. The test is only considered successful (’OK’) if
program code as well as all lingware sources compile suc-
cessful and the text analysis runs successful.

5.3. Evaluation: JTaCo

The next step is comparison of the generated named entity
and information extraction annotation against a gold stan-
dard. SProUTomat uses JTaCo (Bering et al., 2003) for the
automatic evaluation and computation of precision, recall
and f-measure. Details on the SProUTomat integration are
discussed in (Bering and Schäfer, 2006). For the evaluation
of English named entity grammars, the annotated corpus is
e.g. taken from the MUC evaluation data (Grishman and
Sundheim, 1996). For other languages for which no MUC
annotations exist (e.g. German), a manually developed cor-
pus is employed.
JTaCo strips off the annotation from the marked up corpus,
sends it to the SProUT runtime processor, and compares the
returned markup with the annotated corpus using a mapping
between the two formats.

As an illustration, consider SProUT’s NER markup and the
MUC-6 annotation format for named entities. While MUC-
6 foresees the following markup for time expressions,

<TIMEX TYPE="DATE">07-21-96</TIMEX>

SProUT would deliver structured output in a typed feature
structure3. 

point
SPEC temp-point
MUC-TYPE date
CSTART "27"
CEND "34"
SURFACE "07-21-96"
YEAR "1996"
MONTH "07"
DOFM "21"


JTaCo provides a graphical user interface that supports the
user in defining mappings between annotation formats to
compare so that it can be easily customised for comparison
with other XML annotation formats. For the daily evalua-
tion, a batch version of JTaCo based on predefined annota-
tion mappings is used. An example of the computed preci-
sion and recall values over time can is included in Figure 4.

5.4. Report generation
Finally, a report (Figure 4) is generated and emailed to
the developers with an overall status (OK or ERROR) for
quick information on the testing result. The report also con-
tains diagrams consisting of precision, recall and f-measure

3Transformation of typed feature structures and general XML
markup is discussed in the context of the upcoming ISO standard
in (Lee et al., 2004). Actually, SProUT’s default XML output
format is very close to the proposed ISO format for typed feature
structures.



curves since beginning of regular measurements per lan-
guage that visually give an overview of the resource de-
velopment progress over time. To this end, the evaluation
numbers are also added to a global evaluation database.
Further information sources like Ant target and Javadoc
documentation as well as a visual dependency graph rep-
resentation of the ant targets are generated automatically.
Although daily testing has been described above, the testing
and report generation could be started at any time. A com-
plete build from scratch, testing of four languages includ-
ing Javadoc and generation of the runtime system plug-in
into the Heart of Gold platform for deep-shallow integra-
tion (Callmeier et al., 2004) etc. takes less than 14 minutes,
while only a few seconds are required after modification of
a single resource.
The daily report was successful (’OK’) in 93,5% of the
working days during the last eight months, and, as can be
seen from Figure 4, precision and recall could be improved.

6. Summary
We have presented a comprehensive tool for automati-
cally testing and evaluating linguistic resources and lan-
guage technology components. The system is in daily use
since March 2005 and successfully helps to maintain the
quality and reliability of the multilingual language proces-
sor with its various resources that are developed by many
authors and used in several projects. The tool greatly
helps to improve and accelerate the development - evalu-
ation/comparison - refinement - cycle (Figure 2) and gives
motivating feedback, such as raising recall and precision
curves over time.

Figure 2: Quality assurance and development cycle for
multilingual linguistic resources.

7. Acknowledgements
We would like to thank Christian Bering for developing the
JTaCo tool, the SProUT grammar developers for their feed-
back, Witold Drożdżyński for extending the SProUT API to
our needs and the LREC reviewers for helpful comments.
This work has been supported by a grant from the Ger-
man Federal Ministry of Education and Research (FKZ
01IWC02).

8. References
Christian Bering and Ulrich Schäfer. 2006. JTaCo &

SProUTomat – automatic evaluation and testing of multi-
lingual language technology resources and components.
Submitted paper.

Christian Bering, Witold Drożdżyński, Gregor Erbach,
Clara Guasch, Petr Homola, Sabine Lehmann, Hong Li,
Hans-Ulrich Krieger, Jakub Piskorski, Ulrich Schäfer,
Atsuko Shimada, Melanie Siegel, Feiyu Xu, and
Dorothee Ziegler-Eisele. 2003. Corpora and evaluation
tools for multilingual named entity grammar develop-
ment. In Proceedings of Multilingual Corpora Workshop
at Corpus Linguistics, pages 42–52, Lancaster.

Ulrich Callmeier, Andreas Eisele, Ulrich Schäfer, and
Melanie Siegel. 2004. The DeepThought core architec-
ture framework. In Proceedings of LREC-2004, pages
1205–1208, Lisbon, Portugal.

Ulrich Callmeier. 2000. PET – A platform for experimen-
tation with efficient HPSG processing techniques. Natu-
ral Language Engineering, 6(1):99–108.

Hamish Cunningham, Diana Maynard, Kalina Bontcheva,
and Valentin Tablan. 2002. GATE: A framework and
graphical development environment for robust NLP tools
and applications. In Proceedings of the 40th Anniversary
Meeting of the Association for Computational Linguis-
tics.

Witold Drożdżyński, Hans-Ulrich Krieger, Jakub Pisko-
rski, Ulrich Schäfer, and Feiyu Xu. 2004. Shallow
processing with unification and typed feature structures
– foundations and applications. Künstliche Intelligenz,
2004(1):17–23.

Anette Frank, Kathrin Spreyer, Witold Drożdżyński, Hans-
Ulrich Krieger, and Ulrich Schäfer. 2004. Constraint-
based RMRS construction from shallow grammars.
In Stefan Müller, editor, Proceedings of the HPSG-
2004 Conference, Center for Computational Linguistics,
Katholieke Universiteit Leuven, pages 393–413. CSLI
Publications, Stanford.

Ralph Grishman and Beth Sundheim. 1996. Message un-
derstanding conference - 6: A brief history. In Proceed-
ings of COLING-96, pages 466–471.

Hans-Ulrich Krieger and Ulrich Schäfer. 1994. TDL –
a type description language for constraint-based gram-
mars. In Proceedings of COLING-94, pages 893–899.

Kiyong Lee, Lou Burnard, Laurent Romary, Eric de la
Clergerie, Ulrich Schäfer, Thierry Declerck, Syd Bau-
man, Harry Bunt, Lionel Clément, Tomaz Erjavec, Azim
Roussanaly, and Claude Roux. 2004. Towards an inter-
national standard on feature structure representation (2).
In Proceedings of the LREC-2004 workshop on A Reg-
istry of Linguistic Data Categories within an Integrated
Language Resources Repository Area, pages 63–70, Lis-
bon, Portugal.

Ulrich Schäfer. 2006. OntoNERdIE—mapping and link-
ing ontologies to named entity recognition and infor-
mation extraction resources. In Proceedings of the 5th
International Conference on Language Resources and
Evaluation LREC-2006, Genoa, Italy, 5.



-init

antdoc
antdoc

${src.dir}/antdoc//ant/antdoc.xml

get_apachedoc

get_file

ant2dot

javadoc

compile

javadoc_runtime

javadoc_demo

javadoc_ide

-get_file_from_local

2

-get_file_from_web

1

1

-net_or_local

2

-check_if_file_exists_locally

3

1

2

3

get_lexicon

get_all_lexicons

3

get_flop -check_flop

demo_xtdl_compile

demo 2

1

clean

clean_compile

2

1

all

jar

idejar

2

1

demojar

runtimejar

runtimejar_with_doc

2

1

xtdl_javacc

fs2latexjar

ide

2

1

installergui

compile_ne

compile_tokenclass

11

compile_extended_gazetteer

12

compile_tdl

10

compile_grammar

13

mmorphlex_cvs
mmorphlex

2

1

compress_mmorph

makelex

compile_tokenclasses_old

16

-compile_tokenclass

${basedir}/src/sub_build.xml

2

regcompilergui

compile_gazetteer
-compile_gazetteer

${basedir}/src/sub_build.xml

compile_gazetteers

20

-compile_extended_gazetteer

${basedir}/src/sub_build.xml

generate_extended_gazetteer

-generate_extended_gazetteer

${basedir}/src/sub_build.xml

1

2

3

-compile_tdl

${basedir}/src/sub_build.xml

1

3

2

-compile_grammar

${basedir}/src/sub_build.xml

compile_mmorph

clean_data

clean_all_data

sproutproject_to_install

replace_spjpaths

install_sprout_package

tohog_compile_extended_gazetteer
-compile_extended_gazetteer_sub

${basedir}/src/sub_build.xml

compile_runtime_project

24

25

compile_chunkiermrs
26

27

sprout2hog

31

1

2

33

37

36

38

45

43

replace_cfg_options

58

replace_cfgpaths

46

39

fsapplet

62

jtaco_batch
jtaco_batch

${basedir}/src/sub_build.xml

jtaco_muc_batch
jtaco_muc_batch

${basedir}/src/sub_build.xml

autotest

63

65

68

66

64

-replace_jtacopaths
67

autotest_all

69

xmlruntimetest

runtimetest

runapplet

Figure 3: Graph of build, test and evaluation target dependencies generated with ant2dot.xsl
(http://ant2dot.sourceforge.net). Solid lines indicate direct target dependencies, dotted lines indicate contained sub-
target calls.



From: SProUTomat
Date: 03.03.2006 06:35
Subject: SProUTomat 03.03.2006: OK

Status: OK CVS update...
U src/grammar/extendedgazetteer/common/location.gaz
U src/grammar/xtdl/ne/de/location.sgr

Building runtime system and grammars... log
Testing German grammar... log result
Running JTaCo... log
JTaCo result German
...
Testing English grammar... log result
Running JTaCo... log

 0

 0.2

 0.4

 0.6

 0.8

 1

2005/08 2005/09 2005/10 2005/11 2005/12 2006/01 2006/02 2006/03 2006/04

R
ec

al
l

Date

Recall Diagram for annotated testing corpus: training.ne.eng.keys.980205 

NUMEX-PERCENT
NUMEX-MONEY

ENAMEX-LOCATION

ENAMEX-ORGANIZATION
ENAMEX-PERSON

TIMEX-DATE

TIMEX-TIME

 0

 0.2

 0.4

 0.6

 0.8

 1

2005/08 2005/09 2005/10 2005/11 2005/12 2006/01 2006/02 2006/03 2006/04

P
re

ci
si

on

Date

Precision Diagram for annotated testing corpus: training.ne.eng.keys.980205 

NUMEX-PERCENT
NUMEX-MONEY

ENAMEX-LOCATION

ENAMEX-ORGANIZATION
ENAMEX-PERSON

TIMEX-DATE

TIMEX-TIME

Generating runtime system Javadoc
Generating Antdoc for build.xml

Start: 03.03.2006 06:22:01
End: 03.03.2006 06:35:38

Figure 4: A report generated by SProUTomat (slashed).


